HEART FAILURE

Professor Lexley M Pinto Pereira
Pharmacology Unit
Faculty of Medical Sciences
UWI ST Augustine

Acknowledgements:
American Heart Association
Sociedad Española de Cardiología

Epidemiology

• More in N Europe and USA
• Increases with age esp in males > 75
• US Data
• 5,000,000 patients
• 6,500,000 hospital days / year
• 300,000 deaths / year
• 6% - 10% of people > 65 years
• 5.4% of health care budget (38 billion)
• Incidence x 2 in last ten years
• Estimated prevalence 6 mio by 2030

Definition of heart failure

Clinical syndrome that can result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood

AHA / ACC HF guidelines 2001

Clinical symptoms / signs secondary to abnormal ventricular function

ESC HF guidelines 2001

“Heart Failure” vs. “Congestive Heart Failure”

All patients may NOT have volume overload at the time of initial or subsequent evaluation. Therefore the term “heart failure” is preferred over the older term “congestive heart failure.”

CHF is a significant cause of morbidity and mortality Important cause of hospitalizations among elderly
Causes of HF

For a substantial proportion of patients, the causes of HF are:

1. Coronary artery disease
2. Hypertension
3. Dilated cardiomyopathy

And there are other causes

1. Hemodynamic overload
2. Ventricular filling abnormalities
3. Ventricular dyssynergy
4. Changes in cardiac rhythm

Symptoms of CHF

- **Due to LEFT heart failure:**
 dyspnea, orthopnea, paroxysmal nocturnal dyspnea (PND), hemoptysis
- **Due to RIGHT heart failure:**
 ankle edema, abdominal pain/ or swelling/ascites, nausea/anorexia
- **Due to low cardiac output:**
 fatigue, reduced exercise tolerance, nocturia
Signs of CHF

- Tachycardia
- Pulsus alternans
- Elevated jugular venous pressure
- Displaced apex beat
- Right ventricular heave
- Crepitations or wheeze, Rales
- Third heart sound
- Oedema
- Hepatomegaly (tender)
- Ascites
- Cachexia and muscle wasting

HF Risk Factors
- No Heart disease
- No symptoms

Stages in the evolution of Heart Failure

AHA / ACC HF guidelines 2001
Hypertension, Diabetes, Hypercholesterolemia, Family History, Life style modalities

Heart disease (any)

Asymptomatic LV dysfunction
Systolic / Diastolic

Dyspnea, Fatigue
Reduced exercise tolerance

Marked symptoms at rest despite max. therapy

AHA / ACC HF guidelines 2001

Treatment in evolutionary stages of Heart Failure

A: Treat risk factors
 Life-style changes
 ACE-I in selected p.

B: ACE-I
 β-blockers
 In selected patients

C: ACE-I
 β-blockers
 Diuretics / Digitalis

D: Palliative therapy
 Mech. Assist device
 Heart Transplant

AHA / ACC HF guidelines 2001
Treatment of CHF

Normal
Asymptomatic LV dysfunction EF <40%

Symptomatic CHF
NYHA - II
ACEI + diuretics + β-Blocker
ACEI + diuretics + β-Blocker +/- Digoxin

Symptomatic CHF
NYHA - III
ACEI + diuretics + β-Blocker

Symptomatic CHF
NYHA - IV
Inotropes + ACEI + diuretics + Digoxin + β-blocker + Spiro

Secondary prevention
Modification of physical activity

The Cardiovascular Health Study

JACC 2000;35:1628

Risk factors for CHF
- CHD
- Systolic BP>140mm Hg
- Diabetes
- ECG - LVH
- Ankle swelling (Ankle-arm index>0.9)
- ST-T segment abnormality
- Decreased LV function
- Stroke/TIA
Initial / Ongoing Evaluation

- Identify heart disease
- Assess functional capacity (NYHA, 6 min walk, …)
- Assess volume status: (edema, rales, jugular, hepatomegaly, body weight)
- Lab assessment: routine: electrolytes, renal funct. Repeat ECHO, RX only if significant changes in functional status
- Assess prognosis

<table>
<thead>
<tr>
<th>STAGE</th>
<th>DISABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS 1 MILD</td>
<td>No symptoms Can perform ordinary activities without any limitations</td>
</tr>
<tr>
<td>CLASS 2 MILD</td>
<td>Mild symptoms - occasional swelling Somewhat limited in ability to exercise or do other strenuous activities</td>
</tr>
<tr>
<td>CLASS 3 MODERATE</td>
<td>Noticeable limitations in ability to exercise or participate in mildly strenuous activities Comfortable only at rest</td>
</tr>
<tr>
<td>CLASS 4 SEVERE</td>
<td>Unable to do any physical activity without discomfort Some HF symptoms at rest</td>
</tr>
</tbody>
</table>
Prognosis

Cardiac Mortality %

Post MI n=196

Brodie B. et al Am J Cardiol 1992;69:1113

LVEF

Treatment Objectives

↑ Survival
↓ Morbidity
↑ Exercise capacity
↑ Quality of life
↓ Neurohormonal changes
↓ Progression of CHF
↓ Symptoms
Treatment

Prevention

- Control of risk factors
- Life style changes
- Treat etiologic cause / aggravating factors
- Drug therapy
- Personal care
- Team work

Recommended therapies
ACE-Inhibitors, Beta-Blockers, Diuretics and Spironolactone, Digoxin

Drugs for CCF

Heart Failure – vicious circle
(clinical aspects)
Natriuretic peptides are peptide hormones synthesized by the heart, brain and other organs and released on atrial and ventricular distension, or neurohumoral stimuli, in response to heart failure.

Atrial natriuretic peptide (ANP) is released by atrial myocytes on atrial distension, **angiotensin II** stimulation, **endothelin**, and **sympathetic** stimulation (beta-adrenoceptors).

Elevated ANP is seen in hypervolemic states and congestive heart failure. ANP is crucial in inducing vasodilation, promoting natriuresis, and perhaps also counteracting the pathological role from catecholamines, the RAAS and the arginine-vasopressin system.

Brain-type natriuretic peptide (BNP) is synthesized in the ventricles (it was first identified in the brain). It is released by the same mechanisms that release ANP, constitutively by ventricular myocytes in response to stretch receptors.

BNP binds to receptors in the vasculature, kidney, and other organs, producing potent vasodilatation with rapid onset and offset of action by increasing levels of cGMP.

Both BNP and ANP are sensitive, diagnostic markers for heart failure in patients.

Neutral endopeptidase is a circulating enzyme that degrades natriuretic peptides. Inhibition of NEP increases circulating levels of natriuretic peptide and potentiates their effects.
NP receptor-mediated elevations in vascular smooth muscle involve cGMP which attenuates sympathetic vascular tone, either within the CNS as well as by inhibiting NorEpi release by sympathetic nerve terminals. NPs are a counter-regulatory system for the RAAS.

Cardiovascular and renal effects. Natriuretic peptides (NPs) cause long-term regulation of sodium and water balance, blood volume and arterial pressure by two major pathways 1) vasodilator effects, and 2) renal effects that lead to natriuresis and diuresis.

• NPs directly dilate veins (increase venous compliance) and thus decrease central venous pressure, ventricular preload and and thereby cardiac output.
• NPs also dilate arteries, decrease systemic vascular resistance and systemic arterial pressure.
• NPs increase GFR and filtration fraction, produce natriuresis and diuresis. These effects are potassium sparing.
• NPs also decrease renin release, and hence circulating levels of AGII and aldosterone, causing further natriuresis and diuresis. Decreased angiotensin II decreases systemic vasodilation and systemic vascular resistance.
• Therefore NPs decrease blood volume, arterial pressure, central venous pressure, pulmonary capillary wedge pressure, and cardiac output.

Cardiovascular and Renal Actions of Natriuretic Peptides

- Natriuresis
- Diuresis
- Improve glomerular filtration rate & filtration fraction
- Inhibit renin release
 - ↓ circulating angiotensin II
 - ↓ circulating aldosterone
- Systemic vasodilation
- Arterial hypotension
- Reduced venous pressure
- Reduced pulmonary capillary wedge pressure

NPs reduce systemic and pulmonary vascular resistances, which indirectly increase cardiac output and diuresis. Effective in HF because they reduce preload and afterload. ADR- hypotension.
A recombinant human BNP, or NESIRITIDE, is recently approved for use in the acute treatment of decompensated congestive heart failure caused by systolic dysfunction.

A new class of drugs that are neutral endopeptidase (NEP) inhibitors have been shown to be efficacious in animal models of heart failure. By inhibiting neutral endopeptidase, the enzyme responsible for the degradation of ANP, they elevate plasma levels of ANP. NEP inhibition is particularly effective in animal models of heart failure when the drug is combined with an ACEI.

Modulating NPs

Inhibitors pf NEP

• Omapatrilat – most experience – watch for Angioedema
• Sampatrilat
• Fasidotrilat
Pharmacologic Therapy
- 4 major drugs

- Diuretics
- ACE inhibitors
- Beta Blockers
- Digitalis
 - Spironolactone
 - Other

Diuretics

Cortex

Thiazides
Inhibit active exchange of Cl-Na in the cortical diluting segment of the ascending loop of Henle

K-sparing
Inhibit reabsorption of Na in the distal convoluted and collecting tubule

Medulla

Loop diuretics
Inhibit exchange of Cl-Na-K in the thick segment of the ascending loop of Henle

Loop of Henle

Collecting tubule
Diuretics
Eliminate Na and water by acting directly on the kidney. Diuretics (loop, thiazides and potassium-sparing) produce a net loss of Na and water and decrease acute symptoms resulting from fluid retention

- Essential to control symptoms secondary to fluid retention
- Prevent further progression of HF
- Spironolactone improves survival

Diuretics. When are they indicated?
- Symptomatic HF, with fluid retention
 - Edema
 - Dyspnea
 - Lung Rales
 - Jugular distension
 - Hepatomegaly
 - Pulmonary edema (Xray)

AHA / ACC HF guidelines 2001
ESC HF guidelines 2001
Loop Diuretics / Thiazides. Practical Use

- Start with variable dose. Titrate to achieve dry weight
- Monitor serum K⁺ at “frequent intervals”
- Reduce dose when fluid retention is controlled
- Teach the patient when, how to change dose
- Combine to overcome “resistance”

Thiazides, Loop Diuretics. Adverse Effects

- ↓ K⁺, Mg⁺ (15 - 60%) (sudden death ???)
- ↓ Na⁺
- Stimulation of neurohormonal activity
- Hyperuricemia (15 - 40%)

Diuretic Resistance

- Neurohormonal activation
- Rebound Na\(^+\) uptake after volume loss
- Hypertrophy of distal nephron
- Reduced tubular secretion (renal failure, NSAIDs)
- Decreased renal perfusion (low output)
- Altered absorption of diuretic
- Noncompliance with drugs

*Brater NEJM 1998;339:387
Kramer et al. Am J Med 1999;106:90*

Managing Resistance to Diuretics

- Restrict Na\(^+\)/H\(_2\)O intake (Monitor Natremia)
- Increase dose (individual dose, frequency, i.v.)
- Combine: furosemide + thiazide / spiro
- Dopamine (increase cardiac output)
- Reduce dose of ACE-i

Motwani et al Circulation 1992;86:439
Diuretics for CCF

Reduce symptoms of volume overload by
• decreasing extra cellular volume
• decreasing venous return
• Loop diuretics like furosemide and bumetanide are the most effective and commonly used.
• Thiazides are effective in mild cases only.

Adverse effects:
• Loop diuretics and thiazides- hypokalemia.
• Potassium sparing diuretics reduce hypokalemia due to these diuretics.

Potassium Sparing Diuretics in CCF

Spironolactone:
• Aldosterone inhibition
• Minimizes potassium loss,
• Prevents sodium and water retention, endothelial dysfunction and myocardial fibrosis.

◆ Spironolactone can be added to loop diuretics - modestly enhances diuresis,
 - Corrects hypokalemia
 Improve survival.
ACE-I. Clinical Effects

- Improve symptoms
- Reduce remodelling / progression
- Reduce hospitalization
- Improve survival

ACE-i. Mechanism of Action

VASOCONSTRICTION
- Aldosterone
- Vasopressin
- Sympathetic

ANGIOTENSIN II
- Angiotensinogen
- Renin
- Angiotensin I

RENIN

ANGIOTENSIN I
- Kininogen
- Kallikrein
- tPA

PROSTAGLANDINS

VASODILATATION

BRADYKININ

Inactive Fragments

A.C.E.

Inhibitor

Kininase II
Angiotensin Converting Enzyme Inhibitors for CCF

ACE –I improve mortality, morbidity, exercise tolerance, left ventricular EF.

- Reduce arterial resistance (afterload)
- Reduce venous tension (preload)
- Reduce aldosterone secretion
- Inhibit cardiac and vascular remodeling
eg Captopril, Lisinopril, Enalapril, Ramipril, .

- Competitive Angiotensin II (AT-1) antagonists
 Losartan, Irbesartan, Candesartan
ACE-i. Practical Use

- Start with very low dose
- Increase dose if well tolerated
- Renal function & serum K+ after 1-2 w
- Avoid fluid retention
- Combine with diuretic to overcome “resistance”

ACE I Adverse Effects

Adverse effects
- Hypotension (1st dose effect)
- Worsening renal function
- Hyperkalemia
- Cough
- Angioedema
- Rash, neutropenia,

Contraindications
- Intolerance (angioedema, anuria renal fail.)
- Bilateral renal artery stenosis
- Pregnancy
- Renal insufficiency (creatinine > 3 mg/dl)
- Hyperkalemia (> 5.5 mmol/l)
- Severe hypotension
Angiotensin II Receptor Blockers (ARB)

Angiotensinogen → Angiotensin I → ACE → Angiotensin II

Other pathways

AT1 Receptor Blockers

AT1 Receptors

RENIN

Vasoconstriction → Proliferative Action → Vasodilatation → Antiproliferative Action

Beta blockers for CCF

• Acts primarily by inhibiting the sympathetic nervous system.
• Increases beta receptor sensitivity (up regulation).
• Anti-arrhythmic properties.
• Anti-oxidant properties.
• Start at low dose-monitor for bradycardia
• Carvedilol, Metoprolol are most commonly used beta blockers for CCF
Cardiac glycosides for CCF

Digoxin:
• Inhibits Na/K ATPase pump - increase intracellular sodium concentration - and increase cytosolic calcium.
• Restores vagal tone- abolishes sympathetic over activity.
• Increases refractoriness of AV node thus decrease ventricular response to atrial rate.
• A first-line drug congestion heart failure with atrial fibrillation.
Digitalis. Mechanism of Action

Blocks Na⁺ / K⁺ ATPase => Ca²⁺

- Inotropic effect
- Natriuresis
- Neurohormonal control
 - ↓ Plasma Noradrenaline
 - ↓ Peripheral nervous system activity
 - ↓ RAAS activity
 - ↑ Vagal tone
 - Normalizes arterial baroreceptors

NEJM 1988;318:358

Digoxin: Adverse effects / Precautions

- Nausea, vomiting, gynecomastia, visual disturbances and psychosis.
- Ventricular bigeminy, AV block and bradycardia.
- Amiodarone and verapamil can increase the plasma concentration of digoxin by inhibiting its excretion.

Digoxin toxicity treatment:
- Toxicity can be treated with higher than normal doses of potassium.
- Digoxin antibody (digibind, Fab) specifically treats life-threatening digoxin overdose.
Digitalis. Indications

- Inadequate response to ACE-i + diuretics + beta-blockers
 AHA / ACC Guidelines 2001
- If symptoms persist in combination with ACE-i + diuretics
 ESC Guidelines 2001
- Atrial Fibrillation (slows AV conduction)

Digoxin. Contraindications

- Digoxin toxicity
- Advanced A-V block without pacemaker
- Bradycardia or sick sinus without Pacemaker
- PV beats and VT
- Marked hypokalemia
- W-P-W with atrial fibrillation

β-Adrenergic Blockers Mechanism of action

- ↑ Density of β₁ receptors
- Inhibits cardiotoxicity of catecholamines
- ↓ Neurohormonal activation
- ↓ HR, remodelling & myocardial O₂ consumption.

- Anti-ischemic
- Antihypertensive
- Antiarrhythmic
- ‘Antioxidant, Antiproliferative’

Decrease frequency of ischemic events / potential for lethal arrhythmias.

β-Blockers may resensitize down-regulated receptor, improve myocardial contractility.

Contraindication – Unstable cardiac status
β-Adrenergic Blockers

Clinical Effects

- Improve symptoms (only long term)
- Reduce remodelling / progression
- Reduce hospitalization
- Reduce sudden death
- Improve survival

After AMI
Beta-blockers (bisoprolol, carvedilol, sustained metoprolol) and ACEIs should be used in all patients with a recent or remote history of MI regardless of EF or presence of HF.

β-Adrenergic Blockers

Adverse Effects/ Contraindications

- Hypotension
- Fluid retention / worsening heart failure
- Fatigue
- Bradycardia / heart block
- Review treatment (+/- diuretics, other drugs)
- Reduce dose
- Consider cardiac pacing
- Discontinue beta blocker in severe cases

Asthma (reactive airway disease)
AV block (unless pacemaker)
Symptomatic hypotension / Bradycardia
Diabetes is NOT a contraindication
Labetalol versus Carvedilol

- Labetalol and carvedilol both block α_1 receptors and thus have vasodilating properties.

- However, long-term treatment with labetalol may result in the loss of blockade of α_1-receptors, leaving blockade of β-receptors as the major action. This effect does not occur with carvedilol.

- Labetalol has been associated with excessive vasodilation in patients with heart failure.

- Carvedilol produces a less potent vasodilator response than does labetalol because of its modest α_1 adrenergic blocking ability.

- Additionally, unlike carvedilol, the effects of labetalol on long-term morbidity and mortality are unknown.

Aldosterone Inhibitors

Spironolactone

- Competitive antagonist of the aldosterone receptor (myocardium, arterial walls, kidney)

- **ALDOSTERONE**

 - Retention Na$^+$ → Edema
 - Retention H$_2$O
 - Excretion K$^+$ → Arrhythmias
 - Excretion Mg$^{2+}$

 - Collagen deposition
 - Fibrosis
 - myocardium
 - vessels
Spironolactone. Indications

- Recent or current symptoms despite ACE-i, diuretics, dig. and β-blockers

 AHA / ACC HF guidelines 2001

- Recommended in advanced heart failure (III-IV), in addition to ACE-i and diuretics

- Hypokalemia

 ESC HF guidelines 2001

Spironolactone. Practical use

- Do not use if hyperkalemia, renal insuf.
- Monitor serum K⁺ at “frequent intervals”
- Start ACE-i first
- Start with 25 mg / 24h
- If K⁺ >5.5 mmol/L, reduce to 25 mg / 48h
- If K⁺ is low or stable consider 50 mg / day
Other Drugs - in selected patients

- Inotropes: refractory HF
- Nitrates: ischemia, angina, pulmonary congestion
- ARB: Contraindications to ACE-i
- Antiarrhythmics: (only amiodarone) H risk arrhythm.
- Anticoagulants: High risk of embolism
- Statins: modulators of arterial resistance

Vasodilators for CCF

- Isosorbide dinitrate and hydralazine also used specially in patients who cannot tolerate ACE inhibitors.
- Amlodipine (Caution) and prazosin are other vasodilators used in CCF.
NITRATES
HEMODYNAMIC EFFECTS

1- VENOUS VASODILATATION
- Preload
 - Pulmonary congestion
 - Ventricular size
 - Vent. Wall stress
 - MVO₂

2- Coronary vasodilatation
- Myocardial perfusion

3- Arterial vasodilatation
- Afterload
 - Cardiac output
 - Blood pressure
Nitrates. Clinical Use

• CHF with myocardial ischemia
• Orthopnea and paroxysmal nocturnal dyspnea
• In acute CHF and pulmonary edema: NTG sl / iv
• Nitrates + Hydralazine in intolerance to ACE-I (hypotension, renal insufficiency)

A combination of hydralazine and a nitrate might be reasonable in patients with current or prior symptoms of HF and reduced LVEF who cannot be given an ACEI or ARB because of drug intolerance, hypotension, or renal insufficiency.

Positive Inotropic Therapy

• Phosphodiesterase III Inhibitors
 Positive inotropic & vasodilator – INO-DILATOR
 Eg., Milrinone
• Dobutamine selective β1 agonist- +ve inotropic/CO
• Dopamine Non-selective β1 agonist – preserves RBF
• May increase mortality
 Exception: Digoxin, Levosimendan
• Use only in refractory CHF
• NOT for use as chronic therapy
Drugs to Avoid (may increase symptoms, mortality)
- Inotropes, long term / intermittent
- Antiarrhythmics (except amiodarone)
- Calcium antagonists (except amlodipine)
- Non-steroidal antiinflammatory drugs (NSAIDS)
- Tricyclic antidepressants
- Corticosteroids
- Lithium

ESC HF guidelines 2001

Drugs for CCF

Conclusion :
- ACE inhibitors are cornerstone in the treatment of CCF.
- Beta blockers are used in selected patients (mild/moderate failure, low dose)
- Diuretics and digoxin are other drugs useful in CCF in select patients.