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Abstract 
 

The aim of this study is to measure extreme cross-market dependence between the Jamaican foreign 
exchange and equity markets and its implications for risk managers. Extreme value copulas are used to model the 
joint distribution of extreme US/Jamaica foreign exchange and Jamaica equity returns. For didactic purposes, this 
paper also employs a graphical approach to estimating value-at-risk (VaR) using extreme value theory (EVT). Daily 
data from 01/01/1992 to 01/07/2003 is used to model the tail behaviour of the foreign exchange and equity returns. 
Univariate EVT-VaR tail quantiles at the 95 per cent level are generated for use by risk managers. In the bivariate 
case, the paper finds a high frequency of a foreign exchange-equity co-boom relative to a co-crash. This strong right 
tail dependence arises from the existence of arbitrage opportunities between cross-listed stocks in the Jamaica Stock 
Exchange (JSE) and Trinidad & Tobago Stock Exchange (TTSE) caused by significant depreciations in the 
US/Jamaica foreign exchange rate. The existence of the arbitrage channel is supported by a robustness check, which 
indicates the absence of right tail dependence when the composite JSE index is substituted with an index that 
excludes the cross-listed stocks. 
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1.0 Introduction 

Recent episodes of financial crises in emerging economies have highlighted the need for more 

sophisticated internal market risk control systems as well as the appropriate external (regulatory) controls. 

Consequently, there has been a tremendous growth in financial risk modelling by both internal and 

external risk managers. The value-at-risk (VaR) model has quickly developed into the benchmark 

approach among practitioners and regulators for computing composite risk measures and capital 

allocation. This model reflects the maximum potential loss in the value of a portfolio over a fixed horizon 

and for a given probability. In the prudential context, VaR provides an estimate of the risk capital that is 

required to cover portfolio losses over a fixed holding period. The probability level used in calculating the 

VaR is typically very small so as to capture only extreme market fluctuations. Although many financial 

systems in the developed economies have adopted these requirements, most emerging financial markets 

are still resisting its regulatory implementation. Nevertheless, the obvious usefulness of summarizing 

market risk in a single summary statistical measure has prompted many of the financial institutions in 

emerging markets to begin to measure their market risks1 using the VaR model. 

Large price shocks in financial markets correspond to extreme events such as crashes in equity, 

bond and foreign exchange markets. The Basel Committee on Banking Supervision (1996) recommends 

that the VaR measure for bank portfolios that are exposed to extreme fluctuations in market prices be 

based on the 99th percentile of a single-tailed confidence interval, for a ten-day holding period. As such, 

the market risk capital of a bank must be adequate to cover losses in its trading portfolio in 99 per cent of 

the occurrences over a ten-day horizon. A bank’s trading portfolio is, by its nature, impacted by more than 

one risk factor. An important problem faced by risk managers is the modelling of joint distributions of the 

different risk factors. Additionally, recent research has uncovered major flaws with the typical use of the 

Gaussian assumption in modelling. This paper uses extreme value copulas to address these problems. A 

copula may be defined as a function that links univariate marginal distributions to their joint multivariate 

distribution. Copulas were introduced in the late 1950’s, mainly through the research of Sklar (1959) to 

examine probabilistic metric spaces, and have recently become popular in the modelling of joint 

distributions of separate financial markets.2  

The aim of this study is to examine a unique phenomenon concerning the extreme cross-market 

dependence between the Jamaican foreign exchange and equity markets and its implications for risk 

managers. For didactic purposes, this paper also employs a graphical approach to estimating VaR using 

extreme value theory (EVT).  

                                                 
1 That is, the risk of losses on a financial portfolio due to adverse price fluctuations. 
2 See Costinot, Roncalli and Teïletche (2000) and Rockinger and Jondeau (2001). 
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In the context of probability theory, extreme price shocks occur in the tails of the price 

distribution. This section of the probability distribution, which captures extraordinary market events, is 

the focus of the VaR model. Obviously, the accurate generation of VaR estimates is critical for the proper 

management of risk and capital adequacy. Nonetheless, there are a number of competing statistical 

models for estimating VaR. These may be classified into parametric, nonparametric and semi-parametric 

groups. The most popular parametric approach is the variance-covariance method based on the 

assumption of a conditional normal price return process, such as in GARCH models.3 This method 

involves frequent updates to the variance-covariance matrix of returns in order to incorporate information 

on recent extreme movements in prices. The main drawback of this approach is that financial returns 

series are known to be leptokurtic or “fat tailed.” Hence, assuming a normal distribution process will lead 

to a significant under-prediction of extreme events.4 The Basel Committee recommends that the capital 

requirement on market risks be calculated as the individual bank’s internal VaR measure, times a 

“multiplication factor” of 3 to account for the potential misspecification5 of the loss distribution.6 

However, the choice of the multiplication factor is subject to much debate.7 

The typical nonparametric approach to computing VaR relies on the process of historical 

simulation. For example, the historical simulation (HS) approach utilizes a rolling window of historical 

market prices to forecast the probability distribution of future losses (or profits). This method does not 

rely on a priori assumptions about the data generation process. Instead, it assumes that the probability 

distribution of returns is constant regardless of the sample window used in computing VaR. This has 

proved to be a limiting assumption, however, as the infrequency of extreme market events typically result 

in a high variability of the VaR estimates. 

Contrary to the variance-covariance and historical simulation methods, EVT focuses on the tails 

of the distribution rather than the centre of the distribution. The tails are the primary interest of risk 

managers. According to EVT, the limiting distribution of the extreme returns is unrelated to the actual 

data generation process. As a result, knowledge of the true underlying distribution for the returns series is 

not relevant for VaR estimation. Given the smaller reliance on distribution assumptions, this semi-

parametric approach has been found to offer more reliable VaR estimates for prudent financial risk 

management. Historically, EVT has been applied to hydrology, engineering, insurance and other fields 

involving extreme observations. Recent research on the application of EVT to financial risk management 

                                                 
3 See, for example, JP Morgan RiskMetrics methodology. 
4 See Danielsonn and de Vries (1997). 
5 The basic reason for using this multiplication factor is to account for the fact that the normality assumption, which 
is the basis for many of the market risk models, is widely accepted as unrealistic. 
6 Stahl (1997) uses Chebyshev’s inequality to arrive at the correction factor of 3 under the standard normal 
distribution. 
7 See, for example, Danielsonn and de Vries (1997). 
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includes: Falk, Hüsler and Reiss (1994), Longin (1996), Reiss and Thomas (1996), Danielsonn and de 

Vries (1997), Embrechts, Klüppelberg and Mikosch (1997), Straetmans (1998), McNeil (1999), Jondeau 

and Rockinger (1999) and McNeil and Frey (2000). 

Recall that the value-at-risk for a financial portfolio measures the maximum possible financial 

loss from holding the portfolio over a fixed horizon for a given level of significance (or quantile). More 

formally, the VaR is the quantile of the distribution function thp F , such that 

pVaR px= )( pF ←= { ,)(:inf pxF ≥ }x ℜ∈=  where ←F denotes the generalised inverse of F and 10 << p . 

However, the risk manager’s use of VaR has been criticized on two grounds. First, in a series of 

influential papers including Artzner, Delbaen, Eber, and Heath (1997, 1999) and Dalbaen (2000), it is 

argued that the non-Gaussian VaR is not a coherent risk measure and, hence, does not represent an 

accurate aggregation of risks across portfolios. A risk measure ρ  is coherent if it satisfies the following 

four axioms: (i) monotonicity: if then0≥X 0( ) ≤Xρ ; (ii) subadditivity: ))( 21 XX +ρ )1(Xρ≤ + )( 2Xρ ; 

positive homogeneity: for 0≥λ , )(X)( X λρλρ = ; and, translation invariance: for , ℜ∈ (aa )X+ρ = 

a−X )(ρ . The quantile-based VaR measure does not satisfy the subadditive property. This means that the 

sum of the individual VaRs for the financial sub-portfolios is less than the VaR of the total portfolio. 

Another shortcoming of the VaR measure is that it only yields the frequency estimate on the upper bound 

of losses. Thus, VaR does not provide information on the severity of an extreme loss, given that a loss 

exceeding the VaR upper bound has occurred. 

Artzner et al (1997, 1999) propose the expected shortfall measure, otherwise called the “tail 

conditional expectation,” as a coherent substitute to VaR. This risk measure provides an estimate of the 

potential size of the loss that exceeds VaR. This expected loss size, or the expected shortfall ( ), given 

that VaR is exceeded, is represented as: = .8 It can be shown that the expected shortfall 

risk measure is subadditive, in that, the merging of sub-portfolios cannot increase risk. 

S

p pS ]|[ pVaRXXE >

 

1.1 Cross-Market Arbitrage Opportunities 

This paper analyses the interdependency between the extreme observations in the Jamaican 

foreign exchange and equity markets. The typical channel in which an extreme linkage between these two 

markets would arise is through the portfolio effect. For example, if there were a sustained depreciation of 

the US/Jamaica dollar foreign exchange (FX) rate, ceteris paribus, investors would substitute Jamaica 

Dollars for US dollars, thus drawing liquid funds from the stock exchange (or bond market). The opposite 

would occur in the case of a sustained appreciation in the rate.  

                                                 
8 Formally, the expected shortfall measure is obtained from the relationship: dxtFxfx

t

∫ ∞−
])()([ . 
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However, another unique channel exists, directly as a result of the thinness in the local financial 

(ie, equity and foreign exchange) market. This channel arises from the existence of arbitrage opportunities 

between cross-listed stocks in the Jamaica Stock Exchange (JSE)9 and Trinidad & Tobago Stock 

Exchange (TTSE) caused by significant depreciations in the US/Jamaica dollar foreign exchange rate. 

The arbitrage process has been well documented by Jamaican and Trinidadian investment analysts and the 

press. For example, according to an article in a major Jamaican newspaper:10 

 
“Yesterday, the JSE index closed up by nearly 1 000 points, fuelled by stocks which are 
listed locally, and on the Trinidad stock market. With the devaluation, the prices of these 
stocks in Trinidad are worth more in Jamaican dollar terms. This price differential has 
created arbitrage opportunities –driving the demand for stocks which can then be traded in 
Trinidad at a much higher price.” 

 
However, the slide in the value of the Jamaica Dollar vis-à-vis its US counterpart must be large 

enough (that is, at least equal to the transactions costs) for investors to take advantage of the deviation in 

relative prices. In this case, a significant increase in the US/Jamaica dollar exchange rate will 

simultaneously trigger a proportional rise in the JSE index given the new demand for the cross-listed 

stocks, ceteris paribus. However, if the rate of depreciation is small, investors would not find it profitable 

to conduct arbitrage, resulting in an insignificant impact on the JSE index. Further, the share of market 

capitalisation for the cross-listed stocks must be large enough for the cross-market arbitrage phenomena 

to significantly influence extreme movements in the composite JSE index. As reported in the local press 

and a Central Bank publication,11 occurrences of significant cross-market arbitrage was particularly 

evident during the episodes of significant currency devaluation in the first half of 2003. As at 30 June 

2003, only 6 of the 40 firms listed on the JSE were cross-listed on the TTSE. However, the cross-listed 

firms accounted for 65 per cent of market capitalisation. Therefore, it is expected that any extreme co-

dependence between the foreign exchange rate and the price and/or volume of the cross-listed stocks will 

be relatively significant in the right tails of the foreign exchange and JSE index returns series. 

As a robustness check of the cross-market arbitrage channel, the extreme cross-market 

dependencies are re-computed by replacing the JSE index with the Jamaica Select JSE index.12 The 

companies listed in the Jamaica Select JSE index are selected according to two criteria: 1. It excludes all 

foreign companies that are not incorporated under the Jamaica Companies Act; 2. It includes only the 15 

highest ranked stocks according to ordinary volumes, number of transactions and number of days traded 

                                                 
9 www.jamstockex.com  
 
10 See “J$ dips again: Stock market gaining from devaluation,” Jamaica Business Observer (May 16, 2003). 
11 See Bank of Jamaica, Quarterly Monetary Policy Report  (June 2003). 
12 The JSE computation of the Jamaica Select JSE index began at the end of April 2000. Thus, the Jamaica Select 
index and the composite JSE index are equivalent prior to this date. 
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within a T -year moving window. As shown in Tables IA-IIIA (in Appendix A), the stocks that are 

cross-listed in both the JSE and TTSE stock exchanges are not included in the Jamaica Select JSE index. 

Thus, the estimated extreme co-dependence parameter for the right tails of the US/J$ foreign exchange 

returns and the Jamaica Select JSE index returns should be below the matching parameter in the case 

when the composite JSE index is used, in order to provide empirical support for the cross-market 

arbitrage channel. 

3−

The rest of section 1 is concerned with the modelling of extreme cross- market dependence. 

Section 2 describes EVT and section 3 illustrates its use for risk managers using foreign exchange and 

equity returns series. Section 4 discusses and implements the maximum-likelihood process for computing 

the EVT-copulas. A robustness check of the arbitrage channel is conducted in section 5. Section 6 

provides some brief concluding remarks. 

 

1.2 Extreme Cross-Market Dependence 

Intuitively, the correlation between two financial series would provide essential information in 

computing the probability of a co-crash in both markets. However, it can be shown that extreme value 

dependence is unrelated to the shape of the extreme values (i.e., the tails) of the univariate marginal 

distribution functions. For example, two heavy tailed Pareto distribution functions, though uncorrelated, 

may be asymptotically dependent. Multivariate extreme value theory (MEVT) involves the direct 

computation of the probability of a co-crash or extremal spillovers,13 without the use of the correlation 

coefficient.   

With the purpose of exploring the probability of a co-crash, let denote a pair of asset returns 

and let 

),( YX

)2 ,1 ,0(=ω denote the number of simultaneous market crashes. Extreme values, or crashes, are 

observed when  or . The conditional probability that both markets crash simultaneously given 

that at least one market crashes is expressed as:14 

s>X tY >

   { } { }
{ }

{ } { }
{ } .1

 ,1
 

 ,1
 ,1|2 −

≤≤−
>+>

=
≤≤−

>>
=≥=

tYsXP
tYPsXP

tYsXP
tYsXPP ωω    [1] 

A dependency measure may be defined, which is equivalent to the conditional probability given 

in [1]. The dependency measured is provided using probability theory to obtain the conditional expected 

number of market crashes given by: 

{ } { } ( ) { }
{ }tYsXP

tYsXPtYsXPtYsXPE
≤≤−

>>+>≤+≤>
=≥

 ,1
 ,2 , ,1|ωω  

    { } { }
{ }tYsXP

tYPsXP
≤≤−
>+>

 ,1
= { } 11|2 +≥== ωωP     [2] 

                                                 
13 See Straetmans (2000) and Hartman, Straetmans and de Vries (2001). 
14 The probability of a crash is mapped into the first quadrant. 
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How can risk managers construct an appropriate dependency measure? Risk managers are 

typically concerned with determining the joint distribution of the risk factors that impact their financial 

portfolio. Linear measures of correlation, such as the Pearson correlation coefficient, have proved 

inaccurate in the case of approximating the joint distribution of extreme returns because of the absence of 

an appropriate dependence measure for the extreme returns as well as non-linear dependence processes.15 

For example, even if the Pearson coefficient generates a value of zero, two series can nevertheless be 

dependent.16 It has been found that the dependencies among financial markets are different for the stable 

and extreme observations located in the centre and the tails of the distribution, respectively. That is, the 

statistical properties of financial market prices are different during stable and crisis periods. If these 

differences are not taken into account, the generated risk measure is unreliable.17 Thus, the standard 

correlation coefficient of extreme values between the two markets is an unreliable measure of market 

dependency because the underlying distribution is unknown.  

 

1.2 Modelling Dependence using Copulas 

As will be shown in section 2, EVT allows for the identification of the univariate marginal 

distribution functions without knowing the underlying distributions. Given this advantage, EVT has 

become the standard resource for describing extreme financial events. Accordingly, multivariate extreme 

value theory (MEVT) offers a solution for the accurate description of the joint dependence structure of 

extreme series through the use of copulas. Straetmans (1999), Stărică (1999), Longin and Solnik (2000) 

and Costinot, Roncalli and Teïletche (2000) are recent examples of the use of MEVT to model the 

dependence between financial markets.  

In the bivariate case, suppose the distributions functions  and  are continuous, then there 

exists a unique function, , with standard uniform marginals and so that: 

                   [3] 

1F 2F

F]1,0[]1,0[: 2 →C

),([F           
( 

),(

1

1

1

FuC
uFH

uXPvuC

=
=

≤=
←

)( 11 X )( 22 XF

{ }
[

              )](
)(),

,

2

2

2

v
vF

vX ≤
← ]

where  and { sxFxsFi ≥ℜ∈=← )(|inf)(  } H  is a 2-dimensional joint distribution function. This is the 

standard 2-dimensional copula representation of the distribution of the random vector [ ] .18 

Importantly, the copula satisfies the following three properties: 1. C  is increasing in and v ; 2. 

TXX  , 21

u),( vu

                                                 
15 The linear (Pearson) correlation coefficient is expressed as: .11 ,

)(Var)(Var
),(Cov),( <<−= ρρ

YX
YXYX  

16 See Embrechts McNeil and Straumann (1999) for a discussion on the pitfalls associated with correlation. 
17 See, for example, Costinot, Roncalli and Teïletche (2000) and  Embrechts, Lindskog and McNeil (2001). 
18 See Sklar (1983). 
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,0)0,(),0( == uCvC   ; 3. ,),1( vvC = uuC =)1,( 2121 ,,, vvuu∀ in [ such that ]1,0 21 uu <  and v : C - -

+ C . Statistically, there exists upper tail dependence if: 

21 v< ),( 22 vu ),( 12 vuC

),( 21 vuC ),( 11 ≥vu 0

{ } {)(1 PuF← ≥>|)(22 vF←> 22 F>XP

{ }
{ })

)(1 P
u

uF←
≥

>|)(

1

22

FXP
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>
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vu =
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u

u

←

←
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←

←
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>
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1
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u
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=

=
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

δδ 1

]) ,




+−− δ)[( u=δ exp),( vu <vu
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−2
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− )1δ
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


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





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



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−
2
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2
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
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2
11 δδ

   })(1 vXX ← , 

which can be re-written as: 

   { })(
(1

1 vXX ←
←

,   

or   } { })( 21 XPuXX .19 

In the case , the coefficient of upper tail dependence of may be defined as: TXX ),( 21

   
{

12

212

F

FXPF

>

>−>
 

If ,  and  are asymptotically dependent and if 0=  (ie, uv ),  and are 

asymptotically independent.20 

This paper considers two examples of copulas:21 the Gumbel-McFadden model and the Hüsler-

Reiss22 model. The bivariate Gumbel-McFadden copula is given by the function:23 

  −( vC , 0       [4] 

with density: 

  ( )

 −−−+−

11(2
)()1()()(

δδδδ δvuvC   [5] 

where the dependence parameter is ],1[ ∞ so that exp()exp((1 uuC and =∞ . A value of 

 implies independence and reflects complete dependence.24 The bivariate Hüsler-Reiss copula 

is given by the function: 

 ( ) −





 −+Φ−−


−+ − exp()exp(

2
1 1 uvvu δδ , 0<u    [6] 

with density: 







 −Φ′+−






 −+Φ


− −− exp)(

2
1) 11 uvuuv δδδδ   [7] 

 
19 According to Joe (1997), if the dependence function is larger than the product copula, C , then there 
exists positive quadrant dependence. 

uvvu =),(

20 In the bivariate case: )1()),(21(lim)(
1

uuuCuu
u

−+−=
−→

λ . 
21 See Reiss and Thomas (1997). 
22 See Hüsler and Reiss (1989). 
23 The thresholds  and  will hereafter represent log values. u v
24 See Galambos (1987). 
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where the dependence parameter is ],0[ ∞∈δ  and Φ  is the univariate standard normal distribution 

function. 

2.0 Extreme Value Theory 

According to the theorems of Fisher and Tippett (1928) and Gnedenko (1943), regardless of the 

specific distribution of a series, the appropriately scaled maxima converges to one of three possible limit 

laws (parametric distributional forms), under certain conditions. A standardised form of the three limit 

laws is called the generalised extreme value distribution. Additionally, by the theorems of Balkema and 

de Haan (1974) and Pickands (1975), the distribution function of the excesses above a high threshold 

converges to the generalised Pareto distribution. This section outlines these two key theorems that 

underpin extreme value theory. 

 

2.1 The Extreme Value Distribution 

Suppose the univariate sequence { }nXX ,,1 K represents independent, identically distributed (iid) 

random variables, such as daily changes in the logarithm of asset prices, with a (marginal) distribution 

function F . Suppose that ),,max( 1 nXX K nn MXX ≡−−−= ),K,min( 1 , then the probability that the maximum 

asset returns, , falls below nM x  is  

       [8] 
).(                

),,P(                
)),,(max()(

1

1

xF
xXxX

xXXPxMP

n

n

nn

=
<<=

<=<
K

K

An analog to the Central Limit Theorem, extreme value theory provides conditions whereby the 

distribution of the location-scale normalisation of the maximum, irrespective of F , is non-degenerate as 

.  ∞→n

Theorem 1 Let be a sequence of iid random variables. If there exist norming constants , 

and some non-degenerate distribution function  such that  

nX 0>na

ℜ∈nb )(xG

    )()( xGaxbFx
b

aM
P d

nn
n

n

nn →+=








≤
−     [9] 

then belongs to one of the three standard extreme value distributions.25 )(xG

Type I (Gumbel):                       (if , ),exp()( ℜ∈−= − xexG x F has light tails); 

Type II (Fréchet):      (if 0 , 
0,       0        

 0 ),exp()( >






≤
>−=

−
α

α
for

x
xxxG F has heavy tails);26 

                                                 
25 For proofs of the theorem see the cited references. 
26 A distribution function has heavy tails if it varies regularly at infinity: 

.0 ,0 ,
)(1
)(1lim

)(
)(lim >>=

−
−

=
−
− −

∞→∞→
αα xx

nF
nxF

nF
nxF

nn
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Type III (Weibull):   (if the support of ,0  ,
0,        1           

 0 ),)(exp()( >






≥
<−−= α

α
for

x
xxxG F is finite).   

The three distributions are subsumed in the following generalised extreme value (GEV) distribution 

   ,
0              )]exp(exp[

0          )]1(exp[
)(

1

,,













=−−

≠+−
=

−

ξ

ξξ ξ

σµξ
ifx

ifx
xG          [10] 

where 1 0>+ xξ and ℜ∈ξ is a shape parameter. The standard representations can be restated by setting 

 0=ξ for the Gumbel distribution,  for the Fréchet distribution and for the Weibull 

distribution.  

 01 >= −αξ    01 <−= −αξ

Given , EVT finds the conditions on ξG F  so that the normalised sample maxima converges to 

 for appropriate sequences {  and )(xG }na { }nb . In this case, F  is said to be in the maximum domain of 

attraction of G , i.e. . This condition holds, in general, for all continuous distributions. 

Financial times series commonly satisfy the condition 

)(x )ξG(MDAF ∈

)( ξGF MDA∈ where 0>ξ , implying that F is in the 

main domain of attraction of the heavy-tailed Fréchet distribution.27 As shown by Gnedenko (1943), for 

0>ξ , )(x)x(
1

LXP ξ> x
−

= , where is a slowly varying function.28 Distributions in where )(xL )( ξGMDA

0<ξ or 0=ξ correspond to short-tailed and thin-tailed distributions, respectively, are not suitable for 

modelling extreme losses in financial time series. 

 

2.2 The Generalised Pareto Distribution 

Let X  be a random variable with the distribution function F . Consider the excesses above a very 

high threshold u . Define the conditional probability that the excess losses over u , ie , is less than , 

given , as 

uX − y

0>−uX

   ,
)(1

)()()|()|( uF
uF

uFyuFuXyuXPuXxF ≡
−

−+
=>≤−=>     [11] 

                              for  and the right endpoint, uxy F −<≤0 { }1)( :sup ∞.≤<ℜ∈= xFxxF  

Theorem 2 For a certain class of distributions, there exists a positive scaling function )(uβ such that 

   0)()(sup  lim )(,
0

=−
−<≤→

yHyF uu
uxyxu

FF
βξ      [12] 

where    

                                                 
27 This distribution class includes the Pareto, the Student-t, the Cauchy, and the log-gamma among others. 
28 That is, for all ,0>λ 1

)(
)(lim =

∞→ xL
xL

x

λ . 
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and 

    if 0≥y 0≥ξ ; ξ
β−≤≤ y0 if .0<ξ  

  

2.3        Application of Extreme Value Theory to Measures of Extreme Risk 

Following from section 2.2, by setting yux += , then )()())(1()( uFyFuFxF u +−= . Hence, the 

probability of falling below a certain minimum threshold, , can be estimated with the following 

function, known as the tail estimation formula:  

)x(F

      
ξ

ξ

β
ξ

β
ξ

ˆ1

ˆ1
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ˆ
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]1[]))(ˆ
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1(1[)(ˆ

−

−
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−+−+−=

ux
n

N

n
N

ux
n

N
xF

u

uu

,     [14] 

where and)()( yHyFu ≈ nmnNnuF u =−≈ )()( , and where is the total number of observations and is 

the number of observations above the threshold . Inverting the tail estimation formula yields the 

associated quantile estimate for a given probability : 

n

(uF

uN

u

)p >

   ]1))1([(ˆ
ˆ

ˆ ˆ
−−+= −ξ

ξ
β p

N
nux
u

p .      [15] 

The expected shortfall is expressed, relative to VaR as: p

   ,      [16] ]ˆ|ˆ[ˆˆ
ppp xXxXExS >−+=

where  is the mean of the exceedances of over . If ]ˆ|ˆ[ pp xXxXE >− )(yF
px px 1<ξ , the mean excess 

function is )1())(( ξξβ −−+ ux p , where ( 0))( >−+ ux pξβ  and, hence, the expected shortfall estimate may 

be explicitly calculated as: 

   
ξ
ξβ

ξξ

ξβ
ˆ1

ˆˆ
ˆ1

ˆ
ˆ1

)ˆ(ˆ
ˆˆ

−

−
+

−
=

−

−+
+=

uxux
x pp

pS .     [17] 

 

3.0 Data Description and Statistical Modelling of the Tail Behaviour  

The objective of this section is to model the tail behaviour of the J$/US$ daily returns and the JSE 

index daily returns to obtain estimates of their extreme quantiles. Daily data on the J$/US$ selling rate 

were obtained from the External Sector Unit of the BOJ, and daily stock market data, including the JSE 

composite index (which includes the cross-listed stocks) and the Jamaica Select JSE index, were 
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downloaded from the JSE website. Both series cover the period ranging from 01/01/1992 to 01/07/2003. 

All returns series, , were generated using the continuous compounding formula , 

where  represents the price series at time 

tr )ln()ln( 1−−= ttt PPr

tP t , and “ ln ” is the natural logarithm. The exchange rate and 

JSE composite index return series are illustrated in Figures 1 and 2, respectively. Figure 3 presents a cross 

plot of the returns series. The occurrences of co-dependence in the foreign exchange and equity markets 

are evident in all four quadrants of the figure. However, there is no discernible evidence of a greater co-

dependence in any of the quadrants relative to the other three. 

 

 

 

 

 

 

 

 

Figure 1. FX Returns
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Figure 2. JSE Returns
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Figure 3. Scatter plot of Foreign Exchange and JSE Index Returns 
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The standard correlation matrix for the exchange rate and index is shown in Table 1. Consistent 

with the asset substitution theory, the exchange returns and the stock returns are negatively correlated. 

However, the use of average correlations does not account for the asymmetric and non-linear time series 

characteristics associated with extreme events. The correlation structure is likely to be significantly 

altered during market crises.  This paper uses copulas to capture all of the information on the extreme 

dependence between these financial markets. 

 

Table 1. Standard Correlation Matrix 

 J$US$ JSE 
J$US$  100% -1.58% 
JSE -1.58%  100% 

 

 

 

3.1    Normality Testing 

The summary statistics for the daily logarithmic J$/US$ exchange and JSE composite index 

returns are presented in Table 2. The skewness and kurtosis statistics are both positive, with their 

magnitudes indicating that both series have long and “fat” right tails. The Jarque-Bera test statistics for 

normality confirm that the null hypothesis of a normal distribution is rejected in both cases at the one per 

cent level of significance. 

 

Table 2. Summary Statistics 

 J$/US$ JSE 
Composite 
Index 

 Mean  0.000214  0.000661 
 Median  0.000125 -0.000151 
 Maximum  0.082950  0.094210 
 Minimum -0.060337 -0.124471 
 Std. Dev.  0.004256  0.011768 
 Skewness  1.566795  1.246452 
 Kurtosis  105.1451  21.35350 
 Jarque-Bera  860279.1  28260.01 
 Probability  0.000000  0.000000 
 Observations  1977  1977 
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3.2 Q-Q Plots 

The Q-Q plot is also an important graphical measure in order to determine the appropriate limit 

law of the series’. In other words, the Q-Q plot may be used as a pre-test for the domain of attraction. Let 

 denote the quantile of )(xF ← thp F , and denote the inverse of the empirical distribution function. 

A simple method to check the limit type of a series is to plot against . If  represents the 

ascending order statistics, where , then the Q-Q plot (the graph of quantiles) is defined by the set 

of points:

)(xFn
←

)(xF ← )(xFn
←

)(iX

ni ,K,1=

{ })ni( ,)( FX i
← . The theoretical cdf inverse of the Gumbel is ))nx p ln(ln( i−−= . Given that the 

calculation of the inverse of the Gumbel does not require parameter estimation, it can be simply plotted 

against the observed .29 If  is Gumbel distributed, then its quantiles should match with those of 

, thus producing a linear Q-Q plot. If the upper tail area of the Q-Q plot is convex (slopes upward), 

then the limit distribution is Weibull; if the slope is concave, then the limit distribution is Fréchet. Figures 

4 and 5 confirm that the empirical distributions functions of the FX returns and the JSE returns, 

respectively, are in the domain of attraction of the Fréchet. 

pX )(xFn

)(xF

 

 

 
Figure 4. Gumbel (Right Tail) Plot of Frechet - Log(FX 

Returns)
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Figure 5. Gumbel (Right Tail) Plot of Frechet - Log(JSE 
Returns)
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29 See Gumbel (1958). 
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3.3    Choosing the Threshold: Graphical Tools  

The threshold, u , must be chosen high enough to satisfy Theorem 2. Two popular graphical 

methods for estimating the threshold value are the mean excess function and the Hill plot. The drawback 

of the graphical approach, however, is if the chosen threshold is too high then the estimates will exhibit 

high variability due to the paucity of observations for estimation in the tail. On the other hand, if the 

threshold choice is too low, then observations from the centre of the distribution will lead to biased 

indexes. Thus, there exists an important trade-off between variance and bias.  

 

3.3.1 The Mean Excess Function Plots 

The sample mean excess plot provides an important graphical measure to arrive at the optimal 

choice of the threshold. This method is especially useful given that no standard algorithm for choosing an 

acceptable threshold exists. The sample mean excess plot is expressed as: { }nnnn XuXueu ::1  :))( ,( << , where 

and  are the first and -th ascending order sample statistics. The sample mean excess function is 

defined by: 

nX :1 nnX : n

   
{ }

u

n

i
uXi

n N

IuX

u
i∑

=
>−

= 1

)(

)(e .      [18] 

This function depicts the sum of the exceedances over , divided by the number of exceedances over , 

i.e., , where is an indicator variable that equals 1 if , and 0 otherwise. The 

threshold  is chosen from the mean excess function at the start of the part on the graph where the 

function is approximately linear. The mean excess functions are depicted in Figures 6 and 7 for the FX 

returns and JSE returns, respectively. The “thresholds” are on the x-axis and the “excess over threshold” 

on the y-axis. These figures suggest that the values of the thresholds, , are higher in the case of extreme 

losses compared to extreme gains from holding equity30 and US dollars. The values of  chosen for the 

right and left tails of FX returns are 0.006 (

u u

{∑
=

>=
n

i
uXu i

IN
1

u

} }{ uX i
I > uX i >

u

u

105=uN ) and 0.07 ( 48=uN

107

), respectively. The values of u  

chosen for the right and left tails of JSE returns are 0.017 ( =uN ) and 0.02 ( ), respectively. 44=uN

 

 

                                                 
30 That is, a value weighted portfolio of all stocks listed on the JSE. 
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Figure 6a. Right Tail Mean Excess Function – FX Returns 

                                               
Figure 6b. Left Tail Mean Excess Function – FX Returns 

 
Figure 7a. Right Tail Mean Excess Function – JSE Returns 

 
Figure 7a. Left Tail Mean Excess Function – JSE Returns 
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3.3.2 Tail Index Estimation: The Hill Estimator 

h to estimate the tail index. In contrast to the 

paramet

s 

This paper employs a semi-parametric approac

ric approach, this approach avoids the strong assumption that the extreme observations are 

distributed exactly GEV. Instead, the semi-parametric approach requires only that the extreme value

more or less approximate the GEV distribution. This is enough to satisfy )( ξGMDAF ∈ . 

Let  )()( 1 xLxxF ξ−=− for ux −≤− , then the conditional distribution (F )| uXx −≤−  
ξ1 an l de)( −= ux d the conditiona nsity is )1())(1()|( )1)1(( uuxuXxf −−=−≤− ξξ . To obtain a

um likelihood principle is app tional density and 

differentiating the first-order condition with respect to 

 the Hill estim tor, 

the maxim lied by taking the log of the condi

ξ1 . Then x  is replaced by ∑m
X  fo

Hence, the Hill (1975) estimator of the tail index, 

=i i1
r uXi > . 

ξ , based on 1+m  upper order statistics is: 

ˆ1 m X

function is

)(ln
1 1

, ∑
= +

==
i m

i
nm Xm

H ξ          [19] 

where  is the number of upper order statistics that is used in estimation. The estimator, , is m nmH ,

consistent for ξ  if m increases such that:  

   0→m   as   +→nn ∞

That is, m  is selected by m izing t ple 

. 

inim he sam mean squared error (MSE). The Hill estimator is also 

asymptotically normal such that: 

   ( , −nmHn ). ,0() 2ξξ Ν→  

This method of estimating the tail index is optimal only for the Fréchet case ( 0>ξ ). 

The Hill plot may be expressed as: { }11  ), ,( , −≤≤ nmHm nm . The number pp of u er order statistics, 

, is chosen in the region of the plot where the tail index,m ξ , is stable. Figure 8 and 9 show the Hill plots 

fo

 

r the FX returns and the JSE returns, respectively. 
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Figure 8a. Hill Plot of Right Tail - Log(FX Returns) 
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Figure 8b. Hill Plot of Left Tail - Log(FX Returns)

 

 

 

 

 

 

0
1
2
3
4
5
6
7
8

1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286 305 324 343

Figure 9a. Hill Plot of Right Tail - Log(JSE Returns)
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Figure 9b. Hill Plot of Left Tail - Log(JSE Retuns)

 

 

 

 

 

 

 

3.4 Quantile Estimation 

he estimate is the quantile of the distribution function Recall from section 3 that t  pVaR thp F , 

such that { } pxLxxFuuXxFVaRXP ==−≡−≤−≤−=−≥ )()()*)|( ξ . Equating this definition with 

the conditi

XF ( pppp

onal distribution function

p
−1

ξ1)() −=− uxuF  yields: |( ≤− Xx

ξ









=

p
uFux p

)(

~

    .       [20] 

Furthermore, replacing  with , and  with u 1+mX )(uF nmnNnXLXXF ummm =−== +
−
++ )()()( 1
1

11
ξ  provides the 

    

quantile estimator: 

ξ̂

1
)(ˆ 







= + p

nm
Xx mp .      [21] 
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The quantile estimators for the maxima and minima of the log FX and JSE returns are shown in Figures 

10a-11b for . Consistent with the Hill plot, the VaR estimate is chosen in the region where the 

quantile plot is stable. Appendix B provides the maximum likelihood-derived univariate right tail 

parameter estimates for the VaR and expected shortfall measures. 

95.0=p

 
Figure 10a. Quantile Plot of Right Tail - Log(FX Returns)
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Figure 10b. Quantile Plot of Left Tail - Log(FX Returns)
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 Figure 11a. Quantile Plot of Right Tail - Log(JSE Returns)
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Figure 11b. Quantile Plot of Left Tail - Log(JSE Returns)
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4.0    Maximum-Likelihood Estimation of Copulas 

The parameters of the Gumbel-McFadden and the Hüsler-Reiss models are estimated using a 

two-stage procedure as follows.31 First, the marginal tail estimation formulas (see equation [14]) are 

estimated by choosing the thresholds for each series to obtain: 

.,...1,   ))(ˆ
ˆ

1(1)(ˆ ˆ1 Niux
n

NxF i
i

i

iui
i =−+−= − ξ

β
ξ 32    [23] 

Then the extreme co-market dependence parameter, δ , is estimated using the specific copula function by 

maximum likelihood in the second stage using the density [5] in the case of the Gumbel-McFadden (GM) 

model and [7] in the case of the Hüsler-Reiss (HR) model. The copula function for the joint tail of F may 

be expressed as: 

    ( ) .,,   )(ˆ),(ˆ),(ˆ
221121 HRGMxFxFCxxF == κκ

δ     [24] 

Let , { mnnmn XX ,1,, ,...max=+χ } θ  be the 1×K  vector of parameters to be estimated and  denote the 

maximum-likelihood estimator. Using a sample of 

MLθ̂

T  observations, the log-likelihood is: 

   l ,    [25] ( ) ∑ ∑∑ ∑ = =
= =

+==
T

t

N

n
t
nn

T

t

T

t

t
NN

t
nn

t
t xfxFxFxFc

1 1
1 1

11 )(ˆln)(ˆ),...(ˆ),...,(ˆln)()( θθ l

where the density of the joint distribution F  is given by: 

   ,     [26] ( ) ( )∏
=

=
N

n
nnNNN xfxFxFcxxf

1
111 )()(),...,(,...

and  is the density of the copula: c

    
n

N
N uu

uuCuu
∂∂

∂
=

L1

1
1

),...(),...,(c .      [27] 

It may be shown that  has the property of asymptotic normality33 such that: MLθ̂

    ))(,0()ˆ( 0
1

0 θθθ −ℑ→− NT ML      [28] 

with  denoting the information matrix. Using the assumption of uniform margins, the log-

likelihood may be expressed as: 

)( 0
1 θ−ℑ

    l .34      [29] ∑
=

=
T

t

t
N

t uuc
1

1 ),...,(ln)(θ

 As earlier discussed, it is difficult to obtain very precise estimates of the marginal tail estimators. 

Thus, a vector of componentwise maxima is formed using 25, 30 and 40 trading day blocks to explore the 

                                                 
31 See Joe and Hu (1996). 
32  in this case. 2=N
33 See Davidson and MacKinnon (1993). 
34 See Bouyé et al (2000). 

 19



sensitivity of the results to the length of maxima and minima.35 Tables 3a to 3c present the MLE results of 

the bivariate (tail) dependence parameters, as well as the simple linear correlation parameter, , for 

comparison.36 As shown by the four quadrants in Figure 12,  denote the maxima (minima) FX 

returns and  denote the maxima (minima) JSE returns. It is important to note that and 

 represent a flight to quality, whereas  and (  represent a foreign exchange-equity 

co-boom and co-crash, respectively.37 

ρ̂

, 2
+χ

)( 11
−+ χχ

), 21
−− χχ

)( 22
−+ χχ )( 1

−χ

),( 21
−+ χχ ),( 21

++ χχ

 

 
Figure 12. The Pairwise Dependence Structure for FX and JSE Extreme Returns  
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Table 3a. Pairwise Parameters for Extreme Dependence Between TTSE and JSE Composite Indexes  (N=40) 

Dependence 

Parameters 

Simple (Pearson) 

Coefficient 

Hüsler-Reiss  

Model 

Gumbel-McFadden  

Model 

 ρ̂  λ̂  δ̂  

),( 21
++ χχ  24% 61% 1.34 

),( 21
+− χχ  32% 100% 1.47 

),( 21
−+ χχ  14% 40% 1.15 

),( 21
−− χχ  1% 0% 1.01 

 

                                                 
35The Durrlemann, Nikeghbali and Roncalli (2000) methodology may be used to choose between the Gumbel-
McFadden and the Hüsler-Reiss copulas. 
36 The lower bound of the Pearson coefficient is constrained to equal 0. 
37 The Gumbel-McFadden parameter is interpreted similar to the dependency measure given in equation [2]. 
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Table 3b. Pairwise Parameters for Extreme Dependence Between TTSE and JSE Composite Indexes (N=30) 

Dependence 

Parameters 

Simple (Pearson) 

Coefficient 

Hüsler-Reiss  

Model 

Gumbel-McFadden  

Model 

 ρ̂  λ̂  δ̂  

),( 21
++ χχ  18% 61% 1.3 

),( 21
+− χχ  27% 92% 1.4 

),( 21
−+ χχ  9% 51% 1.1 

),( 21
−− χχ  0% 0% 1.0 

 

 

Table 3c. Pairwise Parameters for Extreme Dependence Between TTSE and JSE Composite Indexes (N=20) 

Dependence 

Parameters 

Simple (Pearson) 

Coefficient 

Hüsler-Reiss  

Model 

Gumbel-McFadden  

Model 

 ρ̂  λ̂  δ̂  

),( 21
++ χχ  23% 71% 1.3 

),( 21
+− χχ  26% 61% 1.3 

),( 21
−+ χχ  4% 41% 1.0 

),( 21
−− χχ  0% 0% 1.2 

 

 

The results illustrated in Tables 3a to 3c clearly show that there exists strong evidence of extreme 

(tail) dependence between the foreign exchange and equity markets. Furthermore, consistent with the 

principles that underpin EVT, methods based on the normality assumption such as the Pearson correlation 

coefficient, underestimate extreme correlations. The results are also more or less consistent across 

dependency measures. 

The results indicate the existence of the flight to quality phenomenon for all block sizes (ie for 

 and ( ). However, the magnitude of the parameters for each measure of dependence 

suggest that the likelihood of a flight to quality following a abnormally large appreciation (or a foreign 

exchange market crash) is greater than in the case of a stock market crash. 

),( 21
+− χχ ), 21

−+ χχ

The results support the cross-market arbitrage hypothesis outlined in section 1 of this paper for 

all trading-day block sizes. That is, whereas all the dependence parameters are virtually equal to zero in 

the case of a co-crash for the foreign exchange and equity markets, in the event of a co-boom it is just as 

large (if not greater) than the case of a flight to quality. This support the hypothesis that the rare 
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occurrence of a significant depreciation in the US/Jamaica dollar exchange rate will simultaneously 

trigger a proportional rise in the JSE index, given the new demand for the cross-listed stocks.  

 

5.0 Robustness Check 

Tables 4a to 4c present the MLE results of the bivariate (tail) dependence parameters using the 

TTSE and the Jamaica Select JSE index returns. The results indicate an absence of extreme co-

dependence between the TTSE and Jamaica Select JSE index returns in the cases of a co-boom and a 

flight to quality following a foreign exchange market crash for all three block sizes. Importantly, the non-

existence of right-tail dependence between these series is interpreted as strong support for the existence of 

a significant cross-market arbitrage channel. The Hüsler-Reiss model shows evidence of 41 per cent 

dependence between a foreign exchange boom and a crash in the Jamaica Select JSE index for the 30 and 

40 trading day blocks. Finally, both extreme parameters reveal significant dependence in the case of a co-

crash for all three block sizes. 

 

Table 4a. Pairwise Parameters for Extreme Dependence Between TTSE and Jamaica Select Indexes  (N=40) 

Dependence 

Parameters 

Simple (Pearson) 

Coefficient 

Hüsler-Reiss  

Model 

Gumbel-McFadden  

Model 

 ρ̂  λ̂  δ̂  

),( 21
++ χχ  0% 0% 1.0 

),( 21
+− χχ  0% 0% 1.0 

),( 21
−+ χχ  0% 0% 1.0 

),( 21
−− χχ  36% 71% 1.6 

 

 

Table 4b. Pairwise Parameters for Extreme Dependence Between TTSE and Jamaica Select Indexes (N=30) 

Dependence 

Parameters 

Simple (Pearson) 

Coefficient 

Hüsler-Reiss  

Model 

Gumbel-McFadden  

Model 

 ρ̂  λ̂  δ̂  

),( 21
++ χχ  0% 0% 1.0 

),( 21
+− χχ  0% 0% 1.0 

),( 21
−+ χχ  0% 41% 1.0 

),( 21
−− χχ  30% 71% 1.4 
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Table 4c. Pairwise Parameters for Extreme Dependence Between TTSE and Jamaica Select Indexes (N=20) 

Dependence 

Parameters 

Simple (Pearson) 

Coefficient 

Hüsler-Reiss  

Model 

Gumbel-McFadden  

Model 

 ρ̂  λ̂  δ̂  

),( 21
++ χχ  0% 0% 1.0 

),( 21
+− χχ  0% 0% 1.0 

),( 21
−+ χχ  0% 41% 1.0 

),( 21
−− χχ  18% 61% 1.3 

 

 

6.0 Concluding Remarks 

 The main aim of this paper was to answer the questions: (1) Does the data reflect the cross-

market arbitrage channel resulting from the unique dependence between the Jamaican foreign exchange 

and equity markets that has been recently reported by financial analysts? and (2) What are the 

implications of this cross-market arbitrage for risk managers? The paper uses EVT to account for the 

shortcomings of other types of correlation analysis.  

 The paper finds strong evidence of dependence between foreign exchange and equity market 

booms in Jamaica. However, the results show that this tail dependence is driven by the behaviour of 

cross-listed stocks during episodes of extreme foreign exchange rate depreciation. Furthermore, the 

probability of a co-crash is positive only when the cross-market stocks are excluded from the JSE 

composite index. Thus, risk managers can lower contagion risk from holding a portfolio of stocks and 

foreign exchange by decreasing the portfolio weights on stocks that are not cross-listed relative to cross-

listed stocks. This constitutes strong evidence of stock market inefficiency. In order to exploit the benefits 

from this inefficiency, other Jamaican institutions that are listed on the JSE have recently began the 

process for cross-listing on the TTSE. 

Financial system regulators have recently adopted the 1988 Basel Accord’s simplified fixed-

weight procedure for the calculation of capital adequacy requirements as standards of best practice. These 

standards, however, are focussed on credit risk. To improve prudential supervision, a market risk 

regulatory framework is presently being considered. However, regulators are faced with the dilemma of 

choosing between simple rules (such as imposing static limits on market risk) or establishing more 

complex regulation that are better able to accurately control excessive market risk. One important concern 

with regard to directing the use of complex risk management systems is the increasingly sophisticated risk 
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modelling skills that would be required by regulatory and financial institutions’ staff. However, this study 

highlights the importance of accounting for correlation and, hence, diversification, which is achieved by 

employing complex systems. Simple capital adequacy rules do not account for the dynamic dependence 

structure that exists among market factors. Thus, financial institutions are not rewarded from entering into 

offsetting transactions, which minimize their overall risk. This is inconsistent with the promotion of 

financial stability.  

An important concern for regulators is that the use of empirical techniques to account for 

diversification may not be always accurate and may instead lead to inappropriate regulations. For 

example, Table 1 in this paper shows a low, negative correlation between foreign exchange and JSE index 

returns when the centres of their distributions are included in the computations, which implies offsetting 

risks. However, when likelihood of extreme co-events is computed by using only those observations in the 

“tails” of the distributions (see Tables 4a to 4c), the vulnerability of the portfolio to a co-crash is 

markedly evident. Also, consistent with the underpinnings of EVT analysis, the comparative results in 

this paper indicate that if risk managers use the simple correlation coefficient as an input in extreme risk 

analyses they would significantly underestimate VaR forecasts. Therefore, the challenge is for regulators 

to find the appropriate trade-off between the relative accuracy of including diversification benefits from 

complex regulations and a simple and manageable system to ensure conformity to regulations by all 

participants. 

Finally, from the perspective of the JSE and TTSE indexes, the externalities from their market 

segmentation that are highlighted in this paper encourage the undesirable practice of speculation rather 

than promoting market depth based on institution fundamentals and exchange efficiency. In this regard, 

there has been a recent upsurge in initiatives by both exchanges to merge under the umbrella of a single 

regional stock exchange. This is expected to eliminate arbitrage channels and contribute to the equity 

market depth, liquidity and resiliency. 

 

 

 

 

 

 

 

 

 

  

 24



References 

[1] Amendment to the Capital Accord to Incorporate Market Risks (1996), Basle Committee on 
Banking Supervision, 24. 

 
[2] Artzner, A., F. Delbaen, J-M Eber and D. Heath (1997), Thinking Coherently, Risk Magazine, 10, 

68-71. 
 
[3] Artzner, A., F. Delbaen, J-M Eber and D. Heath (1999), Coherent Measures of Risk, 

Mathematical Finance, 9, 203-228. 
 
[4] Balkema, A.A. and L. de Haan (1974), Residual Life Time at Great Age, Annals of Probability, 2, 

792-804. 
 
[5] Bank of Jamaica (2003), Quarterly Monetary Report, June. 
 
[6] Bouyé, E., V. Durrleman, A. Nikeghbali, G. Riboulet and T. Roncalli (2000), Copulas for 

Finance- A Reading Guide and some Applications, Working Paper, Groupe de Recherche 
Opérationnelle, Crédit Lyonnais. 

 
[7] Costinot, A., T. Roncalli and J. Teïletche (2000), Revisiting the Dependence Between Financial 

Markets with Copulas, Crédit Lyonnais, Working Paper. 
 
[8] Dalbaen, F. (2000), Coherent Risk Measures on General Probability Spaces, Preprint, ETH 

Zürich. 
 
[9] Danielsson J., and C.G. de Vries (1997), Tail Index and Quantile Estimation with Very High 

Frequency Data, Journal of Empirical Finance, 4, 241-257. 
 
[10] Davidson, R. and J. MacKinnon (1993), Estimation and Inference in Econometrics, Oxford 

University Press, Oxford. 
 
[11] Durrleman, V., A. Nikeghbali and T. Roncalli (2000), Copulas Approximation and New Families, 

Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working Paper. 
 
[12] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997), Modelling Extremal Events for Insurance 

and Finance, Springer-Verlag, Berlin. 
 
[13] Embrechts, P., F. Lindskog and A. McNeil (2001), Modelling Dependence with Copulas and 

Applications to Risk Management, Working Paper, ETH Zürich. 
 
[14] Embrechts, P., A. McNeil and D. Straumann (1999), Correlation: Pitfalls and Alternatives, 

Working Paper, ETH Zürich. 
 
[15] Falk, M., J. Hüsler and R. Reiss (1994), Laws of Small Numbers: Extremes and Rare Events, 

Birkhaüser, Basel. 
 
[16] Fisher. R.A. and L.H.C. Tippet (1928), Limiting Forms of the Frequency Distribution of the 

Largest of Smallest Member of a Sample, Proceedings of the Cambridge Philosophical Society, 
24, 180-190. 

 

 25



[17] Galambos, J. (1987), The Asymptotic Theory of Extreme Order Statistics, Kreiger Publishing, 
Melbourne. 

 
[18] Gnedenko, B.V. (1943), Sur la Distribution Limite du Terme Maximum d’une Série Aléatoire, 

Annals of Mathematics, 44, 423-53. 
 
[19] Gumbel, E.J. (1958), Statistics of Extremes, Columbia University Press, New York. 
 
[20] Hartman, P., S. Straetmans and C. G. de Vries (2001), Asset Market Linkages in Crisis Periods, 

Working Paper. 
 
[21] Hill, B.M. (1975), A Simple General Approach to Inference About the Tail of a Distribution, 

Annals of Statistics, 3, 1163-1173. 
 
[22] Hüsler, J., and R. Reiss (1989), Maxima of Normal Random Vectors: Between Independence and 

Complete Dependence, Statistics and Probability Letters, 7, 283-286. 
 
[23] J$ Dips Again: Stock Market gaining from Devaluation, Jamaica Business Observer, May 16, 

2003. 
 
[24] JP Morgan (1995), RiskMetricsTM-Technical Document, 3rd Edition, New York, May. 
 
[25] Joe, H. (1997), Multivariate Models and Dependence Concepts, Monographs on Statistics and 

Applied Probability, 73, Chapmann & Hall, London. 
 
[26] Joe, H. and T. Hu (1996), Multivariate Distributions from Mixtures of Max-Infinitely Divisible 

Distributions, Journal of Multivariate Analysis, 57, 240-265. 
 
[27] Jondeau, E. and M. Rockinger (1999), Conditional Volatility, Skewness and Kurtosis: Existence 

and Persistence, HEC Working Paper. 
 
[28] Longin, F. (1996), The Asymptotic Distribution of Extreme Stock Market Returns, Journal of 

Business, 63, 383-408. 
 
[29] Longin, F., and B. Solnik (2000), Correlation Structure of International Equity Markets During 

Extremely Volatile Periods, CEPR, Discussion Paper, 2538. 
 
[30] McNeil, A. (1997) Estimating the Tails of Loss Severity Distributions using Extreme Value 

Theory, ASTIN Bulletin, 27, 117-137.  ???? 
 
[31] McNeil, A. (1999), Extreme Value Theory for Risk Managers, Working Paper, ETH Zentrum, 

Zürich. 
 
[32] McNeil, A and R. Frey (2000), Estimation of Tail-Related Risk Measures for Heteroscedastic 

Financial Time Series: An Extreme Value Approach, preprint, ETH Zürich. 
 
[33] McNeil, A., and T. Saladin (1997), The Peaks over Thresholds Method for Estimating High 

Quantiles of Loss Distributions, mimeo, ETH Zürich. 
 
[34] Pickands, J. (1975), Statistical Inference Using Extreme Value Order Statistics, Annals of 

Statistics, 3, 119-131. 

 26



 
[35] Reiss, R., and M. Thomas (1996), Statistical Analysis of Extreme Values, Birkhäuser, Basel. 
 
[36] Sklar, A. (1959), Fontions de Repartition à  Dimentions et Leaurs Marges, Publications de 

l’Institut de Statistique de l’Iniversité de Paris, 8, 229-231. 
n

 
[37] Stărică, C. (1999), Multivariate Extremes for Models with Constant Conditional Correlations, 

Journal of Empirical Finance, 6, 515-553. 
 
[38] Straetmans, S. (1998), Spillovers in Financial Markets, Conference Proceedings of the HFDF-II 

Conference, Zürich. 
 
[39] Straetmans, S. (1999), Extreme Financial Returns and their Comovements, Erasmus University 

Rotterdam’s Thesis, Tinbergen Institutue Research Series, 181. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 27



Appendix A. 

            Table IA. Companies Listed on  Table IIA. Companies Listed on the Table IIIA. Stocks Cross-Listed on the 
the JSE Index as at June 2003  Jamaica Select JSE Index as at June 2003 JSE and TTSE Index as at June 2003

Bank of Nova Scotia (Jamaica) Bank of Nova Scotia (Jamaica) First Caribbean International Bank
Berger Paints (Jamaica) Berger Paints (Jamaica) Grace, Kennedy & Co.

Cable & Wireless (Jamaica) Cable & Wireless (Jamaica) Guardian Holdings Limited
Capital and credit merchant bank Caribbean Cement JMMB Ltd.

Caribbean Cement Carreras Group RBTT Financial Holdings Limited
Carreras Group Courts (Jamaica) Trinidad Cement Limited
Ciboney Group Desnoes & Geddes
CMP Industries First Life Insurance

Courts (Jamaica) Gleaner Company
Dehring, Bunting & Golding Grace, Kennedy & Co.

Desnoes & Geddes Jamaica Broilers Group
Dyoll Group Jamaica Producers Group

First Caribbean International Bank Lascelles, de Mercado
First Caribbean International Bank (JA) National Commercial Bank Jamaica

First Life Insurance Radio Jamaica
Gleaner Company 

Goodyear (Jamaica) 
Grace, Kennedy & Co. 

Guardian Holdings Limited 
Hardware & Lumber 
Island Life Insurance 

Jamaica Broilers Group 
JMMB Ltd. 

Jamaica Producers Group 
Kingston Wharves  

Lascelles, de Mercado 
Life of Jamaica 

Montego Freeport 
Mobay Ice Company 

National Commercial Bank Jamaica 
Palace Amusement 

Pan Caribbean Inv. (Trafalgar Dev) 
Pan Jam Investments 

Pegasus Hotel 
Radio Jamaica 

RBTT Financial Holdings Limited 
Salada Foods 

Seprod 
Trinidad Cement Limited 

West Indies Pulp & Paper 
 
 
 
 



Appendix B. 

 

Maximum-Likelihood Estimation of Univariate GPD Parameters 

As a more precise alternative to the Hill plot, the maximum likelihood procedure can be used to 

estimate the GPD parameters, and . The log-likelihood function for the GPD is given as: ξ̂ β̂
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For illustration, the results for the foreign exchange and JSE positive returns are presented in Table 3. The 

table also includes the computed VaR, from [15], and expected shortfall, from [17], measures for 95.0=p . 

 

Table 3. MLE Results for Positive FX and JSE Returns 

Parameter Estimate Bootstrap 

Confidence 

Interval 

Mean 

Square 

Error 

FX Positive Returns:    

ξ̂  0.035 (0.030, 0.043) 0.00001 

β̂  0.271 (0.225, 0.371) 0.00060 

95.0x̂  0.163 - - 

95.0Ŝ  0.449 - - 

JSE Positive Returns:    

ξ̂  0.135 (0.099, 0.179) 0.00039 

β̂  0.747 (0.604, 0.864) 0.00441 

95.0x̂  0.071 - - 

95.0Ŝ  0.953 - - 
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