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Abstract: In the immediate aftermath of a hurricane, rapid and reliable assessment of building damage is critical. The 
timely delivery of such information is essential for emergency responders to identify those areas that are severely impacted 
so that they can act accordingly. This step is crucial for saving lives and reducing economic losses. This paper demonstrates 
the potential of Remote Sensing for rapid building damage detection using an automated approach in small island states in 
the Caribbean. Object-Based and Pixel based methods were compared with visually identified reference information from 
high resolution imagery for the 2004 Hurricane Ivan impact on Grenada. The efficacy of the Object-Based approach is 
demonstrated using image segmentation and classification in eCognition Developer Software. This approach utilises not only 
the spectral content but also the context, morphological and textural properties of image objects. In relation to the reference 
data, the object-based method achieved over 85% classification accuracy among a three damages grade classification 
scheme in two separate scenarios with different study area extents. 
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1.  Introduction 
The Economic Commission for Latin America and the 
Caribbean (ECLAC) reports that the Caribbean has been 
impacted by more than 165 natural disasters since 1990, 
resulting in estimated losses of more than US$136 
billion. With the likely increase in extreme natural 
disasters in years to come, especially in light of global 
climate change and sea level changes, Caribbean islands 
are increasingly challenged to give serious consideration 
to all matters relating to natural disasters (ECLAC, 
2011). In the aftermath of natural disasters such as 
hurricanes or earthquakes, assessment is one of the first 
actions that usually take place. In this context, 
assessment refers to emergency response in which data 
is collected and analysed to get an impression of the 
extent and severity of damage and loss. These 
assessments must be done in a timely and accurate 
manner for effective response (Gusella, Adams and 
Bitelli, 2007).  

Rapid detection and accurate assessment of damage 
and loss depend mainly on factors such as the quick 
identification of impacted areas, access to those 
impacted areas and efficient tools and techniques used to 
collect and analyse damage data. A higher priority is 
usually placed on assessing building damage, since these 
structures house the population and population 
represents lives that may be at risk (van Westen, 2013).  

Traditionally, damage assessments have been 
conducted through ground-based field survey and aerial 
reconnaissance. These methods are not always safe, 
applicable, or cheap to execute (Kerle and Oppenheimer 
2002). There is therefore a need for information, which 
does not depend on actual physical access to the disaster 
area. The objective of this paper is to develop a rapid 
post-hurricane building damage detection methodology 
to facilitate the timely acquisition of information to aid 
in post-disaster emergency response in Caribbean small 
island development states (SIDS).  
 
2. Post Hurricane Damage Detection 
Post-hurricane damage and loss assessments are 
conducted at various scales including: Global, Regional, 
National, City/Community and Building scale. There are 
several factors that influence what scale of assessment 
should be selected. van Westen (2013) suggests that 
these should be based on the objective of the assessment, 
the type of hazard and the operational scale whereby 
these hazard processes are set in motion and made 
manifest.  

Building scale assessment provides the most amount 
of detail about damage and loss but is also the most time 
consuming. The assessment is carried out by local 
officials or certified engineers, and may require weeks to 
months to complete. The main outcomes are to 
determine an estimate of the recovery cost, structural 
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integrity of buildings and approval for demolition, 
retrofitting or permission for continued use of buildings 
(CDC, 2010). 

A summary of the Disaster Management Cycle is 
shown in Figure 1. The response, recovery, mitigation 
and preparedness stages are depicted in relation to an 
event.  Rapid assessments seek to take place early in the 
response stage to assist in emergency activities while 
detailed assessments can potentially provide valuable 
information for restoration and activities. Collecting and 
storing detailed damage information is important 
(Friedland, 2009). However, rapid assessment should 
take priority during the emergency phase of disaster. A 
rapid damage assessment functions to estimate the 
magnitude and nature of damage, and to evaluate 
building conditions in a swift manner in damaged areas 
after the impact of a hurricane (Massarra, 2012). It may 
be noted that, while rapid assessments are less time 
consuming and generates significantly more building 
data than detailed assessments, the levels of detail and 
accuracy of the data collected are reduced. Figure 2 
shows the relative difference between the results of rapid 
and detailed assessments for data collection based on the 
number of buildings, the time taken to collect 
information per building, the level of details collected 
and the assessment accuracy achieved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Disaster Management Cycle 
Source: Abstracted from Quora (2018) 

 
 

Data required in post-hurricane disaster 
management has an important spatial as well as a 
temporal element. Remote sensing combined with 
Geographic Information Systems (GIS) has proven to be 
of significant importance for the different phases of 
disaster management (Barrington et al., 2011; Vatsavai, 
2011; van Westen and Hofstee, 2000; World Bank, 
2010; CHARIM, 2016; Tu et al., 2016). Remotely 
sensed data may provide the most rapid post-disaster 
data. These data are particularly useful in disaster 

response, especially for severely impacted and 
inaccessible areas (Yamazaki, Vu, and Matsuoka, 2007). 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Comparison between rapid and detailed assessments 
using four measures 

Source: Massarra (2012) 
 

 
Additionally, comprehensive multi-temporal 

coverage of large areas in real time and at frequent 
intervals is the main advantage of using remotely sensed 
data in post-disaster management (Ozisik, 2004). 
Various qualitative and quantitative methods can be 
applied to remotely sensed data to assess the damage 
near real-time and after impact of the hurricane 
(Vatsavai, 2011). However, remote sensing methods also 
present several challenges when compared to traditional 
methods. Key challenges include spatial, temporal and 
spectral resolution of the data available. Friedland 
(2009) adds, a remotely sensed damage method must 
also be verified against ground-based data in order to 
provide meaningful results.  

During the emergency response phase of disaster, 
emergency managers need to make crucial decisions that 
would affect the lives of the impacted population. They 
need to know the geographical extent of the disaster, the 
damage distribution, and information about the status of 
infrastructure and critical facilities (Lindell et al., 2006). 
Table 1 identifies the critical geospatial and non-
geospatial baseline data required for rapid damage and 
preliminary loss assessment. 

After hurricane impact, rapid information 
concerning damage to infrastructure and affected regions 
is crucial for immediate response in terms of relief 
efforts and situation reporting. Whatever the method of 
assessment selected, certain key information products 
must be generated: (i) general building damage maps; 
(ii) damage to critical facilities including hospitals, 
shelters, fire services, police, utilities, and prisons and 
government offices; and (iii) damage to transportation 
facilities such as roads, bridges, hubs, airports, and ports 
are critical 
 
3. Damage Detection Approaches 
Building and other infrastructural damage usually 
manifest themselves as disturbed spatial or spectral 
patterns, detectable using optical remote sensing 
methods. 
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Table 1. Baseline Data for Post-Hurricane Damage and Loss Assessment 
Data type Description 
RS Data May include variety of pre and post aerial and satellite imagery options but not limited to, HR optical images and 

multiband optical sensors such as IKONOS (1m), QuickBird (0.6m), Worldview1 (0.5m), SPOT 6&7 (1.5m), 
Landsat 7&8. Active sensor data options such as Radarast-2 (1-3m), LiDAR (0.25-2m), TerraSar-X (0.25-3m) 

Buildings Predominant type (e.g. residential, commercial, industrial) construction material, type of roof, building height, 
building age, total floor space, replacement costs, age of building or structure, photo.  

Critical Facilities General location and number of facilities, including but not limited to, Emergency Shelters, Schools, Hospitals, 
Fire Brigade Stations, Police Stations etc.  

Population Density, distribution in space (parish, community, enumeration district), age distribution, gender distribution, 
disabled, daytime population, nighttime population, people per building, single parent households, low income 
groups.  

Transportation 
Facilities 

General location of transportation facilities including, Roads, Railways Public Transportation Routes, Harbor 
Facilities, Airport Facilities. General traffic density information, classification (main road, minor road etc).  

Life Lines Location of detailed network of life lines facilities such as Water Supply, Waste Water, Electricity Supply and 
Communication.  

Environmental Data Location and status of environmental assets including Ecosystems, Protected areas, Natural Parks, Forests, Marine 
environment.  

Economic Data Spatial distribution of economic activities, type of economic activities. 
Agricultural Data By parish or community - Crop variety, crop yield, crop cycle, agricultural buildings, fiscal activities, rate of 

employment  
Administrative 

Boundaries 
Location, names, of Parish, Community, Districts. 

   Source: Adapted from Planning Institute of Jamaica (2012) 
 
 

There are several different methods that involve 
manual and automatic building damage detection using 
high-resolution satellite images. However, selection of a 
particular method requires an understanding of the 
damage characteristics displayed, which depends on the 
damage mechanism. In some cases, detection methods 
may be similar despite the damage mechanism (wind, 
flood, and quakes). Damage from hurricane events is 
mainly direct wind damage, which results in significant 
roof and structural impact and may also be subject to 
significant water damage due to flooding. 
 
3.1 Visual Analysis 
Visual analysis of an image is a traditional method that 
uses visual interpretation to identify features and damage 
characteristics through vision and perception. This form 
of analysis is costly since it is labour intensive, tedious, 
time consuming and always subject to error; especially if 
low-resolution images are used. However, when applied 
to high spatial resolution imagery it yields the most 
accurate and detailed assessments (Olwig et al., 2007).  
 
3.2 Pixel-Based Image Analysis 
Pixel-based image classification uses spectral data to 
classify the image by considering the spectral 
correspondence in distinct classes (Gao and Mas, 2008; 
Kim and Shan, 2007). Pixel based supervised 
classification can easily discern distinct spectral classes 
including water, buildings, trees, and bare land. 
However, high spectral variation within the same land 
cover class and the low spectral variation between 
different land cover types, make the classification 
difficult. Hay and Castilla (2006) argue that “traditional 
pixel-based image analysis is limited because image 
pixels are not true geographical objects and the pixel 

topology is limited, and pixel based image analysis 
largely neglects the spatial photo-interpretive elements 
such as texture, context, and shape.”  
 
3.3 Object-Based Image Analysis 
Object-based techniques have been developed as an 
alternative to manual digitisation through visual 
assessment and pixel-based methods (Laliberte, Rango, 
and Fredrickson, 2005). Land cover types including 
buildings, roads and parking lots have very similar 
spectral signatures and thus it is difficult to separate 
buildings through spectral analysis of high resolution 
images (Salehi et al., 2012).  

Object-based image analysis (OBIA) allows the 
analyst to decompose the scene into many relatively 
homogenous, continuous, and contiguous image objects 
or segmentation. Three (3) main approaches to 
segmentation include thresholding, edge-based methods 
and region-based methods. Research has focused on 
multi-source classification which incorporates ancillary 
data including LiDAR, DEMs and vector data 
(Watanachaturaporn, Arora, and Varshney, 2008; Zhang, 
2010; Tuia et al., 2010). As a result, there is reduced 
mis-registration between different objects/layers in the 
scene. Multi-source classification however, may be 
problematic due to the lack of co-registration of layers.  

OBIA was used to classify building damage from 
post-hurricane image by developing rule sets to detect 
damaged building feature values and thresholds that 
indicate their various levels of damage. The first step is a 
multi-resolution segmentation, which groups areas of 
similar pixel values into objects. Subsequent refinements 
exploit the content (scale), context (shadow and contrast) 
and morphological (shape) image object information. To 
do this, a hierarchical rule-set framework was executed 
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in eCognition® Developer software using Cognition 
Network Language (CNL) (Definiens, 2009). Rule-sets 
for automated damage indication and change detection 
are coded in CNL, which presents a modular 
programming background for image-object 
management. Rule-sets were developed using a subset of 
QuickBird imagery as input. Then, algorithms to be 
executed on an image object domain (buildings) were 
defined and combined with different rule-set 
development parameters in an iterative manner until a 
satisfactory result was achieved (see Figure 3). 
 
 
 

 
 
 

Figure 3. Rule-set Development Process 
Source: Adapted from Definiens (2009) 

 
 

Damage assessments may include both exterior and 
in-house components. However, the main focus is the 
assessment of the building’s roof to classify damage. 
Unlike earthquakes and other phenomena, hurricane 
damage is unique. The damage characteristics are mainly 
roof and structural wind force damage and sometimes 
coupled with flood damages as well. In this context, 
damage classes therefore depend heavily on the textural 
and spectral distinction in the post-event image. Damage 
grade was therefore selected based on key damage cues 
detected in the post-hurricane image (Brunner, Lemoine, 
and Bruzzone, 2010). Figure 4 shows the textural, 
spectral and morphological properties of damage. 

The output of the remote sensing image analysis is 
the detection of damage in the form of a damage 
classification map.  
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Textural, Spectral and Morphological Properties of 
Damage (a) Intact roof characteristics, (b) damaged roof 

characteristics 
 

4. Methods and Procedures 
4.1 Study Area 
The State of Grenada is located between latitudes 11°59´ 
and 12°20´ North and longitudes 61°36´ and 61°48´ 
West (see Figure 5). The main island, Grenada, is 18 km 
(11 miles) wide, 34 km (21 miles) long with an area of 
312 square km (121 sq. miles) (OECS 2004). Grenada is 
located on the southern end of the hurricane belt. Over 
the past century, three devastating hurricanes had hit the 
island, in addition to numerous tropical storms and 
hurricanes that passed north of the island (World Bank 
2005). The study area is located in the parish of St. 
George, situated on the southwestern portion of the main 
island. St. George parish is approximately 65 km2 with a 
population of 36,823; which accounts for about 36 % of 
the total population of the country.   

Hurricane Ivan struck Grenada on the 7th of 
September 2004. The hurricane was classified as a 
Category 3 hurricane on the Saffir-Simpson scale with 
sustained winds of 193 Km/h (120 mph) and gusts of up 
to 233 Km/h (145 mph) as it passed over the island, 
lasting for about six hours (OECS 2004). Thirty-nine 
people died and most of the population of Grenada was 
affected. Damage from flooding and mudslides was not 
extensive since the hurricane did not produce heavy 
rainfall (World Bank, 2005). Approximately 90% of the 
houses were damaged or destroyed amounting to 
economic losses of approximately EC $1,381M. Total 
direct and indirect losses from all sectors of the economy 
amounted to EC $2,389.6M (CDERA, 2005). The other 
hurricanes of this magnitude to impact Grenada were 
Hurricanes Janet in 1955 and Flora in 1963. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Map of Study Area 
 
 
4.2 Data Used  
Data used in this research is divided into three (3) main 
types: remotely sensed imagery, GIS data and ancillary 
data. Two archived QuickBird satellite scenes captured 
on April 26th 2003 and September 19th 2004 (pre and 
post hurricane Ivan) were acquired. Each epoch had both 
multispectral (MS) and panchromatic (PAN) scenes of 
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the study area. The pre-event scene was captured fifteen 
months before hurricane Ivan and the only available 
post-event scene, 11 days after impact. In order to 
exploit the high spatial resolution of the PAN image 
(0.6m), the MS image was pan-sharpened to the 
resolution of the PAN (see Figure 6).  

Developing a pre-event inventory for assessing 
building loss involves obtaining geospatial and attribute 
information on building stock within the study area. 
Once building footprints were acquired, other pertinent 
attribute information were collected and added to the 
attribute database on a per-building basis. Information 
fields stored in the building attribute database were 
determined by reviewing literature (van Westen and 
Hofstee, 2000; Eguchi et al., 2008; Friedland, 2009; 
PIOJ, 2012).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Pan-sharpened QuickBird MS image in false color 
 
 
4.3 Methods 
A rapid post-hurricane damage detection and 
preliminary loss assessment methodology was developed 
to increase the delivery and efficiency of these 
assessments in disaster response for Caribbean countries. 
Three different damage detection methods are applied to 
multi-temporal images of St. Georges, Grenada, taken 
before and after Hurricane Ivan. They include Visual 
Interpretation/Analysis, Pixel-Based Image Analysis and 
Object-Based Image Analysis.  
 
4.3.1 Visual Interpretation 
Figure 7 shows the damage map overlaid on building 
footprints in the study area as a result of visual damage 
classification. 
 
4.3.2 Pixel-Based Image Differencing 
Figure 8 shows the image differencing result, processed 
using a change detection algorithm. Areas in red 
represent ‘change pixels’ above a determined threshold. 
The pixel-based analysis provides a quick, simple and 
relatively cheap method for damage detection. However, 
the main disadvantage of this technique is that it does 
not account for radiometric differences between images, 

such as atmospheric noise or haze. The image 
differencing result is binary (change/no change) and 
does not give an indication to the degree of change and 
therefore cannot be graded using visual and object based 
methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Visually interpreted Map Overlaid on Building 
Footprints 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Image Difference Results 

 
 
4.3.3 Object-Based Image Analysis 
The OBIA procedure used is summarised in Figure 9. 
First, a multi-resolution segmentation of the ‘Post 
Image,’ is completed. This divides the image into a 
number of image objects or ‘image object primitives’ 
using spectral and shape criterion, thus minimising the 
average heterogeneity and maximising its homogeneity. 
Homogenous areas result in larger objects. Subsequent 
steps involve the identification of the appropriate feature 
values and thresholds then translating these into rule-sets 
in the eCognition image analysis software.  
 
5. Strategy and Rule-set Development  
5.1 For Grade 1 Damage 
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The strategy for classifying undamaged buildings (Grade 
1) was based on the fact that spectral values for an 
undamaged building would be higher than a damaged 
one; an undamaged building will remain elevated; 
undamaged buildings cast a distinct shadow; and 
undamaged buildings maintain shape and smooth 
texture. This first round of classification also includes 
some moderately damaged buildings, since not all 
damaged buildings will collapse. However, it was a 
starting point prior to further refinement. Next, ‘Class 
Related’ context information (neighbor objects) was 
used to refine the undamaged building class. In this case, 
the rule-set must represent the situation where a 
‘building class’ that has a low common border to a 
neighborhood object (shadow); that building should be 
classified as undamaged. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Summary of OBIA Approach 
 

 
5.2 For Grade 2 Damage 
The strategy for classifying moderately damaged 
buildings (Grade 2) was based on the following 
characteristics: spectral values for a moderately damaged 
building would be lower than an undamaged one; 
partially damaged buildings would have moderately 
contrasting neighbor objects; and partially damaged 
buildings’ texture is moderately altered. 

To translate these characteristics into rule-sets, 
threshold values were determined by visualising the 
range of spectral values for all building class objects, 
classified in the segmentation step. These threshold 
values were then used to assign a damage ‘grade 2’ to all 
buildings that satisfy these values. Initially, this step 
included buildings that belonged to ‘damage grade 3’ so 
the result needed to be refined to remove these from this 
class. To do this, a threshold for the standard deviation 
of sub-objects was determined (see Figure 10).  

In this context, damage is detected by how different  
pixels are to one another within the extent of a classified 
building object. Severely damaged buildings exhibit a 
high standard deviation while moderately damaged 

buildings would have a lower value. Finally, objects 
were then refined using geometry/area criteria. 
 
 
 
 
 
 
 
 
 
 

Figure 10. Process Tree with Rulesets for Damage Grade 2 
 
 
 
5.3 For Grade 3 Damage 
The strategy for classifying severely damaged buildings 
(Grade 3) was based on the following characteristics: 
spectral values for a severely damaged building would 
be very low compared to an undamaged or moderately 
damaged one; these buildings would have highly 
contrasting neighbor objects; severely damaged 
buildings’ texture and geometry is heavily degraded; 
these buildings may also collapse and thus lack 
neighboring shadows; and additionally, some sampling 
was carried out to use as ‘training sites’ to help the 
classifier. Figure 11 presents the final damage 
classification map using the OBIA approach in 
eCognition Developer Software. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Damage Map by means of Object-Based Analysis 
 

 
6. Accuracy Assessment of Methods 
By using the information obtained through Visual 
Interpretation (VI) as reference data, relative accuracy 
percentages    were    calculated.     Pixel-Based  damage  
detection method had a relative accuracy of 98.5%
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Table 2. Confusion Matrix of Object-Based Damage Classification 

 
 

Table 3. Classification Error Matrix for Validation of Object-Based Method 
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Damage Grade 

Reference Data (Word Bank Assessment) 
No. of Buildings 

Grade 1 Grade 2 Grade 3 User’s Acc. (%) Comm. Error (%) 
Grade 1 483 67 4 87.2  12.8% 
Grade 2 86 2644 457 82.9 11.1 
Grade 3 7 344 6659 95 5 

Producer’s Acc. (%) 83.85 86.5 93.5 ---- ---- 
Omission Error (%) 16.15 13.5 6.5 ---- ---- 

Overall Accuracy: 86.1%   
 

 
 
(Number of Pixel-Based ‘Damage’ buildings/ VI 
‘Damage’ buildings*100) and an over-classification of 3 
buildings in the ‘No Damage’ class. Object-Based 
detection method produced an over-classification of 4 
‘Damage’ buildings and 90.2% accuracy in the ‘No 
Damage’ class. Although these accuracy estimates are 
high, these may not be reflected on a building-to-
building correlation. Table 2 presents the confusion 
matrix used to assess the accuracy of the Object-Based 
approach against the reference data provided by means 
of visual identification. 

To validate the performance of the object-based 
classification result, the method was put under further 
scrutiny by expanding the study area. The expanded 
study area includes terrain that significantly varies in 
elevation, slope, vegetation cover and building density 
and is therefore more reflective of landscapes found on 
many other Caribbean islands. The reference data 
classification scheme (World Bank, 2004, 2005) was 
condensed from 6 to 3 classes (Grade 1 – Grade 3). This 
process is summarised as follows: ‘Grade 1’ consists of 
buildings categorised as ‘No Damages’ and ‘Level 1’. 
‘Grade 2’ consists of both ‘Level 2’ and ‘Level 3’ and 
‘Grade 3’ comprise both ‘Level 4’ and ‘Level 5’ 
categories. Table 3 provides the Classification Error 
Matrix generated from expanding the analysis to the St. 
George’s Parish level. 

A total of 11,367 buildings were classified in the 
reference data. A total of 9,786 were correctly classified 
at the parish level, giving an overall accuracy of 86.1%. 
A minimum and maximum class accuracy of 82.9% and 
95% respectively was achieved. 

The classification result of the OBIA at the parish 
level was used to prepare a damage intensity map shown 
in Figure 12. A damage intensity map is a typical 
geospatial information product used to show the 

locations and intensity of damage across a large study 
area.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Map showing Damage Intensity across St. George’s 
Parish 

 
 

7. Discussion 
In order to verify the reliability and accuracy of the 
processing outputs it was necessary to have a normalised 
format to evaluate on equal terms, hence the 
condensation of VI and Object-based classification into 
‘Damage/No Damage’ for comparison with pixel-based 
image differencing. This binary scale classification 
revealed a high level of relative accuracy between the 
various methods to detect damage.  

Compared to the reference data, which identified 
201 buildings as damaged, Pixel-Based Image 
Differencing reproduced 98.51% (198 buildings) as 
damaged.  
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Damage Grade 

Reference Data (Visual Interpretation) 
No. of Buildings 

No Damage Moderate Damage Severe  Damage User’s Acc. (%) Comm. Error (%) 
No Damage 32 5 0 86.5 % 13.5% 
Moderate 9 101 11 83.5% 16.5% 

Severe 0 3 81 96.4% 3.6% 
Producer’s Acc (%) 78.1% 92.7% 88.0% ---- ---- 
Omission Error (%) 21.9% 7.3% 12.0% ---- ---- 

Overall Accuracy: 88.4% 
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Although a high accuracy was achieved this may be 
misleading to some extent. This was also evident in 
object-based result which was compressed into a binary 
classification, indicating that all the buildings classified 
as damaged in the visual truth data were also classified 
as damaged in the object-based output with an excess of 
four buildings totaling to 205. This information was put 
in a more accurate context by generating the confusion 
matrix to verify the accuracy of the Object-Based 
classification scheme. Overall accuracy of the object-
based classification was 88.4% with a minimum and 
maximum class performance of 83.5% and 96.4% 
respectively.  

Many of the damaged buildings (Grades 2 and 3) 
were correctly identified but ‘Undamaged’ class had a 
high error of omission, which was not anticipated since 
that particular class seemingly had the strongest rule-set 
strategy in theory. However, the results were still within 
an acceptable error margin. The individual class 
accuracies establish the robustness of the object-based 
analysis method for damage detection. Reviewing the 
user’s accuracy indicates the capacity to accurately 
detect undamaged and severely damaged (Grade 1 and 
Grade 3) buildings using the object-based method. This 
may be attributed to the fact that a robust rule-set 
strategy was achieved based on image object values and 
thresholds that were consistent with those particular 
damage grades. On the other hand, detection of 
moderately damaged buildings (Grade 2) was less 
accurate. Out of 121 buildings, 20 (16.5%) were classed 
incorrectly. Strengthening of the rule-set development 
strategy may help in reducing this margin of error. 

One of the main difficulties with the object-based 
detection is the presence of false positives caused by the 
presence of debris in the immediate surroundings of 
buildings. In review of the rule-set development result 
for each individual damage grade, one can notice the 
difference in the segmentation of objects that comprise 
the class. Damage grade 1 has very compact outlines that 
fall mostly within the extent of the building footprint. 
However, for grade 2 and 3 the objects classified as 
damage extends beyond the extent of the building 
boundaries. These classified areas outside the bounds of 
the actual building are referred to as false positives. 
Clusters of debris can actually be mistaken for entire 
buildings. This effect however, did not affect the overall 
accuracy of the classification since the error matrix 
produced deals with buildings as objects and not pixels. 
 
8. Conclusions  
The overall aim was to develop a rapid post-hurricane 
building damage detection methodology in order to 
facilitate the timely dissemination of these information 
products to aid in post-disaster emergency response in 
small island states in the Caribbean. Several 
shortcomings still limit the application of remote sensing 
for rapid damage detection in the Caribbean. These are 

associated with the image acquisition time span, 
availability of cloud free images immediately after the 
event, and access to computer systems and software 
resources. Additionally, OBIA techniques require skilled 
and experienced personnel to develop and execute 
segmentation and classification rule-sets. Nonetheless, 
this methodology can be used to aid post-hurricane 
emergency responders and decision makers by providing 
quick and reliable information about the extent, location 
and intensity of building damage.  

It was noted before that many Caribbean countries 
have mountainous terrains with steep slopes and dense 
vegetation that may limit the value of image analysis in 
rural areas. However, the focus here is on developed 
areas. It may also be observed that no single data 
acquisition technique is likely to address all the pre or 
post disaster data needs of a country. The strategy is to 
be able to draw one or more relevant methodologies 
from a suite of available options. 
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