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Abstract: This paper presents a meshfree approach for simulating fluid flow in fractured porous media using a novel 
fracture (FM) mapping approach. Fracture mapping is a continuum-based approach which simulates the flow 
interaction between the porous matrix and existing fractures via a transfer function. The approach simulates fluid flow 
through both the matrix and the fractures and is well suited to models containing sparsely spaced, unconnected 
fractures. The presented approach determines the fluid flow using approximating functions constructed employing the 
radial point interpolation method (RPIM) meshfree formulation which uses radial basis functions (RBFs) augmented 
with polynomials. As part of this meshfree scheme a nodal integration procedure has been implemented thereby 
removing the need for background integration cells that are usually required for meshfree schemes that rely on 
Gaussian integration. Numerical test results illustrate the methods ability to adequately describe the fluid pressure 
fields within a fractured porous domain.  

Keywords: Fracture Mapping; Fractured porous media; Continuum model; Meshfree method; Radial Point Interpolation; 
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1.  Introduction 
A porous medium can be described as a matrix of solid 
material with interconnected pores, with at least several 
continuous paths (Bear, 1988). These pores are void-
spaces within the medium that may contain and conduct 
fluid. When fractures are also present, the medium then 
consists of two distinct pore spaces which are 
represented by the void-spaces between fracture walls 
and the pore spaces within the intact matrix blocks. 
Conceptual methods developed to quantitatively estimate 
the flow behaviour in fractured porous media fall into 
two main categories, continuum methods and discrete 
fracture methods. The methods that have dominated this 
area of research are the dual continuum and discrete 
fracture model approach. 

Barenblatt et al. (1960) introduced the dual 
continuum (DC) concept by modelling flow through a 
non-deformable, fractured porous medium. The dual 
continuum concept provides a mathematical framework 
for the fluid flow interaction between the matrix domain 
and fractures and was originally applied to the field of 
reservoir engineering by Warren and Root (1963) to 
characterise and simulate fluid flow in naturally 
fractured reservoirs. The dual continuum concept can be 
subdivided into the dual porosity and dual permeability 
approach (Diodato, 1994). The dual porosity approach 
assumes that the porous matrix is discontinuous and flow 

within the domain is achieved via the fractured network. 
The simulated fluid flow is therefore directly affected by 
fracture network connectivity and distribution. In 
contrast, the dual permeability model assumes that the 
matrix is continuous and fluid flow occurs within both 
the matrix and fractures (Fung, 1991; Diodato, 1994; 
Zhang and Sanderson, 2002). Fracture network 
connectivity is not a prerequisite when using the dual 
permeability method. DC approaches are very simple to 
implement; however, since these methods rely on 
averaged properties, they cannot adequately simulate 
fluid flow in highly heterogeneous domains. Since the 
approach does not consider fracture geometry and 
orientation it is unable to accurately determine the 
influence large scale fractures have on fluid flow within 
a domain. 

The discrete fracture method has received 
considerable interest over the last few years in the field 
of reservoir simulation and hydrology (Lee et al., 1999; 
Kim and Deo, 2000; Karimi-Fard et al., 2004; Matthäi et 
al., 2007; Tran and Ravoof, 2007; Geiger-Boschung et 
al., 2009). In this approach, fractures are explicitly 
discretized along with the matrix domain. Although this 
method considers real fracture geometry, size and 
orientation, its demands on computer storage for models 
containing hundreds or thousands of fractures limits its 
applicability to domains with low fracture density. 
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Generating computational meshes incorporating fractures 
are also challenging and time consuming. 

The fracture mapping approach presented combines 
the merits of both the discrete and continuum 
approaches; fracture geometry is preserved without 
having to mesh existing fractures within the simulation 
domain. In the finite element (FE) implementation, 
elements intersected by a fracture are treated as two 
overlapping elements; a matrix element and a fracture 
element (Lamb, 2011). The orientation and permeability 
of the fracture are then mapped to the fracture element 
and the transfer function presented by Barenblatt et al. 
(1960) is adopted to account for fluid flow interaction 
between the overlapping matrix and fracture elements. 
Although this method is able to adequately simulate the 
fracture geometry the accuracy of the FE implementation 
solution is dependent on the size of the elements used for 
the fracture mapping (Lamb, 2011). To remove this mesh 
dependence a meshfree approach has been proposed and 
presented in this manuscript.  

Meshfree methods evolved from the need to reduce 
the dependence on a mesh in the formulation of 
numerical solutions. One of the most attractive features 
of meshfree methods is that there is less reliance on mesh 
quality for conducting numerical simulations (Liu, 
2010). These methods use a set of nodes scattered within 
the problem domain as well as along the boundaries of 
the domain to represent the problem domain and its 
boundaries. These methods include, among others, the 
discrete element method (DEM) (Cundall and Strack, 
1979), element free Galerkin (EFG) (Belytschko et al., 
1994), and the radial point interpolation method (RPIM) 
(Wang and Liu, 2002). 

In the DEM, computational points are associated with 
a finite size and shape. Interaction between points 
(particles) occurs only where they are in contact - 
according to the specified interaction rules. This method 
is very well suited to modelling fractures since particle 
interactions can take the form of breakable bonds, 
however, DEMs are processor intensive and this limits 
either the length of a simulation or the number of 
particles.  

EFG is a continuum method in which the shape 
functions are calculated using the moving least-squares 
method (MLS). Shape functions constructed using MLS 
do not satisfy the Kronecker delta function properties, 
i.e., the shape function at the node is equal to one and 
zero for all other nodes used to construct the shape 
function. These shape functions therefore have the 
following disadvantages: 1) difficulties in the 
implementation of essential boundary conditions, and 2) 
complexity of algorithms to construct shape functions. 
Several methods have been proposed to overcome these 
disadvantages for example the Lagrangian method (Lu et 
al., 1994), the penalty method (Onate et al., 1996) and 
the collocation method (Wagner and Liu, 2000) for 
essential boundary conditions. Analytical integration 
(Lancaster and Salkauskas, 1981), the recursive method 

(Breitkopf et al., 2000) and parallel computing 
(Danielson et al., 2000) have been proposed for the 
construction of shape functions.  

The RPIM formulation combines radial and 
polynomial basis functions to address the problems of 
implementing essential boundary conditions and 
construction of shape functions (2002). Inclusion of 
radial basis functions overcome possible singularity 
associated with meshfree methods based on only the 
polynomial basis (Liu and Gu, 2001). The interpolation 
(shape) function obtained passes through all scattered 
points in an influence domain and thus satisfy the 
Kronecker delta function property. This makes the 
implementation of essential boundary conditions much 
easier than meshfree methods based on the moving least-
squares approximation, e.g., the element free Galerkin 
method.  

The finite element method relies on the use of 
Gaussian integration over elements to solve the 
discretized system equations. Meshfree methods also 
employ Gaussian integration; however, since these 
methods do not rely on an element framework, a 
background mesh independent of the nodal arrangement, 
is required for numerical integration. The aim of nodal 
integration schemes is to eliminate the need for a 
background mesh for numerical integration (Beissel and 
Belytschko, 1996; Chen et al., 2001). Since direct nodal 
integration usually results in instabilities in the numerical 
solution Taylor series expansion terms have been added 
to the numerical integration of the RPIM formulation by 
Liu et al. (2007). NI-RPIM has been used in this study 
for the implementation of the meshfree fracture mapping 
approach. 

The remainder of this document is outlined as 
follows. The governing equations which describe fluid 
flow in porous media are firstly presented followed by a 
description of the proposed fracture mapping approach 
used to capture the flow interaction between the porous 
matrix and fracture in the meshfree domain. The RPIM 
shape functions and the nodal integration procedure are 
then presented along with the governing equations and 
their discretized form. A brief outline of the meshfree 
implementation procedure is also presented.  

Finally, the meshfree approach is validated using the 
closed-form solution for fluid flow in a rectangular 
reservoir intersected by a vertical fracture. The second 
numerical test included provides a comparison of the 
proposed numerical approach with the conventional 
discrete fracture model approach.  

  
2. Governing Equations 
This section presents the equations which describe single 
phase fluid flow through porous media. This single-
phase fluid flow through porous media can be described 
by Darcy’s law: 

  (1) 
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where vd is Darcy’s velocity, K, is the spatially varying 
permeability tensor of the porous medium concerned, µ 
is the fluid viscosity, Pw is the pore fluid pressure, g is 
gravity and ρ is fluid density.  

Continuity or mass conservation is a second 
important law in the development of the flow equations; 
for continuity the amount of fluid flowing into a control 
volume is equal to the amount flowing out. Therefore, 
the continuity equation is given by: 

   (2) 

where Qw is the specified source/sink term. Combining 
(1) and (2) results in the single phase, elliptical pressure 
equation:  

   (3) 

The steady state flow equations for both the matrix 
and fractures then take the forms: 
For the matrix: 

       
(4) 

and for the fractures: 

    (5) 

The transient flow equation is obtained by including the 
specific storage of the medium given by, n / Kw, 
assuming incompressible grains. The domain porosity is 
represented by n and Kw represents the bulk modulus of 
the fluid (see Istok (1989)) for a detailed derivation of 
the specific storage coefficient).   

The transient flow equations take the form: 

 
   

(6) 

for the porous matrix, and,  

   (7) 

The first numerical example presented in this paper 
solves the transient pressure equation and the second 
example solves the steady state pressure equation. 
 
3. Fracture Mapping 
This section presents the meshfree FM approach that is 
used to capture the flow interaction between the porous 
matrix and existing fractures. In this numerical approach 
both the porous matrix and fracture are discretized using 
nodes within the computational domain. Fractures that 
exist within the domain are treated as the superposition 
of porous matrix and fracture discretization nodes (see 
Figure 1). The transfer function adopted in this study is 
based on the quasi steady-state function proposed by 
Barenblatt et al. (1960), which assumes that the flow 
within a discretization node is directly proportional to the 

difference between the matrix pore pressure and the 
fracture fluid pressure. 

The transfer function Tr, implemented is given by: 

  (8) 

where Kf is the fracture permeability, µw is the fluid 
viscosity, Pwm is the matrix fluid pore pressure, Pwf is the 
fracture fluid pressure. The fracture permeability can be 
determined using the following relationship proposed by 
Witherspoon et al. (1980): 

  (9) 

where b is the fracture width. In the original transfer 
function presented by Barenblatt et al. (1960),   
represents a shape factor which accounts for the fracture 
size and geometry. Since the FM accounts for the width 
and geometry of fractures within the domain, the shape 
factor is not required; however, it has been retained to 
ensure dimensional consistency when the transfer 
function is introduced into the equations of fluid flow. 
The variable  has dimension L-2, where L represents 
length;   has been assigned a value of 1.  

The amount of fluid transferred between the matrix 
and fracture elements is characterised by the fracture 
permeability, Kf. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Meshfree discretization and fracture mapping 

 
The nodal permeability is taken as element Kfn = K’f, 

which represents the fracture permeability aligned to the 
global Cartesian axes (see Figure 2).  
 

 
Figure 2. Fracture permeability alignment with the Cartesian axes 

using the rotation tensor R 
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This mapping equates the total flow through the 
fracture nodes to the total flow through porous matrix 
nodes.  
 
4. RPIM Shape Functions 
The radial point interpolation method (RPIM) is 
formulated based on the Galerkin weak form using shape 
functions that satisfy the Kronecker delta function 
property. These shape functions are created through an 
interpolation using local nodes with both radial and 
polynomial basis functions. Such an interpolation is 
often used by many researchers for curve or surface 
fitting and function approximation (Golberg, 1996). The 
procedure of constructing RPIM shape functions is as 
follows. 

The function u(x) is approximated using radial and 
polynomial basis functions in the form of 

    (10) 

where Ri(x) and Pj(x) are radial polynomial basis 
functions in two-dimensional space xT = [x,y], n is the 
number of field nodes in the local support domain of 
point x, m is the number of terms of polynomial basis 
functions, and ai and bj are coefficients for Ri(x) and 
Pj(x) , respectively. These vectors are defined as: 

 

(11) 
 

 
 

The radial basis function Ri(x) has the following 
general form:  

   (12) 

where ri is the distance between the interpolating point x 
and field node xi and is expressed as:  

   (13) 

The polynomial basis vector P(x) has the following 
form for two-dimensional problems:  

   (14) 

Linear polynomials are used for the numerical 
examples presented in this paper. In order to determine ai 
and bj of (10), a support domain is constructed for the 
point of interest at x, with n field nodes included in the 
support domain (see Figure 3). The coefficient vectors a 
and b are then determined by ensuring that the 
displacement of all the n field nodes within the local 
support domain satisfy (10).  

This leads to n linear equations, one for each node 
and can be expressed in the following matrix form:  

   (15) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Selection of supporting nodes required for shape 
function 

 
where Us is the vector of approximate function values is 
given. Ro and Pm represent the moment matrix of radial 
basis functions and polynomial moment matrix 
respectively. To ensure that the linear equations have a 
unique solution the following constraint is also added: 

   (16) 

The system equations are now expressed as:  

   (17) 

The function approximation is now expressed as: 

   (18) 

where the matrix of shape functions N(x) is defined by: 

   (19) 

where the kth shape function is defined as: 

    (20) 

where   is the (i,k) element of G-1.  

Using the inverse of matrix G the shape functions are 
obtained via: 

  

(21)   

The radial basis function used in this work is the multi-
quadratics radial basis function (MQ-RBF) given by:  
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   (22) 

where dc is the characteristic length that relates to the 
nodal spacing in the support domain of the field node x 
and is usually taken as the average nodal spacing for all 
the nodes in the support domain, q and αc are shape 
parameters. The values used of q and αc used for the 
numerical examples presented are 1.03 and 2.5 
respectively. 
 
5. Nodal Integration 
The integrals of any discrete variable are numerically 
determined over individual elements and summed for all 
elements to obtain the global integration. Using the 
Gaussian quadrature scheme the numerical integration 
can be written as:  

 

 

  

  

(23) 

where f(x,y) is the integrand applicable over domain Ω, 
wi is the Gauss weighting factor for the i Gauss point at 
(xip, yip) and Jik is the Jacobian matrix for the finite 
element k. ne and ng are the number of elements and 
Gaussian integration points respectively.  

NI-RPIM uses the Taylor series extension to carry 
out the integration over Voronoi integration cells (Figure 
4). The integral function is extended to include 
additional terms of the Taylor series, and the integration 
will be approximately performed on these terms. 
Therefore, the Taylor series extension of the integrand 
f(x,y) can be written as a two-dimensional (2D) 
continuous function f(x,y) can be approximated in the 
vicinity of a point (xo, yo) as follows: 

  
(24) 

The integral over the nodal integration domain Ωi 
(Voronoi cell i ) can be expressed as: 

 
  

 

  

 

where Ai is the area of the nodal integration domain of 
the ith node, 

   
(26) 

are the area moments of the first-order for the integration 
domain of the ith node, and  
   

(27) 

are the area moments of second-order for the integration 
domain of the ith node.  
 

 
Figure 4. Voronoi cells used for nodal integration 

 
6. Spatial Discretization 
Applying the Galerkin approach to the steady state 
elliptic pressure equation, neglecting the effects of 
gravity, the resulting discretized equations take the form: 

 
  

(28) 

where,  
Hm is the porous medium permeability matrix, 

   (29) 

Hf is the fracture permeability matrix, 

   (30) 

HTr is the transfer matrix, 

   (31) 

Q is the flow field vector 

      (32) 

wmP  and wfP  are vectors representing the nodal 
pressures for the matrix and fracture, respectively. 
 
7. Implementation 
The implementation of the NI-RPIM fracture mapping 
has the following steps: 

1. Domain discretization: nodes are used to describe 
both the domain and existing fracture. Domain pore 
pressures are approximated at these node locations; 

(25) 
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2. Generate Voronoi cells for nodal integration: Cells 
are generated using a MATLAB® Executable 
(MEX) interface to Voro++ (Rycroft et al., 2006); 

3. Loop over all nodes: 
a. Determine area of Voronoi Cell along with first 

and second moment area of the cell 
corresponding to current node; 

b. Determine shape functions associated with the 
current node; 

c. Evaluate nodal contributions to the discrete 
system Equation (28): nodes that describe the 
fracture contribute to the fracture permeability 
and transfer matrix (Hf and HTr ), and 

d. Assemble nodal contribution of current node to 
form global system matrices. 

4. Apply boundary conditions, and 
5. Solve system equations to obtain field variable, in 

this instance nodal pore pressures. 
 
8. Numerical Tests 
Numerical experiments are presented to validate the 
meshfree fracture mapping approach. The first numerical 
example compares the FEM and meshfree solutions to 
the analytical solution for a vertical fracture intersecting 
a well in a closed reservoir. The second example is used 
to compare the results obtained from the mapping against 
those obtained from a discrete fracture representation.  
 
One well intersecting a vertical fracture 
This example assesses the accuracy of the fracture 
mapping code by simulating a well fully penetrating a 
fractured confined reservoir. The model dimensions and 
properties are shown in Figure 4. The fracture is aligned 
with the x-axis and is located at the centre of a square 
region of a confined reservoir. It is assumed to intersect a 
fully penetrating well at the centre of the reservoir. The 
analytical solution for this problem has been presented 
by Gringarten et al. (1974). The pressure drop on the 
fracture is given by: 

  

 

(33) 

where tDA represents the dimensionless time based on the 
drainage area and is given by: 

 
  

(34) 

where T is the matrix transmissivity, t represents time 
and Sc is the matrix storage coefficient. xf and xe 
represent the fracture half-length and rectangular 
reservoir half dimensions respectively (see Figure 5).    

Given the symmetry of the domain, only one-quarter 
of the domain was discretized for the numerical 
simulations. The discretizations used for the numerical 
solutions are shown in Figure 6. In the meshfree 
implementation a refinement is obtained by increasing 
the number of nodes that describe the fracture. A coarse 
discretization is used in this example to illustrate the 
effectiveness of the proposed fracture mapping approach. 
A comparison of the analytical and proposed meshfree 
procedure is given in Figure 7.  

 
 
 
 
 
 
 
 
 
 

Figure 5. Closed rectangular reservoir containing a well 
intersected by a vertical fracture 

 
 
 
 
 
 
 
 
 
 

Figure 6. Domain discretizations used for quarter of the closed 
rectangular reservoir 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Dimensionless well drawdown vs dimensionless time, 
showing comparison of numerical and analytical solutions 
 
The computed well drawdown versus dimensionless 

time for the discretization labeled Mfree c is given in 
Table 1 for both the FEM and meshfree implementation. 
The numerical results obtained show good agreement 
with the analytical solution having a variation ranging 
from 0% to 5.5%. The NI-RPIM therefore provides a 
good solution approximation.  
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Table 1. Computed well drawdown vs dimensionless 
Time t (days) Dimensionless Time 

 
Dimensionless Pressure drop 

 

% Variation between Analytical 
and Meshfree Solutions 

 Analytical Meshfree  
0.50 5.56E-04 0.0835 0.0811 2.9 
1.21 1.34E-03 0.1298 0.1342 3.4 
2.21 2.45E-03 0.1755 0.1848 5.3 
3.62 4.02E-03 0.2248 0.2372 5.5 
5.62 6.24E-03 0.2801 0.2944 5.1 
8.45 9.38E-03 0.3434 0.3586 4.4 

12.44 1.38E-02 0.4168 0.4325 3.8 
18.09 2.01E-02 0.5026 0.5185 3.2 
26.08 2.90E-02 0.6035 0.6195 2.7 
37.38 4.15E-02 0.7227 0.7392 2.3 
53.36 5.93E-02 0.8654 0.8840 2.1 
75.95 8.44E-02 1.0424 1.0653 2.2 
107.89 0.12 1.2740 1.3022 2.2 
153.06 0.17 1.5917 1.6242 2.0 
216.92 0.24 2.0380 2.0726 1.7 
307.22 0.34 2.6684 2.7038 1.3 
434.92 0.48 3.5599 3.5954 1.0 
615.47 0.68 4.8204 4.8558 0.7 
870.78 0.97 6.6028 6.6375 0.5 

1231.78 1.37 9.1230 9.1562 0.4 
1742.23 1.94 12.6867 12.7162 0.2 
2464.02 2.74 17.7257 17.7472 0.1 
3484.62 3.87 24.8508 24.8554 0.0 
4927.75 5.48 34.9258 34.8952 0.1 
6968.34 7.74 49.1718 49.0691 0.2 

 
 
9. Discrete Fracture Comparison 
In this example, the steady state pressure equation 
(Equations (4) and (5)) is solved on a fractured domain 
using the discrete fracture model (DFM) and the 
proposed meshfree fracture mapping approach. The rates 
of convergence of each method are determined and the 
pressure field obtained within the domain is also 
compared. The model used in this numerical example is 
shown in Figure 8 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 8. 2D fractured domain with applied pressures at top and 
bottom boundaries 

 
The finite element discrete fracture model in this 

example uses triangular, three-noded elements (T3) to 

discretize the matrix and two-noded linear line (L2) 
elements to discretize the fracture (see Figure 9).  

Prior to comparing DFM to the fracture mapping 
approach, the rate of convergence of DFM was 
determined. Three of the six meshes used to determine 
the rate of convergence of DFM are shown in Figure 10. 
The mesh refinements used to determine the rate of 
convergence of DFM were obtained by dividing each 
element of the preceding mesh into four new elements 
using Mesh A as the base mesh (Figure 10(a)).   
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Elements used for discrete fracture model. (a) Triangular 
element (T3) used to discretize the matrix and (b) line element (L2) 

used to discretize the fracture 

 
The mesh used as the reference mesh for the 

convergence study contained 374784 elements (fifth 
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refinement step); at higher resolutions the discretization 
is not clearly shown and therefore have not been 
included.  The third (23424 elements) and fourth (93696 
elements) refinement steps were also used in determining 
the rate of convergence. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10. Mesh refinements used to determine rate of 
convergence of DFM 

 

The error was measured using the normalised L2 
norm defined by: 

 
   

(35) 

where pc is the pressure determined from a coarse mesh 
and pref is the pressure determined on the reference mesh. 
The rate of convergence is given by the gradient of the 
log-log plot of the L2 error norm vs. the nodal spacing h. 
The rate of convergence was obtained using linear 
regression of the data points and is equal to 1.21.  

Using the DFM reference solution the rates of 
convergence of the Meshfree implementation of FM 
were also determined. The discretizations used to 
determine the rates of convergence are shown in Figure 
11. The number of nodes for the discretizations are 289, 
1089, 4225 and 16641 respectively. The convergence 
rates are shown in Figure 12. 

The rates of convergence of FM implementations are 
very similar to the rate of convergence of DFM, i.e., they 
have a first order rate of convergence. The meshfree 
implementation using an irregular nodal distribution 
provided the lowest convergence rate of 0.93 and 
indicates that the nodal distribution does affect the rate 
of convergence of the meshfree numerical scheme. The 
comparative convergence rates obtained between DFM 
and FM implementations indicate that the fracture 
mapping approach solution accuracy is similar to that of 
DFM, specifically when considering the reduced number 
of nodes within the domain required to achieve the 
solution. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 11. Domain discretizations used to determine the rates of 
convergence of the FEM and Meshfree fracture mapping 

implementation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Convergence rates for the discrete fracture model and 
the meshfree fracture mapping approach 

 

The pressure fields determined for the discrete 
fracture model and the proposed meshfree fracture 
mapping method were also compared. The 
discretizations used to determine the pressure fields are 
shown in Figure 13 and the resulting pressure fields are 
shown in Figure 14 Since differences in the pressure 
fields obtained for the different methods are 
indistinguishable, a pressure profile along a vertical 
section through the centre of the domain was created to 
compare the pressure change across the domain for each 
model.  
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Figure 13. Domain discretizations used to determine pressure 
fields for comparison 

 
Using the discrete fracture model as a baseline for 

comparison, the proposed meshfree fracture mapping 
method adequately describes the variation in pressure 
across the domain (see Figure 15). It should be noted that 
the meshfree fracture mapping discretizations used to 
generate the pressure fields are all at resolutions lower 
than that of DFM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Pressure fields obtained for DFM and meshfree fracture 

mapping implementation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Pressure profile for a vertical section taken through the 

centre of the fractured domain 

10. Conclusion 
The meshfree fracture mapping presented is able to 
adequately simulate the fluid flow in a fractured porous 
domain without the need for intensive mesh refinement 
required for discrete fracture models. The method also 
produces results that are in good agreement with 
analytical results presented in literature. Although direct 
nodal integration has been used for the meshfree 
implementation, the use of the Taylor series expansion 
terms eliminate instabilities in the solution obtained. 
Accuracy of the method can be improved by increasing 
the number of nodes used to discretize the fracture. 
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