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Abstract: Statistically, casualties in engineering workplaces often result from one of the following accidents: when 
people get stuck in the rotating machines, electric shocks or collision with heavy equipment. Most of these accidents can 
be prevented if the workers make proper use of personal protection equipment (PPE). This paper presents the design 
and implementation of a functional image detection system that takes a picture of an employee, analyses it, and 
determines the employee he is appropriately attired to enter a potentially hazardous workplace. This system can help to 
reduce the liability of company owners, by extension their costs, and can provide level of accident prevention. In this 
study, a convolutional neural network (CNN) was used to develop three sets of models, namely hard hat model, boot 
model, and vest model. These were used to detect the appearance of workers and determine if the PPE being worn was 
in compliance with the stipulated requirements for entry to a particularly hazardous workplace. To determine the 
performance of the system, each model was validated with two classes of image datasets: normal colour RGB (Red, 
Green and Blue) and grayscale image. The overall average accuracy of the system, in real-time implementation, then 
was calculated and determined to be 83.33%. 

Keywords:  Convolutional Neural Networks, Image Processing, Deep Learning, Personal Protective Equipment, Safety, 
Tensorflow, Training, Accuracy 

1. Introduction
Accidents often occur on construction sites when there is 
limited availability of personal protective equipment 
(PPE) or when workers fail to use PPE provided by 
employers. The essence of PPE is to limit the level of 
hazard exposure for the employees when engineering and 
administrative controls are not able to minimize the risk 
to an approved level. According to the International 
Covenant on Economic, Social and Cultural Rights 
(ICESCR) - Article Seven, everyone should enjoy the 
right to favourable conditions of work (UN, 2016). 
Workplaces are regulated and are obligated to ensure the 
safety of the work environment. In addition, employers 
are required to provide a safe environment for their 
workers. This requires three lines of defences to protect 
employees against hazards. 

Engineering controls are used to reduce and/or 
minimise the hazard in question and involve making 
changes to the environment. This is the most effective 
form of control. The second line of defence is 
administrative and work controls. This defence aims to 
reduce the severity, duration, and frequency of the 
exposure to the risk, for example, limiting worker’s 
exposure time. The third line of defence is personal 

protective equipment (Nilfisk, 207). This is considered the 
last line of defence and should not be disregarded. PPE is 
an important part of worker safety. In recent times, 
emphasis has been placed on PPE used by medical and 
frontline workers fighting the novel coronavirus, SARS 
COVID-19. 

Many engineering firms require employees to wear 
PPE to ensure the health and well-being of their workers, 
and to protect the company from liabilities, such as 
medical and legal fees. Workplaces have established rules 
and regulations. However, employees sometimes forget to 
bring their PPE to work, and may try to avoid fully 
conforming to the rules established by the employer. To 
ensure that employees comply with the established 
workplace standard, and help protect industrial companies 
from liabilities, an Automated PPE Image Detection 
System is proposed. 

The high prevalence of causalities on construction 
sites has reached an alarming rate. Personal protective 
equipment helps prevent injury and promote workplace 
safety. From published statistics in the United States, 84 
% of workers who sustained head injuries were not 
wearing hard hats and 99 % of workers who suffered 
facial injuries were not using face protection (New York 
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University, 2005). This paper aims to use deep learning to 
create an effective and efficient oversight layer that will 
promote proper PPE usage. The system designed is 
intended for employers who require workers to wear 
special gear while carrying out their duties. This system is 
low cost, easy to implement, and is easily upgradable. 
Consequently, the system presents a proven solution for 
the problem of high causalities on construction sites and 
can be used as a permanent or interim solution. 

Many of the existing automatic techniques used for 
detecting workers without PPE focus narrowly on field 
surveillance videos. The present research is to develop a 
robust and automated PPE detection, with the ability to 
verify and grant access to authorized workers before 
allowing access onto construction site or any other work 
environment, where protection and security are essentials. 
In addition, this research has adopted the use of a deep 
learning method, called a convolutional neural network 
(CNN) in developing an automated PPE Image detection 
system that incorporates a fingerprint identification 
system.  

The rest of the paper is structured as follows: Section 
2 discusses the existing related work and their limitations, 
and Section 3 describes the software and the hardware 
implementations of the system, as well as the CNN 
training and its architecture. Section 4 discusses the 
results and discussions, while Section 5 provides a 
summary and conclusions. 
 
2. Literature Review 
In 2013, a deep learning method called MobileNet-SSD 
structure was implemented in a construction equipment 
image detection system that was deployed on an 
embedded selection system (Arabi et al., 2013). The 
network class of the method involves depthwise separable 
convolution which factorize normal convolution into two 
different operations. The accuracy of the system in real-
time learning is 90%. Barro-Torres et al. (2012) advocated 
the use of Zigbee and Radio Frequency Identification 
(RFID) technologies for the detection of PPE for 
monitoring how PPE are worn by the workers. This 
system was designed to inspect each worker’s appearance 
in the use of a PPE where every worker must carry the 
system, and then reports that alerts a unit at a central 
location and provides information about each worker. The 
operation of the system relies solely on battery power 
which is a major limitation of this detection system. Any 
temporarily discharged battery, could cause failure in 
sensor node connection which would require 
reconfiguration of the entire sensor network. Another 
deep learning algorithm called YOLO has been reported 
in Hung et al. (2019) for a real-time personal protection 
equipment detection. This involves a road segment 
designed using an RFID, an infrared sensor (IR) and a 
camera which are installed to identify if workers accessed 
the construction site with the required protective 
equipment. This system achieved high precision but the 

detection of small objects in groups by this technique 
might give incorrect prediction and also the algorithm 
requires long computational time.  

In another similar work, a CNN-based camera 
identification system for detecting workers with 
noncompliance PPE, capable of detecting twelve (12) 
classes of PPE has been presented in Wahyu Pradana et 
at. (2019). The accuracy of the system in real-time 
implementation was 85.83 % for respondents who were 
included in the dataset. However, this system encountered 
several errors in differentiating workers who used safety 
glasses and the respondents that did not use safety glasses 
in real time when using the CNN method.  

A review of CNN applications for fruit image 
processing analysis has been presented in Naranjo-Torres 
et al. (2020). This study was limited to the classification, 
quality control and detection of agricultural fruit images. 
In addition, the use of an automated intelligent drone 
equipped camera and computer vision for safety 
inspections on construction sites was reported in Abbas et 
al. (2016) with the aim of detecting workers not wearing 
hard hats. However, the control of the drone requires a 
human expert to navigate in both indoor and outdoor 
construction sites. 

A survey of on-site construction personnel hazard 
perception in the Middle East Country of Lebanon has 
been investigated in Abbas et al. (2018). The study 
centered on the awareness and perception of engineers, 
foremen and workers on various indoor hazardous 
activities and emphasized the significance of safety 
equipment on different construction sites in Lebanon. It 
also discussed the main constraints limiting proper 
enforcement of wearing PPE at construction sites. 
Similarly, a real time pattern recognition using digital 
video and applications for measuring safety in 
construction sites was presented in Bajracharya (2013). 
This system used a camera recording video as input and 
processed it to several image frames, and then used a 
classification method by developing a client interface and 
created an image box to detect the appearance of workers 
in compliance with the wearing of PPE on construction 
sites. However, there were no specific results reported that 
describe the level of performance of the system.  

In 2014, a recognition algorithm system was 
developed that uses site images collections for an 
automated monitoring of construction progress (Azadani 
et al., 2014). This algorithm reported an accuracy of 70 % 
or less and does not perform well with images collected 
from construction sites. In another work, Du et al. (2011) 
considered face features, motion, and colour information 
in video processing technique used for detection of face 
and hard hat in construction sites. Every worker is 
expected to look at the camera before the system can 
detect 1) if hardhat is worn and 2) the colour of the 
hardhats is the same.  

In image classification and object detection, CNN was  
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adopted due to its ability to self-learn from large training 
datasets in Roy (2020). Siddula et al. (2016) also 
described a CNN algorithm has used for detection of 
objects such as roofs, roof workers, and guardrails in 
construction area. This involves segmentation of each 
image using a Gaussian Mixture Model and later passed 
into the CNN model for detection. This study also 
investigated the effect of different networks architectures, 
to determine which topology is suitable for recognizing 
each object being tested and hence this affects the 
performance of the system. One challenge was in the use 
of the object images captured from a far distance which 
involved some other objects. These types of images would 
generate low contrast during segmentation of different 
objects which led to low contrast of images. However, 
these images are considered unsuitable for proper 
segmentation operation.  

In another instance, Wu et al. (2019) developed a 
hardhat wearing detection system using a CNN method. 
In this study, the image feature extraction of different 
layers was achieved using reverse progressive attention 
which makes the final prediction of the detection results. 
This system was limited to detect workers with proper 
wearing of hardhat and the respective colour of the 
hardhat. Kyrkou et al. (2018) used a CNN architecture for 
detecting objects embedded in a lightweight processing 
system deployed in an unmanned aerial vehicle (UAV), 
with a reported overall system accuracy of 95%. However, 
this work was limited to a single object class and has 
fewer numbers of training set that could lower its 
applications and performances.  

Another CNN-based architecture algorithm has been 
used in Audebert et al. (2017) for the identification of 
vehicles which involves segmentation, detection and 
classification of remote sensing images. Similarly, 
Rastegari et al. (2016) introduced a CNN network with 
binary weights and exclusive nor (XNOR) approximation 
networks for image classification. This technique 
involved the reduction of network size where a small 
amount of memory is applicable, to run the deep learning 
algorithm in real-time on portable devices. 

Moreover, Chollet (2017) adopted a CNN architecture 
based on xception modules which involves depthwise 
separable convolution layers, for classification of a large 
image dataset. The time required to train xception 
modules is expensive but performs well in terms of 
transfer learning rate which makes it to be adaptable for 
any specific operation. Fang et al. (2018) used a Faster R-
CNN method for detecting workers with non-hardhat use, 
carried out in twenty-five (25) different construction sites, 
taking into consideration the impacts of visual range, 
weather and illumination on far-field images captured at 
various ranges of working hours. This work was limited 
to detect workers’ non-hardhart-use (NHU) but was not 
designed to identify the workers on the construction sites 
and is limited to one class of model. According to He et 
al. (2017), an extension of a Faster Recurrent 
Convolutional Neural Network R-CNN, called Mask 

RCNN, has been adopted for a high-quality object 
segmentation detection in an image. This method was 
limited to work with still images as it fails to detect 
dynamic objects which experienced motion blur at low 
colour resolution. 

Ham et al. (2016) reported a review assessment of 
camera-equipped Unmanned Aerial Vehicles (UAVs) for 
visual monitoring the infrastructure in construction sites. 
This paper investigated most recent methods for 
collection, analysis, visualization, and communication of 
visual data obtained with or without a Building 
Information Model. This work also presented the potential 
of each of these methods that leads to automatic 
monitoring and civil infrastructure assessment.  

Kim et al. (2016) proposed an object detection for 
autonomous vehicles and localization of objects on road 
areas using deep neural network. The detection accuracy 
was evaluated with some object classes and analyzed the 
identified results were analyzed fine-tuned single shot 
multibox detector on KITTI dataset. In another study, 
Murugan et al. (2019) confirmed applications with a 
vehicle logo recognition system in traffic monitoring, 
security systems and surveillance systems categorized 
with higher accuracy by RCNN. The limitation of the 
vehicle logo system for real-world applications using a 
CNN method was that the testing dataset kept changing 
the training set after detection which keeps the training set 
frequently updating. Hence, this system reported about 15 
hours to train its network using 10,000 training images. 
Therefore, the proposed technique was very time-
consuming. Fang et al. (2018) thus adopted a faster RCNN 
for an automatic non-hat use detection system. However, 
the main problems with the far-field surveillance videos 
are the continuous movement, equipment, objects and the 
environment which are all captured during the process of 
the non-hardhat workers’ detection on construction sites. 

Dimitrov and Golparvar-Fard (2014) developed an 
automatic monitoring construction progress and a 3D 
point cloud building information model for construction 
materials classification using a support vector machine 
(SVM) method. This algorithm achieves an average 
accuracy of 97.1 % for the classification of building 
materials using 200×200-pixel image patches. Du et al. 
(2011) also reported the use of video surveillance based 
on face features, motion and colour information for 
identifying a person without the hard hat in real time when 
entering the construction sites for ensuring safety of 
workers. Similarly, Gualdi et al (2011) reported the use of 
Covariance Descriptors with a LogitBoost classifier and a 
surveillance detector that could identify those workers 
who do not wear hardhat during construction work.  

To enhance further, Memarzadeh et al. (2013) 
advocated an automated system for detection of 
construction equipment and workers from video streams 
using binary Support Vector Machine (SVM) classifier. 
With over 8,000 dataset containing the video frames of 
construction equipment and workers, the detection results 
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for standing workers, excavators and dump truck achieved 
average accuracy of   98.83 %,  82.10 %,   and  84.88 %  
provided by the method, respectively. In addition, Radio 
Frequency Identification (RFID) technology was used in 
the construction site to estimate the distance between the 
worker and the heavy equipment to prevent the worker 
from entering a dangerous environment. Chae and 
Yoshida (2010) developed an RFID-warning system for 
preventing workers from collision accidents with heavy 
equipment like excavators and cranes.  

Most fast deep learning methods are known for less 
accuracy in achieving a real-time object detection 
application, Zhou et al. (2016) developed a deep neural 
network (DNN) called YOLO for a vehicle detection and 
classification system using rear view images captured by 
a position road camera placed at a distance along a multi-
lane highway. Two cases of vehicle classification 
experiments were conducted, namely normal images and 
dark images, with achieved accuracy of 93.3 % and 83.3 
% respectively compared with 94.4 % and 86.2 % 
obtained from a Deformable Parts Model (DPM) method. 
Peng et al. (2016) also developed a safety video 
surveillance system that comprises a Gaussian Mixture 
Model and YOLO. This extension of convolution neural 
networks would detect pedestrians near the transformer 
substation with 20 % more accurate than the single 
method.  

A similar work involved developed YOLO-v3 
architecture models to detect if construction workers 
comply with the proper wearing of hardhat, vest or both, 
from video images in real-time (Nath et al., 2020). These 
models were limited to detect only hat and vest classes 
while there are some other types of PPE such as the 
gloves, safety goggles and boots which can be 
accommodated by modifying the last layer of the YOLO-
v3 models. The work does not conduct verification and 
authorization of every worker. Therefore, it does not 
assure the confidentiality of each worker on the 
construction site. 

Popescu et al. (2019) presented the use of optical 
methods to train the acquired data from existing concrete 
bridge inspection to reduce traffic disturbance, improve 
the efficiency and reliability of the bridges. These 
techniques were validated with three separate imaging 
datasets for the 3D-geometric modelling of existing 
structures: terrestrial laser scanning, close-range 
photogrammetry, and infrared scanning. 

This focus of this present study is to examine the 
weaknesses in the existing works and propose a feasible 
solution that could train a CNN to detect the most essential 
safety equipment such as boots, hardhats and safety vests 
needed for the construction workers to be worn before 
they can be granted permission to enter a construction 
area. This would offer optimum protections especially 
where the handling of heavy equipment and machines is 
required. Additionally, CNN is becoming widely 
recognized as an efficient and powerful deep learning tool 
for solving different forms of classification problems due 
to its inherent advantages to perform automatic feature 
extraction as well as its better computational efficiency. 
This also allows CNN models to operate with any device 
and makes it a suitable selection method. 

On the other hand, the majority of the existing work 
on computer vision have been able to address fewer 
classes of safety equipment to detect the compliance of 
workers with the proper use of personal protective 
equipment. Previous studies have not considered some 
PPEs model classes (such as the boots, the hardhats and 
the vests models) for a real-time image detection system 
using CNN. The specific objectives of this study are to 
design and build a low-cost Automated PPE Image 
Detection System using still frame images captured by a 
camera, and capable of detecting and determining if 
someone is entering an industrial workplace.  

Figure 1 shows a typical framework of the Automated 
PPE Detection System. The system would be able to 
differentiate between registered and unregistered 
personnel by using a scanned fingerprint to look up the 
employee on the system database. Unregistered personnel 
could opt to enroll into the system through managerial 
input, while registered personnel would be allowed to the 
next stage of the system where a camera takes their picture 
for image processing. After processing and analyses, the 
employee would get feedback on the appropriateness of 
attire for the particular workplace. These results would be 
updated to a database that are accessible through a 
website. 
 
3. Methodology 
The first stage of the process involved in the development 
of the proposed system is to obtain the images used 
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Figure 1. A Typical Framework of the Automated PPE Detection System 
to train the CNN. To do this, a code is used that linked to 
Microsoft Bing’s Image Search API. The code took a 
keyword, for example, “hard hat”, and thoroughly 
searched the internet for related images and downloaded 
them to system memory. Once these categories were 
saved to system memory, dataset pruning began. Pruning 
took place in two ways: 1) by using a code that would 
process images saved to memory and remove duplicates 
leaving one original copy 2) having a human user scan 
every picture and deleting pictures from the dataset that 
were not related to any of the three categories (vest, hat, 
boot). Once the dataset was finalized, three different 
specialized CNN models were trained on same images. 
One model was specialized to predict hard hats, one model 
was specialized to predict high-vis vests, and one model 
was specialized to predict steel-toe boots. Once these 
models were developed, a system was implemented that 
accepted user data and took an image of user via a camera. 
The image taken was input and processed by each CNN 
model which made their independent predictions. The 
result was then tethered to the user data and a decision to 
provide or deny access to the facility was made depending 
on the final results.  

The system is made up of a Raspberry Pi, an 
ATMega328P, a fingerprint sensor, a pressure mat, a 
solenoid lock, an input button, a buzzer and 2 LED 
indicators. Employees press the button, scan their 
fingerprint and stand on the mat. A camera takes a picture 
and the model and scans for PPE. If all is found to be good, 
the lock opens with a green light, else it stays closed with 
a red light and a buzzer sound. The system keeps 
monitoring the persons being scanned by using 
employees' fingerprints, and their performance records are 
stored on a web server which allow the administrator to 
view the activity on a website.  

The circuitry hardware communication standard used 
in this work was the Universal Asynchronous Receiver/ 
Transmitter (UART) Serial standard of communication. 
This establishes a communication link between the 
microcontroller and the Raspberry Pi. Software serial 
communication was also used to establish a 
communication between the fingerprint sensor used and 
the microcontroller connected. Other standards involved 
in this work were related to the standard compression 
formats for the images used to train the models. The 
standard file formats that used were BMP, JPG, JPEG, and 
PNG. This work has been grouped into two categories – 
(i) the microcontroller circuit and (ii) the processing 
computer, and the functions of each group are described 
as follows: 
 
3.1. Microcontroller Circuit 
The microcontroller circuit deals with the linking of the 
physical environment to the system. The components 
connected to the microcontroller are a biometric sensor, a 
pressure sensitive security mat, a 12V DC solenoid style 

lock, an LCD, a momentary push button, a buzzer and two 
LEDs. The biometric sensor is a DFRobot fingerprint 
sensor module. It reads and collects unique user 
biometrics. The sensor returns data which is used to 
determine which database entry is associated with that 
specific user, and thus, which database attribute needs to 
be updated.  

Next is the security mat. The voltage output, Vo, from 
the security mat is monitored by the microcontroller. 
When pressure in the form of human weight is applied to 
the mat, the Vo from the mat changes proportionately and 
the microcontroller is tasked to determine if Vo falls into 
a defined range. The lock is used to prevent and grant 
access to people based on the processing that occurs 
within the full system. The momentary push button is for 
user input, a 16 × 2 LCD is used to send output text 
message to the users, and a buzzer and two indicator LEDs 
provide audio-visual output to the users. The two main 
functions carried out by the microcontroller circuit are to 
verify if users are already on the database and enroll a new 
users into the system. 
 
3.2. Processing Computer 
The processing computer used for the system is the 
Raspberry Pi 4 Model B/4GB (RPi). The RPi stores most 
of the softwares used in the system. Stored on the RPi are 
three trained CNN models as well as the image processing 
and classification script. The RPi also hosts the database 
and the web server. The database used is MongoDB and 
the web server used is the Apache Web Server. The RPi 
and the microcontroller communicate with each other to 
coordinate the actions of the system. Both system 
components are wire-connected and communicate using 
the UART Serial communication protocol. 

The RPi acts as the hub for the system. It plays the 
main role in defining the flow of data and system 
functions. The RPi houses the database and the 
classification script, which is connected to the camera and 
microcontroller peripherals. The script on the RPi polls 
both the serial port and the database. 

When the RPi receives data via the serial port, it will 
trigger the camera to capture the image of the person. This 
data received from the serial port is sent once a user has 
been verified and is correctly positioned on the pressure 
mat. When the camera is triggered, the image is saved and 
loaded into the classification script where it is processed. 
The output from the classification is retrieved, along with 
the verification input from the microcontroller and then 
used to update the respective employee status on the 
database. The script will also send the processing results 
back to the microcontroller by way of the serial port and 
will then go back to polling both the database and the 
serial port. If the enroll button online is pressed, a python 
script is run that sends a command to the microcontroller. 
The RPi will then wait until it receives data from the 
microcontroller. If a negative code is received by the RPi, 
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it will delete the recently made entry and return back to 
polling. 
 
3.3. CNN Training 
The system is focused on finding instances of the defined 
PPE. The defined PPE categories outlined in the project 
objectives are hardhats, steel toe boots, and reflective 
vests. To achieve this, three specialized CNN models were 
trained, each one dedicated to detecting its own category. 
Each CNN was trained in similar fashion, with the only 
difference between them being the input dataset. The 
approach used to train the CNNs was based on the method 
used by Adrian Rosebrock on his PyImageSearch blog. 

For the boot detection model, a total of 1,861 images 
were in the dataset. The breakdown of the image classes 
within the boot dataset are: 

• Sandals (680 images) 
• Heels (582 images) 
• Boots (599 images) 

For the vest detection model, a total of 2,814 images 
were in the dataset. The breakdown of the image classes 
within the vest dataset is: 

• Dress (669 images) 
• Tank Top (763 images) 
• T-Shirts (582 images) 
• Vest (800 images) 

For the helmet detection model, a total of 1,682 images 
were in the dataset. The breakdown of the image classes 
within the hardhat dataset is: 

• Cap (513 images) 
• Hat (585 images) 
• Random (584 images) 

In this work, the performance of CNN approach was 
validated with two classes of image dataset for each of the 
models, namely, normal RGB coloured image dataset and 
grayscale image dataset. The same objects images used in 
training the CNN network for the grayscale images. 
Usually, the grayscale images format is obtained by 
training the network to accept RGB images as input 
dataset and conversion to grayscale images format is done 
by using cv2.cvtColor() command from the OpenCV 
library. Both RGB and grayscale are renamed and entered 
into different new folders. All the images in the specified 
folder are read and saved. Each of the converted grayscale 
images is resized into 128 × 128 pixels and stored in a new 
folder. 
 
3.4. CNN Architecture 
The CNN architecture used to train each model was the 
SmallerVGGNet model. It is a smaller version of the 
VGGNet network that was developed by Simonyan and 
Zisserman (2015). The network uses an architecture with 
very small 3×3 convolutional filters and increased depth. 
The volume sizes are reduced by max pooling and the 
fully connected layers at the end of the network use a 
softmax classifier. 

The model is made of twenty-eight layers excluding 
the input layer. Each layer is stacked sequentially. All 
layers have a unique input and output, and each input and 
output are defined by an input and output shape. Each 
layer is broken down as follows: 

1. The input to the first layer is defined by 96×96×3 
(height, width, depth) or by 3×96×96 (depth, height, 
width) depending on whether the image is “channels 
first” or “channels last”. The first layer has 32 filters 
applied using 2D convolution, each is defined by 3×3 
kernels. The first layer padding uses the same settings 
in order to maintain the spatial dimensions of the 
volume, which ensures that the output volume size 
matches the input volume size. 

2. The next layer in the network is an activation layer that 
uses the rectified linear unit (ReLU) activation function 
which increases nonlinearity in images by returning the 
positive value it receives, or a zero otherwise. ReLU is 
used because images are naturally non-linear and upon 
going through the convolution, linearity can be 
imposed on an image. 

3. The third layer in the network uses batch normalization, 
which normalizes the interlayer outputs of a neural 
network. 

4. 2D Max pooling which reduces the size of the data, 
number of parameters, amount of computation needed, 
and controls overfitting. 

5. Dropout layer. It randomly drops 25 % of the inputs to 
help prevent overfitting. 

6. 2D convolution with 64 filters with 3×3 kernels and the 
padding being set to same. 

7. ReLU activation layer. 
8. Batch normalization layer. 
9. 2D convolution with 64 filters with 3×3 kernels and the 

same padding being set to same. 
10. ReLU activation layer. 
11. Batch normalization layer. 
12. 2D max pooling layer. 
13. 25 % dropout layer. 
14. 2D convolution with 128 filters with 3×3 kernels and 

the same padding being set to same. 
15. ReLU activation layer. 
16. Batch normalization layer. 
17. 2D convolution with 128 filters with 3×3 kernels and 

the same padding being set to same. 
18. ReLU activation layer. 
19. Batch normalization layer. 
20. 2D max pooling layer. 
21.  25 % dropout layer. 
22. This layer flattens the matrix from the previous layer 

into a single array of 8192 nodes. 
23. The 23rd layer is a dense layer. Each neuron in this 

layer is fully connected to all neurons in the previous 
layer. The dense layer is connected to all 8,192 nodes 
from the layer above it. 

24. ReLU activation layer. 
25. Batch normalization layer.  
26. 25 % dropout layer. 
27. The 27th layer is a dense layer that outputs varying 

numbers of nodes to the final layer. 
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28. The final layer uses the softmax classifier that outputs 
probability ranges for the network’s predictions. 

The above information is represented in the simplified 
network in Figure 2. The above architecture was defined 
in a python script, and it was called in the python training 
script as a module. The training occurred over 100 epochs 
with 32 images per batch. The data for each model was 
divided into two categories: 80 % of the data was used for 
training the model, while the remaining 20 % of the data 
was used to test the model using the coloured image 
(RGB) dataset and grayscale image dataset, respectively. 
Before the images in the dataset are passed through the 
network for training, they are augmented using the 
ImageDataGenerator method. This helped to increase the 
performance of the network especially given the small 
size of the dataset used. When the training is completed, 
the output model with weights and biases is saved, as well 
as the label binarizer, while the training and loss 
accuracies of the training process is recorded. 

 
 
 
 
 
 
 
 
 
 
Figure 2. Simplified Representation of CNN Architecture Used to 

Train the Boot Detection Model 

 
3.5. Dataset Augmentation 
Dataset Augmentation also referred to as ImageGenerator 
is essential when the training model experiences 
overfitting which results in performance of the training 
model. Therefore, performing data augmentation allows 
the training model to have better performance when there 
is a limited training dataset, without overfitting the 
training set. 

In most situations, when running a deep learning 
application such as in image classification problems, it is 
always challenging to obtain new training sets to perform 
classification tasks. In order to generate more data, data 
augmentation is performed to increase the size of the 
dataset. This generates new samples training dataset by 
performing random transformation of the existing set 
which decreases overfitting. The dataset augmentation 
performs the rotation, moving, resizing, position 
adjustment and contrast change of the original image 
dataset and generates a new training image set via these 
operations. These new training image sets do not alter the 
original image dataset. However, dataset augmentation 
has the ability to increase the size of the training set up to 
50 times the original image dataset. 
 

3.6. High-level Circuit Block Diagram 
In the system, a majority of the connections are made to 
the microcontroller. This can be seen from Figure 3. The 
green and red LEDs, the solenoid lock, the LCD display, 
and the buzzer are all one-directional outputs for the 
microcontroller. There are two one directional 1D inputs 
connected to the microcontroller, these are the pressure 
mat and the input button. Two-way connected devices to 
the microcontroller are the fingerprint sensor and the RPi. 
The RPi houses only two connections - one to the camera 
it controls and the other to the microcontroller for 
communication. Both connections are bidirectional. The 
RPi receives and sends data between the microcontroller, 
and the camera receives commands from the RPi and 
sends pictures back to it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. High-level Circuit Block Diagram of the Overall System 

 
3.7 High-level Software Design  
The overall processes of the system can be separated into 
two flow charts of verification and enrollment as 
described below. 
 
3.7.1. Verification 
The verification function is initiated by pressing a 
momentary push button which is processed by the 
microcontroller (see Figure 4). If a press is detected, the 
fingerprint sensor is activated and reads the fingerprint. 
The sensor will either return a success parameter, or a fail 
parameter. On fail, the user is notified by LCD that the 
verification process was unsuccessful, and he needs to 
press the button to re-initiate the process. On success, the 
user would be notified that he is required to stand on the 
pressure mat. The purpose of the pressure mat is to ensure 
that each user is within the capture area of the system 
camera. The pressure mat reads the voltage, and if the 
change in voltage that represents human weight is 
detected, the system will send a success code from the 
fingerprint sensor to the RPi via UART Serial 
Communication. Once this command is sent to the RPi, 
the microcontroller waits to receive the processed data 
from it. The RPi will therefore use the received command 
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to trigger the camera which will take the photo for image 
processing. 

After processing the image, the database is updated, 
and the results will be returned to the waiting 
microcontroller. If the user passed inspection, a green 
LED would indicate success, and the solenoid lock will 
open, granting the user access to the work area. If the user 
failed inspection, i.e., if any PPE is missing, a red LED 
would indicate failure, a buzzer would sound, and the 
solenoid lock would remain closed. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. High-level Software Flow Chart for the Design of 
Validation Process 

 
3.7.2. Enrollment 
The enrolled function is an online-based operation. On the 
website, a manager has the option to add a new user. When 
the user parameters are entered and the administrator 
presses the submit button, then a user entry is created in 
the database. The website code is passed to a python script 
on addition of a new user that sends the user’s fingerprint 
ID to the microcontroller circuit by way of UART Serial 
Communication. The microcontroller receives the ID and 
uses it to start the enrolled function. During the enrollment 
process, the fingerprint sensor reads the employee 
fingerprint and returns either a success or fail message 
which is then returned to the RPi. 

On fail, the user is notified, and the code is sent to the 
RPi where the user entry in the database is deleted (see 
Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. High-level Software Design Flow Chart for the 
Enrollment Process Combination of Loss and Accuracy Curves 

 

4. Results and Discussion 
The accuracies of the trained models are important factors 
when assessing the effectiveness of the system. To have a 
good estimate on the accuracies of the models, analysis is 
conducted on three areas: 

•   Model performance during training 
•   Model performance on training data after training 
• Model performance on real world samples after 

training 
 
4.1. Performance during Training 
The performance of each model is tracked using the 
Training and Loss Accuracy plot produced after training 
each model. Figures 7, 8 and 9 show the loss and accuracy 
plots for the boot, hat, and vest models, respectively. The 
performance of the CNN algorithm for each of the models 
using normal RGB color image dataset and grayscale 
image dataset are presented in Tables 1 and 2. It is obvious 
that the accuracy results vary for each of the models and 
the best performances were obtained for the hat model 
with 97 % train accuracy, 91.69 % validation accuracy 
compared to the other two models results, presented in the 
Table 1. 
 

Table 1. Model Performance during Training Using Normal 
Colour Image Dataset 

Model 
Acc (%) 

Train. Val. Acc 
(%) 

Train. Loss 
(%) 

Val. Loss 
(%) 

Hat 97 91.69 8.85 31.93 
Boot 90.73 80.11 25.22 65.68 
Vest 94.81 89.45 14.48 54.02 

 
Table 2. Model Performance during Training Using Grayscale 

Image Dataset 
Model 
Acc (%) 

Train. Val. Acc 
(%) 

Train. Loss 
(%) 

Val. Loss 
(%) 

Hat 92.26 68.84 20.7 30.49 
Boot 89.63 67.47 26.9 12.83 
Vest 91.25 65.36 25.2 15.43 

 
 

The high validation losses obtained in these models (as 
presented in Table 1) might be a case of overfitting of the 
dataset at the output layer of the CNN network. By 
adjusting the weights and biases of the network layer, the 
models get more accurately trained and the losses can be 
reduced.  

Similarly, Table 2 presents the performance results for 
each of the models using the CNN algorithm tested on 
grayscale image dataset. The results obtained for the hat 
model achieved best performances with 92.26 % train 
accuracy, 68.84 % validation accuracy, 20.70 % train loss 
and 30.49 % validation loss compared to the other models 
results. It is observed from both Tables 1 and 2 that the 
CNN algorithm performs better with regards to training 
and validation accuracy results on the normal RGB image 
dataset for all the models compared to the results obtained 
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when the CNN algorithm is trained and tested with the 
grayscale image dataset. 
 
4.2. Post-Training Performance on Training data 
After the training process was completed, each model was 
trained on 10 random images from each image class in its 
respective dataset. In total there were 100 training images 
tested. It can be observed from the results (see Table 3) 
that the boot model achieves better predictions when 
compared with all other models. The average prediction 
accuracy of the system after testing was calculated to be 
94.17 %. The models were evaluated for their ability to 
correctly identify the presence of hats, vests, and boots in 
each image. If none of these categories were present, the 
model was then evaluated to see if it would predict 
something else. The formula used to evaluate the 
Accuracy of each model is: 

Accuracy =    Number of correct predictions       × 100 
                                Total Number of Images   

The overall average performance of the system was 
calculated by averaging the performance of each 
individual model, 

Accuracy = (Acc. BOOT+ Acc. VEST + Acc. HAT) / 3 
 

Table 3. Results Obtained after Using the Trained Models to 
Classify Images from the Normal Colour Training Datasets 

Model Image 
Category 

Total True 
Predict 

False 
Predict. 

 Sandals 10 10 0 
Boot Model Heels 10 9 1 
 Boots 10 9 1 
Total  30 28 2 
Model Accuracy 93.33 %    
 Dress 10 10 0 
Vest Model Tank Top 10 9 1 
 T-shirt 10 10 0 
 Vest 10 8 2 
Total  40 37 3 
Model Accuracy 92.50 %    
 Hat 10 10 0 
Hat Model Cap 10 9 1 
 Random 10 10 0 
Total  30 29 1 
Model Accuracy 96.67 %    

 
 

It can be observed that all these models begin with 
high losses (see Figures 6, 7 and 8). As the models got 
trained, they recognize patterns and make predictions. The 
losses are initially high because the models had no prior 
reference to what it was detected. A loss occurs when the 
model makes a prediction that is incorrect. It makes an 
incorrect prediction based on the label given to each 
image. During training, all incorrect predictions are 
accounted for, and internal weights and biases of the 
network are adjusted. 

By adjusting the weights and biases, the model gets 
more trained, and losses can be reduced. The results show 
that the accuracy tests on training data were higher than 

the accuracy tests carried out on real world data. This was 
because the output predictions of the model were 
restricted to the data categories that it was learned with. 
Besides, the training accuracies are higher than the 
validation accuracies because during training, there are 
some data that are reserved from the network that it will 
not have seen before. It is on these unrecognized pictures 
that the model is tested to see how it learns. When 
validation accuracy increases, there is a sign of good 
learning. These models trained at a relatively fast rate and 
end with relatively good validation accuracies. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Training Loss and Accuracy Plot for Boot Model Using 

Normal Color Image Dataset 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Training Loss and Accuracy Plot for Hat Model Using 
Normal Color Image Dataset 

  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Training Loss and Accuracy Plot for Vest Model Using 

Normal Color Image Dataset 
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4.3. Model Performance after Training 
The final test of the models occurred by testing these 
models with the real-world images captured by the camera 
which all the models have never processed before i.e., new 
unseen images. 

In total, 10 images were tested, and the results are 
depicted in Table 4. Out of the 10 images analyzed, eight 
were hats present. The model correctly predicted when 
no-hat was present and wrongly predicted three of the 
images as no-hat while these images were actually 
present. Only seven images were correctly classified by 
the hat model. Under the average accuracy prediction for 
the hat, ARHAT was calculated to be 70 %. For the vest 
model, out of the 10 images, three were contained images 
of vests. The model was able to determine when no vest 
was present, however there was an instance where a vest 
was incorrectly classified. The average accuracy 
prediction for the vest, ARVEST was 90%. For the boot 
model, all 10 images had boots present. The model was 
able to predict nine of the 10 boot instances, setting the 
average accuracy prediction for the boot ARBOOT as 90 
%. Figure 9 shows the correct prediction of the hat and 
boot, and the prediction without vest present. Figure 10 
shows the correct prediction of boot and vest, with the 
incorrect prediction of hat. The overall average 
performance of the system was calculated by averaging 
the performance of each individual model, which gives 
ACC. TOTAL of 83.33 %. 

The results obtained from the current study using CNN 
method are compared with the results obtained from the 
three approaches used in Nath et al. (2020) which are 
YOLO-V3 + Classifiers Neural Network + Decision Tree, 
YOLO-V3 and YOLO-V3 + Classifiers VGG-16 + 
ResNet-50 + Xception, to determine the efficiency of the 
approach. It can be observed from the Table 5 that the best 
models were obtained from the CNN approach with the 
better overall accuracy when compared with other models 
from the three methods reported in Nath et al. (2020). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Results of the Real-World Tests 1 and 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Results of the Real-World Test

Table 4. Results Obtained after Using the Trained Models to Classify Images from the Training Datasets 
Training Data Image Hat Vest Boot Classified Hat Vest Boot 
Present 1 True False True Predicted True False True 
Present 2 True False True Predicted True False True 
Present 3 True False True Predicted False False False 
Present 4 True True True Predicted True True True 
Present 5 True False True Predicted False False True 
Present 6 True False True Predicted False False True 
Present 7 True False True Predicted False False True 
Present 8 False False True Predicted False False True 

 
Table 5. Comparison Results Obtained Using Real Time Images for Different Detection Models 

Model Hat (%) No Hat 
(%) 

Vest (%) Boot (%) Hat+Vest (%) Overall Accuracy 

Yolo-V3+ NN+DT (Nath et al., 2020) 74.29 63.84 74.32 - 63.1 63.1 
YOLO-V3 (Nath et al., 2020) 79.81 68.12 84.96 - 72.3 72.3 
YOLO-V3+ VGG-16 +ResNet-
50+Xception (Nath et al., 2020) 

79.81 63.13  - 80.49 67.93 

Faster RCNN (Fang et al. (2018) × >90 - × - >90 
CNN 70 × 90 90 × 83.33 
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The performance of the proposed CNN approach is 
compared with Faster RCNN reported in Fang et al. 
(2018). It is observed that the Faster RCNN method 
achieves slightly better overall accuracy result than the 
CNN approach. However, the Faster RCNN approach was 
only applicable to detect when no hat was worn (Fang et 
al., 2018). 
 
4. Summary and Conclusions  
As safety is important in engineering, this work 
implemented a CNN method to carry out an image 
detection for detecting PPE equipment. This system 
incorporated a fingerprint system which authenticates 
every worker before granting access into a construction 
area. The system scans a person, and a convoluted neural 
network determines if they are wearing safety vests, boots, 
and hats. A picture of the user is taken and then analyzed 
by the model. If it sees all three PPE, access is given to a 
restricted zone by opening a lock, otherwise the lock 
remains closed. The system keeps track of who is being 
scanned by using employees' fingerprints, and a manager 
can keep a record of performance by viewing the activity 
on a website. 

A learning curve is generated showing rate of the 
learning performance when each model is trained. All 
curves start off with very high loss. As the models go 
through more epochs, they are able to recognize more 
patterns and adjust weights and biases to make better 
future predictions. This is how the models learn. The 
losses (inaccurate predictions) decrease over time, and the 
accuracies increase. 

After training, the models were used to classify some 
images they had never seen before. The models were 
tested on a total of 10 images with a mixed combination 
of PPE. The overall average accuracy recorded for this 
system in real world testing was 83.33 % when a relatively 
small dataset at a low cost was used. To improve the 
accuracy of the system, localized object detection can be 
carried out. This will focus model analysis on a specific 
area, increasing the confidence of each prediction. 
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