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Abstract 
It is argued that the efficiency in futures market depends on the nature of trading activity in futures and 
on its relation to the underlying security.  Much of the studies in this are only focus on the linear 
relationship between this instruments and little has been done using the nonlinearity test.  To explore 
this matter we use BDS test and Treshold autoregressive model (TAR) to model our data to investigate 
the efficiency of stock index futures in Malaysia, Singapore and London in a nonlinear way.  If 
forecasting can be made by using the nonlinear model, market efficiency theory is challenging again 
and arbitrage opportunity will exists. The conclusion to be drawn from the threshold model is that, 
although the basis changes can be predicted by using a nonlinear model, arbitrageurs cannot make 
profits from nonlinear prediction because the basis only produce profits when profit making from the 
transaction exceed its transaction costs. 

 
 

1. Introduction 
 
Testing for nonlinear dependence has become an important area of research in financial econometrics 
because of its profound implications for model adequacy, market efficiency and predictability (Brooks, 
1996).  For example, Hinich and Patterson (1989) claim that if nonlinearity exists in financial time 
series, at least in the short term, forecasts may be improved by switching from a linear to a nonlinear 
modeling strategy, if only because a linear model can no longer be viewed as an accurate 
representation of the data.  More generally, there is now substantial literature, which broadly agrees 
that there is nonlinear behaviour in financial time series such as stock market indices (Hsieh, 1991 and 
1995), exchanges rates (Kodres and Papell, 1995, Krager and Krugler 1992) and for gold and silver 
prices (Frank and Stengos, 1989).  
 
The purpose of this paper is to examine whether basis (basis=log (futures) – log (spot) prices) for 
FTSE-100, Nikkei 225 and KLCI series exhibits nonlinear dependence and its implications on the 
efficiency of these markets.  Nonlinear dependence will be examined using the BDS test and the 
generalised autoregressive conditional heteroscedasticity (GARCH) family model to explain this 
behaviour, if any.  Failing that a more complicated model such as threshold autoregressive (TAR), in 
particular the smooth transition autoregressive (STAR) family will be used.  This investigation is 
undertaken to assess if nonlinear predictability is feasible (and hence inconsistent with efficiency) 
outside the bounds of transactions costs. 
   
2. Reasons for the existence of nonlinearity in the time series. 

Fat tailed return distribution 
 
Nonlinearity in times series exists for several reasons.  First, there is the possibility that a fat tailed 
returns distribution may be responsible for the rejection of linearity.  Researchers have only focused on 
futures price return distributions because of the efficiency implications of skewed distributions (if 
skewed, the risk of margin calls differs between long and short positions (Sutcliffe, 1993)). There is 
fairly widespread evidence of skewness in analysing this futures price returns. Twite (1990) has 
analysed four years of daily closing price data on futures for the Australian Stock Exchange All 
Ordinaries Share Price Index and found that the distribution of returns is non-normal, with 
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leptokurtosis2 and positive skewness.  Chan, Chan and Karolyi (1991) and Stulz, Wasserfallen and 
Stucki (1990) also found that the distributions of the future price returns are leptokurtic.   
 
Table 1 shows the descriptive statistics of the filtered basis series (series that already adjusted with AR 
(p) process to extract any linear dependence) for the exchanges examined. The kurtosis3 of the series 
are all well over 34, indicating that the basis distribution is leptokurtic. This fat-tailed distribution may 
exhibit nonlinear dependence in the basis series. However, this is only an indication, because, 
according to Sutcliffe (1993), the existence of leptokurtic time series may be related to the arrival rate 
of new information or the imposition of a minimum price movement.  As information arrives at an 
uneven rate, the distribution will be a mixture of a number of normal distributions, which may produce 
serial correlation in the series. 
 
Table 1:  Descriptive statistics for filtered basis using AR(p) process  
      
Exchanges                     Mean               Standard              Skewness            Kurtosis 
                                                              Deviation 
 
FTSE-100                      -1.38E-06          4.45E-03              0.062                   19.395 
 
Nikkei-225                    -1.54E-05           5.24E-03             -0.879                   17.715 
 
KLCI                            -5.17E-06           3.69E-03              0.058                     3.601   
 
 
 
3.   Data 
The data set used in this chapter are basis for London, Singapore and Malaysia. Daily closing prices 
for the futures and spot markets are used and the basis is calculated as the log difference between the 
futures and spot prices. The time period covered for the London market is from 1984 to 1997, 
Singapore from 1986 to 1997 and the Malaysian market from December 1995 to March 1997. 

4 Test for nonlinearity 

4.1  BDS Tests 
 
The BDS test statistic (Brock, Dechert and Scheinkman (1987)) is a general test for nonlinearity, and is 
based on the correlation integral5.  This test is more powerful than simple nonlinear deterministic 
systems as well as nonlinear stochastic processes.  The BDS statistic is used to test the null hypothesis 
that a time series is independent and identically distributed (IID) against an unspecified alternative 
using a nonparametric technique (see Brock et al. 1991) and, as such, represents a general test of 
nonlinear behaviour from which specific models can be developed. The method has been used by 
Brock, Hsieh and Le Baron (1991) and Lee, White and Granger (1993). 
 
The steps in the BDS tests are as follows: 
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where Lε  is the indicator function that equals one if || ||x xt
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denotes the sup-and max.-norm, which is used for measurement of distance.  The correlation integral 
measures the fraction of pairs of m -dimensional points whose distance is no greater than a small 
number ε .   The BDS statistic is    
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where ( )σ εm T,  is an estimate of the standard deviation under the null hypothesis of IID for selected 
m  and ε , and where the BDS statistic is asymptotically normally distributed with zero mean and a 
known variance. 
 
When conducting the BDS test, the data are usually pre-filtered through linear filters such as AR(p) 
model.  The filter process is needed to extract any linearity effect in the data, thus leaving the 
nonlinearity effect, if any for further test.  The residual from AR(p) models are used for the BDS test to 
detect any nonlinear behaviour in the basis.  According to Granger (1991), BDS tests can be applied to 
filtered series, where the filter chosen gives an output with white noise properties: if the series being 
tested does not have white noise properties, the null hypothesis can be immediately rejected and there 
is no need for the test.  The following table (2) displays the result of BDS tests for all the three 
exchanges we tested.  
 
4.1.2   BDS test results and discussion 
 
Table (2):  BDS test statistics for London, Singapore and Malaysia 
 
 
 
                                                                                  Exchanges 
 
Dimension                  FTSE-100               Nikkei-225                   KLCI           
 
 
 
 
AR (p) model  Residuals 
 
     2                                 1.47                          2.14*                         3.75 * 
     3                                 1.98*                        1.88                           2.45* 
     4                                 1.21                          2.24*                         2.88* 
     5                                 2.89*                        3.21*                         4.91* 
     6                                 3.32*                        3.19*                         4.04* 
     7                                 2.76*                        4.17*                         4.15* 
     8                                 3.68*                         2.19*                        4.75* 
     9                                 2.63*                         3.25*                        3.95* 
    10                                3.06*                         3.27*                        3.91* 
 
 
This table provides the results for BDS statistic at dimension 2 through 10 with the ε/σ equal to 1.0.  BDS 
statistics are distributed N(0,1) under the H0 of IID.  Rejecting the H0 when BDS statistics more than 1.96 
(at 5% significant level).  The observations contain absolute basis changes and two non IID models: AR(p) 
residuals (pure autoregressive model) and GARCH(1,1) residuals (the generalised autoregressive 
heterocedasticity model.  * significantly more than 1.96 (reject IID) ( The test statistic is from Peters, Edgar 
E (1991) 
 
 
BDS test results in table (2) indicate substantial nonlinear dependence in the basis series.  The filtered 
AR(p) model does not remove any nonlinear dependence because the asymptotic distribution of the 



BDS test is not altered by using the residuals from the filtered series instead of the raw data (Brock, 
1987).   This suggests that the filter process in the AR(p) model does not remove non-linear effects in 
the basis.  The results  reject the null hypothesis that the basis is identical and independently distributed 
(IID) at the 5% significance level. These findings indicate that the basis contains some nonlinear 
behaviour, which may contradict the market efficiency hypothesis, in a way that a basis can be 
forecasted, because it is possible for the basis to be linearly uncorrelated, but nonlinearly dependent.   
The reason for the existence of nonlinear effect in basis may be because of the distribution of the basis.  
As shown in the descriptive statistic for basis in table (1), basis exhibits fat/heavy-tailed distribution.  
 
An alternative explanation for the existence of nonlinear dependence in the basis series relates to the 
feedback effect in price movements where price deviations from theoretical values encourage self-
regulating forces to drive prices back to their no-arbitrage values.  The nonlinearity arises because the 
extent of the correction in the market may not be proportional to the amount by which the price 
deviates from its true value.  In such circumstances there might be some deviation of the price that 
relates to nonlinear feedback, if there are many participants in the exchanges with many attitudes and 
motives, which make their feedback to any news potentially different.  
 
Our results are consistent with previous studies, which show that BDS has successfully detected 
nonlinear behaviour in time series when using an AR(p) model (Hsieh (1991), Abhyankar, Copeland 
and Wong (1995), Hsieh (1995)).  This suggests that our results are valid for all three markets tested 
are not efficient in a nonlinear way. 
  
4.2  Fitting a GARCH (1,1) model  
 
This section will try to model basis series using GARCH (1,1) model to eliminate the effect of 
nonlinearity in the series. This GARCH (1,1) model is considered a general model. If the model does 
not fit the data, we will proceed with a more complex model such as the threshold model.  The ARCH 
model was first suggested by Engle (1982) and further developed by Bolleslev (1986) in his 
generalised autoregressive conditional heteroscedasticity (GARCH) model.  In the ARCH model, the 
process is modelled as being dependent on lags past squared residuals while in GARCH, the variance 
of the process is modelled as being dependent on lags squared residuals as well as lags variance.  
Within the class of GARCH process, GARCH (1,1) estimation is considered preferable for the purpose 
of filtering (Bolleslev, 1986; and Akgiray, 1989).  The GARCH (1,1) models estimated in this study 
take the form of: 
 
  ttt BB εφφ ++= −110      [3] 

  ),0(~1 ttt hN−ψε      [4] 

  11
2

110 −− ++= ttt hh βεαα     [5] 
 
where tB  is the basis conditional on past information which is proxied by 1101 ,,, βααβ −t  are 

parameter to be estimated.  1−tψ  is the information set at time t-1, tε  is the stochastic error conditional 

on 1−tψ , and is assumed to be normally distributed with zero mean and conditional (time varying) 

variance, th .  As such, in GARCH models conditional variance of the error term as a linear function of 
the lagged squared residuals and the lagged residual conditional variance.  The advantage of a GARCH 
model is that it captures the tendency in financial data for volatility clustering. 
 
The basis series is fitted with the GARCH(1,1) model and the residual is evaluated by investigating its 
standardised residuals. If the GARCH(1,1) models for all the exchanges are correctly specified and fit 
the sample data, the standardised residuals and the squared standardised residuals should be IID.  The 
Ljung-Box Portmanteau test is then used to test whether the GARCH (1,1) model removes serial 
correlation in the original data (Bolleslev, 1986).  Under the condition that the GARCH(1,1) filtered 
residual fails to remove volatility clustering (first and second order serial dependence), a more complex 
model such as the threshold model is suggested to overcome the nonlinear dependence in the basis 
series. 
 



4.2.1 GARCH (1,1) model results and discussions 
 
Table (3):  GARCH (1,1) model for all the three exchanges 
 
London 

1180.000.0 ttt BB ε++= −  
        (11.81)  (78.35)  
 
   1

2
1 73.024.00641.1 −− ++−= ttt hEh ε  

 (17.384)      (24.01)    (89.95) 
 
Ljung Q-statistics 
1st order     2nd order 
lag  5 98.38   (0.00)  4.70    (0.40) 

30 214.88  (0.00)  37.93  (0.15) 
90 353.48  (0.00)  119.50 (0.02) 

 
 
Singapore 
 

ttt BB ε++= −182.000.0  
a.     (84.82)      
 

1
2

1 58.045.00641.2 −− ++−= ttt hEh ε  
(12.54)     (61.85)    (67.81) 

 
Ljung Q-statistics 
1st order     2nd order 
lag  5 107.48   (0.00)  28.20   (0.00) 

31 265.88  (0.00)  34.15   (0.28) 
90 654.48  (0.00)  101.95 (0.18) 

 
Malaysia 
 

ttt BB ε++= −176.000.0 ε  
      (8.56)  (19.60)     

 

1
2

1 55.034.00508.1 −− ++−= ttt hEh ε  
 (6.41)      (3.41)    (6.95) 
 
Ljung Q-statistics 
1st order     2nd order 
lag  5 19.66    (0.00)   4.38    (0.49) 
            30        1.27    (0.00)   24.49  (0.74) 

90 100.91  (0.00)   62.26  (0.98) 
 
Note:  Bt is the basis, Bt-1 is previous lag of the basis and ht-1 is the conditional  variance and 2

1−tε  is 
the squared residuals in the GARCH (1,1) estimation. Ljung first order and 2nd order are to look at the 
dependency of the residual of the GARCH (1,1) estimation. The number in the bracket in the equation 
is the T-statistics and in the L-Jung Q-statistics the number in the bracket represents the P-value of the 
statistic.   
 
 
Table (3) tabulates the results of GARCH (1,1) model for the basis series.  As we can see the L-Jung 
Box Q test statistics for lags 5,30 and 90 are statistically significant at 5% significance level, indicating 



first order serial correlation in the GARCH(1,1) basis series.  However, the second order – test 
statistics of standardised residual squared due to McLeod-Li are not statistically significant at 5% level, 
suggesting that second order serial correlation dependence do not exist. This suggest that the 
GARCH(1,1)6 model for all the three exchanges does not remove the nonlinear dependence in the 
series although the second order serial correlation is not significant for all the lags tested.  This result 
suggests that basis needs to be modelled with a higher order GARCH model or with a more 
complicated model such as threshold autoregressive. 
 
4.3 Threshold Autoregressive model for basis  
One of the most important parametric nonlinear time series models is the threshold autoregressive 
model (TAR). There are some extensions to this class of model, namely the smooth transition threshold 
autoregressive (STAR) model.  The STAR model is a combination of the Exponential Autoregressive 
model (EAR) originally proposed by Haggan and Ozaki (1981) and the TAR model, which was 
introduced by Tong and Lim (1980) and further investigated by Tong (1983).  The TAR model is 
based on the observation that many empirical systems have some natural threshold value which results 
in a very distinctive behaviour of the system. This is accounted for, by the TAR model through 
modelling different autoregressive processes depending on the value of some lagged variable. 
 
The STAR model is appropriate when there is a threshold level of the absolute deviation from the 
equilibrium beyond which the spread becomes mean reverting.  In our case the spread is referred to as 
the basis. In this model the regime changes  gradually (smoothly) rather that abruptly, as they do in the 
TAR model.  A smooth rather than a discrete regime change is likely to be more realistic and 
appropriate when dealing with an aggregated process (Granger and Terasvirta (1993)). 
 
The other characteristic of the STAR model is that the nonlinear adjustment process takes place in 
every period when the variable deviates from equilibrium, but the speed of adjustment varies with the 
extent of the deviation from equilibrium.  The STAR model is considered to be more reliable than the 
TAR model because the statistical modelling procedures are more developed. In the TAR model the 
discontinuity at each of the thresholds makes the testing of linearity complicated and it is unclear how 
inference about the estimated thresholds should be conducted (Michael, Nobay and Peel ,1996). 
 
The STAR model can be expressed as: 
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where yt  is stationary and ε t  is an IID process with zero mean and finite variance.  F(yt-d) is a 
transition function bounded by zero and one.  The STAR model can be divided into two popular 
classes namely the Logistic function (LSTAR) and the Exponential function (ESTAR). 
 
 (a)  The LSTAR model can be expressed as : 

( ) ( )( )( )F y y ct d t d− −

−
= + − −1

1
exp γ                       γ > 0                          [7] 

where γ  determines the speed of  the transition process between two extreme regimes and c is the 
transition parameter.  Note that when γ → ∞ and yt-d > c then F(yt-d)=1, but when c ≥ yt-d, F(yt-d) = 0, so 
that equation (6) collapses into a threshold AR(p). When γ → 0, equation (7) becomes a linear AR(p) 
process.   
 
The LSTAR model differs from the ESTAR model in that the parameters in the LSTAR model change 
monotonically with the transition function, while the ESTAR model changes in a non-monotonic way.  
This model can describe one type of dynamics for booming phases of the economy and another for 
slower phases.  The logistic function provides asymmetric adjustment towards equilibrium according 
to the sign of (yt-d -c).   
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(b)  The exponential function –(ESTAR)  

( ) ( )( )F y y ct d t d− −= − − −1 2exp γ                         γ > 0                      [8] 

The ESTAR model becomes linear both when γ → 0 and γ →∞.  The model implies that contraction 
and expansion have similar dynamics (Terasvirta and Andersen, 1992). The transition function is U-
shaped and the parameter γ determines the speed of the transition process between two regimes.  This 
model may be viewed as a generalisation of a particular form of two threshold models whereas, the 
LSTAR model is a single-threshold TAR with asymmetric adjustment to positive/negative deviations 
(Michael et. al (1996). 
 
4.3.1   ESTAR process with application to the arbitrage behaviour 
 
The ESTAR application is based on modelling the evolution of differences in asset prices of equivalent 
assets (basis) traded in markets linked by arbitrage.  Price differences could arise if the same asset is 
traded in two geographical locations or if one asset can be created synthetically from combinations of 
other assets, for example the futures price and the futures-equivalent cash price of a stock index.  
Equivalent assets should share the same stochastic trend and their prices should not diverge in the long 
run, if arbitrage-related forces link the markets in which they are traded.  If both prices are traded in a 
perfect market, the two prices must be identical at all the times.  However, prices could drift apart in 
the short term if trading in one of the two assets involves lower transaction costs than the other, which 
is due to inadequate incentive for arbitrage.  Arbitrageurs will initiate the arbitrage trade only when the 
basis exceeds the transaction costs in the arbitrage strategy.  Consequently, there exists a window of 
possible price differences within which arbitrageurs are not likely to make any effort to bring prices 
into lines with each other.  This window is called the no-arbitrage window and futures and spot prices 
can easily move apart without triggering arbitrage-related market forces that would bring them back 
together.  In the other window, called the outside no-arbitrage window, arbitrageurs will start to act if 
the profit from the price differences (basis) exceed the transaction costs.   
 
In applying the ESTAR model, the no-arbitrage window refers to regime 1 and the outside window 
refers to regime 2.  Every time the net profit (basis –transaction cost) of any transaction exceeds the 
basis, the basis will move outside the no-arbitrage window.  In this boundary, that is regime 2, the 
basis will be mean reverting and arbitrage activities will push the basis back to its equilibrium level in 
the no-arbitrage window in regime 1.       
                   

4.3.2 ESTAR model testing strategy 
The purpose of this section is to fit a suitable nonlinear model for basis. The strategy involves three 
basic steps.  
1.  The first step is to carry out the complete specification of linear AR(p) model.  Over specification of 
the linear AR(p) model is preferable to under specification since autocorrelated errors may affect the 
linearity test.   
 
2.  After the appropriate linear AR(P) model has been determined, we proceed with  testing for 
linearity, and if rejected, detect the delay parameter, d. This delay parameter is a positive integer 
representing the number of time periods necessary for the arbitrageurs to have a price impact.  If 
linearity is rejected at more than one value of d, we select the one for which the p-value of the test is 
the lowest.  Note that when testing equation (4.10) the value of γ implies F= 0 when γ = 0 , and thus 
the linearity hypothesis may be expressed as H0 0:γ =    and the alternative H1:γ  >0.  If the null 
cannot be rejected then the model is a linear AR(p) model.  
 
Terasvirta (1994) derives an LM-test type of linearity against LSTAR or ESTAR models by estimating 
the following artificial regression: 
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and testing the null of  



 
H j j j0 1 2 3 0= = = =β β β                               j = 1,2,......p                     [10] 
 
 
In practice the Lagrange Multiplier (LM) test of linearity is replaced by an ordinary F-test in order to 
improve the size and power of the test7.  Once the value of the delay parameter, d has been determined, 
MNP(1996) suggest that a more powerful and specific test against the ESTAR model can be obtained 
by the following regression: 
 

( )y y y y y yt j t j j t j t d j t j t d
j

p
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=
∑β β β β ε00 0 1 2
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                         [11] 

 
and testing the null of  
 
H L j j0 1 2 0∗ = =:β β                                      (j=1,2,.....p)                          [12(a)] 

 
by using the ordinary F-test 
The most powerful test of linearity is based on the test of the null 
 
H L j j0 2 10 0∗∗ = =: /β β                              (j=1,2.....p)                           [12(b)] 

 
The test for (12b) is the optimal test of the null of linearity against the specific alternative of an 
ESTAR model.  After linearity is rejected for all the above hypotheses, the next step is to select the 
appropriate ESTAR model for London, Singapore and Malaysia. 
 
In the estimation of the ESTAR, the estimation of the transition function γ and c may pose a problem 
(Terasvirta, 1994).  This is because when γ is large, the slope of the transition function is steep and 
even relatively large changes in γ, only have a minor effect on the shape of F(t-d).  The situation is even 
more intricate since we also do not know the parameter c. Terasvirta(1994) suggests standardising the 
exponent of F(t-d) by dividing it with the variance of the basis, such that γ=1 is an appropriate starting 
value.  We carry out the tests with γ fixed at different values to get the best fitting ESTAR models for 
all the three exchanges tested.    

 
4.3.3  Empirical Results and Discussions 
 
Table (4) displays the results of the LM linearity test.  The LM linearity test is significant for the 
hypothesis we tested (equation 12 (a) and (b)).  The P-values reject the null hypothesis of linear series 
for all the exchanges at 5% significance level.  This shows the basis series exhibit nonlinear behaviour.   
 
 
 
 
 
 
 
Table (4): P-Values of linearity test ( ESTAR model) 
 
Market                     London                           Singapore                           Malaysia 
 
Lags AR (p)                    4                                    5                                          2 

                                                 
7 The LM-test is an asymptotic one, which has better performance when the sample size is large.  In 
reality it is essential when the order p of the linear AR model is large while the number of observations 
is small (Harvey, 1990). 



 
d(delay parameter)           1                                   1                                           1 
 
Test  
H*

0L                            0.000                             0.006                              0.010  
                                   (11.31)                            (3.31)                                (2.96) 
 
H**

0L                            0.004                              0.013                               0.002     
                                   (3.29)                             (2.90)                               (5.32) 
 
The P-value is used to test the hypothesis in equation 12(a) and (b).  The p-value is tested against the 
chi-square at 5% significance level.  All of the above hypotheses reject  the null hypothesis of linearity. 
Numbers in brackets are F-statistics of the respective hypothesis and markets 
                                                                                                                                                                   
If linearity is rejected in favour of nonlinearity the next step is the estimation of the delay parameter.  
The delay parameter is determined by testing the hypothesis in equation (12) and confirms that the time 
periods necessary for arbitrageurs to have a price impact is one day.  The results show that the p-value 
for day one is the lowest when compared to day 2 or day 3, as displayed in table (4). 
 
Table (5):  P-value of the delay parameter 
 
Exchange   Delay parameter 
   1  2  3 
London        0.000  0.001  0.001 
Singapore        0.001  0.001  0.002 
Malaysia        0.000  0.002       0.000 
 
This table testing equation 4.16 to determine the delay parameter of the ESTAR model.  The above p-
value is significant at 5% significance level. 
 
Once the delay parameter has been estimated, the final step is to model the basis series using the 
ESTAR model .  Table (6 ) shows the ESTAR models for all the respective exchanges tested.  DW is 
the Durbin Watson statistic, which is used to test for serial correlation in the model.  None of the 
model exhibits serial correlation in their residuals and the Ljung-Box Q-statistic supports this result.  
The ARCH LM and White heteroscedasticity tests, test for the existence of ARCH effect and 
heteroscedasticity, which might otherwise suggest misspecification. According to Eirtheim and 
Terasvirta ( 1996), nonlinear models can be mispecified if any remaining nonlinearity is not modelled.  
The diagnostic of ARCH effects confirms that all three ESTAR models are clean of ARCH and 
heteroscedasticity effects.  
 
Table 6: ESTAR model estimation for London, Singapore and Malaysia 
 
London (ESTAR model) 
 
bt = 0.25bt-2 + 0.28bt-3 -  0.19bt-4 + (0.24bt-1 - 0.34bt-2 +  0.18bt-3  +  0.25bt-4  - 
        (2.19)      (2.16)      (2.36)       (5.78)   (6.34)     (4.02)       (5.58) 
 
          * F(t-d)  + εt 
           
F(t-d) = (1-exp(-20.28bt-1)2) 
                          (4.31) 
 
R2  =  0.5608                         Q(5)    = 7.922(0.161)           Arch(1)  = 0.188 (0.664) 
DW =   2.007                         Q(30)  =  35.55(0.125)           
SD =   0.0049       Q^2(5) = 3.105(0.684) 
        Q^2(30)=43.60(0.052)  
 
 
 



 Singapore (ESTAR model) 
 
 
bt = 0.17bt-1  -  0.14bt-2  +  0.29bt-3  + 0.12bt-4 + (-0.43bt-1 - 0.35bt-2 
       (2.34)        (2.47)         (2.94)     (2.75)        (5.78)        (6.93) 
 
          + 0.17bt-3 - 0.23bt-4)  * F(t-d) +  εt 
             (4.35)    (3.29) 
 
F(t-d) = (1-exp(-26.30bt-1)2) 
                      (3.81) 
 
 
                                                                                                                                        
R2    = 0.543                           Q(5) = 7.115   (0.212)                    Arch(1) = 0.034(0.852) 
SD   = 0.0094                         Q(30) = 7.527 (0.163)                     
DW  = 2.12       Q^2(5) = 2.842(0.724) 
        Q^2(30)=17.28(0.991)  
Malaysia (ESTAR model) 
 
 
bt = 0.21bt-1 +0.24bt-2 +  (-0.29bt-1 - 0.19bt-2) * F(t-d) +  εt 
       (2.38)      (2.29)          (4.68)         (3.55)          
            
F(t-d) = (1-exp(-10.14bt-1)2) 
                         (3.59) 
 
 
R2    = 0.558                       Q(5) = 0.704 (0.98)                          Arch(1) = 0.094(0.758) 
SD   = 0.0054                     Q(30)= 519.57(0.92)                            
DW  = 2.32    Q^2(5) = 2.912(0.550) 
     Q^2(30)=15.30(0.210) 
 
*SD is standard deviation of the dependent variable 
*Q(p)and Q^2(p) is the L-Jung Box statistic for the test of serial correlation 
*ARCH (p) is used to detect the ARCH effect.  
 *Number in the bracket is the respective T-statistic of the coefficient  
         
 
Table (6) is the ESTAR models for all the three exchanges and it indicates that the transition rate (γ) in  
F(t-d) is higher for London and Singapore when compared to the Malaysian market.  The transition rates 
for London and Singapore are 20.28 and 26.30 respectively compared to 10.14 for Malaysia. This 
indicates that in the London and Singapore markets any deviation from the non-arbitrage window will 
be quickly corrected and prices will be pushed back to the no-arbitrage window.  This quick transition 
from one regime to another regime prevents arbitrage to take place for a longer period and create 
abnormal profits. The reason behind this quick transition is that in well-developed and efficient 
markets, such as London and Singapore, transaction costs are low, compared to a relatively new 
market, like Malaysia, and therefore the no-arbitrage bounds for these markets are narrow.  On the 
other hand, for less efficient or new markets, the higher transaction costs make the no-arbitrage bounds 
wider.  As a result the time needed for the basis to move between the arbitrage bounds whenever 
mispricing occurs and restores the price at the equilibrium level is faster in London and Singapore 
compared to Malaysia.  The wider no-arbitrage bounds in Malaysia will make the trading activity slow 
as arbitrageurs do not actively participate.  
 
 5  ESTAR model and BDS statistic 
To support the results from the ESTAR model, a further BDS test is used against the residual from the 
linear AR(p) model.  If the true model describing basis is an ESTAR, then the residuals obtained after 
fitting the estimated ESTAR model should arguably be independent and identically distributed.  Thus, 
the test is employed as a diagnostic tool for the adequacy of the nonlinear fitted model obtained with 



ESTAR.  Additionally, if the market response to basis is efficient within the inner regime, the 
distribution of the basis must be IID. 
  
Table (7) reports the results for the BDS test statistic for all the three exchanges examined by using the 
residuals of the fitted ESTAR model.  The embedding dimension m, is chosen to be from 2-10 and the 
distance measure, ε/σ = 1.  From table (7), the BDS test statistic for the residual from the ESTAR 
model reveals that we cannot reject the hypothesis that basis changes are IID compared to a 5% level 
of significance.  This suggests that the ESTAR model is a good and adequate model in modelling the 
price differences between stock index futures and their respective spot market. 
 
Table 7:  BDS test for the ESTAR model residuals 
 
Markets                            London                      Singapore                      Malaysia 
 
Dimension 
2                                         0.13                             0.18                              1.09 
3                                         0.16                             0.13                              1.12 
4                                         0.19                             0.15                              1.16  
5                                         0.23                             0.16                              1.18 
6                                         0.24                             0.19                              1.20 
7                                         0.27                             0.21                              1.59 
8                                         0.30                             0.23                              1.75 
9                                         0.97                             0.24                              1.98* 
10                                       1.26                             0.26                              2.00* 
 
This tables provides the results for the BDS statistic at dimension 2 through 10 with the ε/σ=1.0.  BDS 
statistics are distributed N(0,1) under null hypothesis of IID.  We reject the IID null hypothesis when 
BDS statistic is more than 1.96% (at 5% significance level).  The residuals are from the fitted ESTAR 
model for each of the respective markets to test the distribution of the basis changes. 
* reject the null hypothesis 
 
 
The conclusion to be drawn from the threshold model is that, although the basis changes can be 
predicted by using a nonlinear model, arbitrageurs cannot make profits from nonlinear prediction 
because the basis only produce profits when profit making from the transaction exceeds its transaction 
costs.  It also clearly shows that, although the model is nonlinear, the basis remains in the inner 
window of no arbitrage possibilities, which exhibits an IID distribution, which is a characteristic of an 
efficient market.  This means the basis can still be efficient, despite the existence of the nonlinear 
structure in the time series.  It is suggested that nonlinear behaviour is not always inconsistent with the 
efficient market hypothesis.  In other words, arbitrageurs can predict a market because of the existence 
of nonlinearity effects in the model, but they cannot make any money from this prediction. 
 
To determine the proportion of observation that lie outside the transaction costs band by using daily 
data is impossible because other studies that look at this matter using a more shorter time period data 
such as Swintnerton, Curnio and Bennet (1988), Farbush (1981) and Yadav and Pope(1990) found that 
the primary reaction of arbitrageurs to an arbitrage opportunity occurs within five minutes to the first 
hour. Unfortunately our data is a daily data, which the effect of the reaction outside no-arbitrage 
bounds has disappeared by the end of the data. This is considered the limitation of this chapter. 

 6  Conclusions 
 
This paper covers two different areas of nonlinear effects in the basis changes of  stock index futures 
and its underlying cash market.  The first area employed general nonlinear tests such as the BDS test. 
We tested the absolute value of basis AR(p) model for London, Singapore and Malaysia. The BDS test 
statistic results conclude the basis for all the exchanges exhibit nonlinear dependence in the time series.  
This nonlinear behaviour in the basis indicates that basis can be predicted and contradicted with market 
efficiency. 
 



The second area covers a general nonlinear model such as the GARCH model.  If the GARCH model 
failed to model the basis, will use a more specific model namely the STAR model is used.  The 
GARCH (1,1) model for all the three exchanges failed to model the basis because the first order serial 
correlation coefficients of the basis exhibit serial correlation.  The second order serial dependence as 
measured by the square of the Q-statistic in some lags failed to reject the null hypothesis of 
nondependence among the basis. 
  
Further areas covered are nonlinear tests such as the STAR model, especially the ESTAR model.  We 
modelled our data with the ESTAR model because this model has two thresholds and the deviations 
from equilibrium have the same adjustment whether positive or negative. All three exchanges reject the 
LM linearity test and successfully model as an ESTAR model.  The next step is to test the residual 
from the fitted ESTAR model against the BDS test to detect the distribution of this residual.  The result 
reveals that the residual is IID and is consistent with inner-regime behaviour. The conclusion drawn 
from this is that, although the basis can be modelled in a nonlinear way and may be used for 
forecasting, the profits from this prediction is not in excess of transaction costs.  The results also show 
that nonlinear behaviour is not inconsistent with an efficient market because the ESTAR model 
residual of the basis changes remains within the no arbitrage window.   
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