Principal Officers of
The University of the West Indies

CHANCELLOR
The Hon. Sir George Alleyne
OCC, MD, FRCP, FACP, (Hon), Hon DSc UWI

VICE-CHANCELLOR
Prof. The Hon. E. Nigel Harris
BA Howard, MPhil Yale, MD UPenn, DM UWI

CHAIRMEN, CAMPUS COUNCILS
Sir Neville Nicholls – Cave Hill
KA, BA Cantab, LLB Lond, Dip in Diplomacy Col, Hon. LLD UWI

The Hon. Don Brice – Mona
OJ CD, BA Lond-UCWI

Mr. Michael Mansoor – St. Augustine
CA, MBA W. Ont

CAMPUS PRINCIPALS & PRO-VICE CHANCELLORS
Prof. Hilary McDonald Beckles – Cave Hill
BA, PhD Hull

Prof. Kenneth O. Hall – Mona
BA UWI, Dip International Relations
UWI, MA, PhD Qu

Dr. Bhoendradatt Tewarie – St. Augustine
BA Northwestern, MA Chicago, PhD Penn

PRO-VICE CHANCELLORS
Prof. Elsa Leo-Rhynie
BSc, Dip Ed, PhD UWI

Prof. Lawrence Carrington
BA Lond-UCWI, PhD UWI

Prof. Marlene Hamilton
BSc, MA Ed, PhD, Dip Ed, HDip Ed UWI

Prof. Wayne Hunte
BSc UWI, PhD UWI,
Postdoctoral Fellow Dalhousie, Canada

Prof. Errol Y. St. A. Morrison
MD Malta, M.Sc. Lond, PhD UWI, FRCPPGLas, FACP

DEPUTY CAMPUS PRINCIPALS
Prof. Christine Barrow – Cave Hill
BA, DPhil, PGCE Sus

Mr. Joseph Pereira – Mona
BA, Dip Ed UWI, MA Qu

Prof. Gurmohan Kochhar – St. Augustine
BE Baroda, MS Wis, PhD UWI, MASHRAE, FAPE, MASME

UNIVERSITY REGISTRAR
Mrs. Gloria Barrett-Sobers
BA Lond-UCWI, MA Ed Columbia, MBA Miami

DEPUTY UNIVERSITY REGISTRAR
Ms. Joy Pilgrim
BA, Cert Management Studies UWI

UNIVERSITY BURSAR
Mr. Winston H. Bayley
BSc Lond-UCWI, FCCA

UNIVERSITY LIBRARIAN
Dr. Margaret Rouse-Jones
BA, MA, PhD, Dip Library & Information Studies

PRINCIPAL OFFICERS OF THE
ST. AUGUSTINE CAMPUS

CAMPUS PRINCIPAL
Dr. Bhoendradatt Tewarie
BA Northwestern, MA Chicago, PhD Penn

DEPUTY CAMPUS PRINCIPAL
Prof. Gurmohan Kochhar
BE, MS, PhD, MASHRAE, FAPE, MASME

DEPUTY CAMPUS REGISTRAR
Mr. David Moses
BSc, UWI, MS Wayne State, MBA USheffield, CDip AF, ACIS

CAMPUS BURSAR
Mrs. Lylla Rose Bada
BA (Economics & Accounting) Bristol, ACPA, CA (T&T)

CAMPUS LIBRARIAN
Dr. Margaret Rouse-Jones
BA, MA, PhD, Dip Library & Information Studies
MISSION STATEMENT

The Mission of the Faculty of Engineering is to be the provider of a world quality education in Engineering, Geoinformatics and Geosciences and research and development programmes in support of Caribbean business, industry and infrastructure, with its graduates, staff and facilities being at the forefront in propelling growth, development and innovation in the region.
THE DEAN’S WELCOME ADDRESS

On behalf of the Faculty, let me extend to all new and returning Undergraduate students, a warm welcome to the Faculty for the new Academic Year 2004/2005.

To the new BSc students in particular, I understand the excitement at this time as you embark, many for the first time, into the various disciplines of Engineering, and also to Surveying & Land Information and the Geosciences. I sincerely hope that the excitement of today is kept up throughout your course of study and that despite the challenges ahead, your yearning for a solid education in Engineering or Surveying & Land Information or in the Geosciences continues to grow.

The Faculty of Engineering at The University of the West Indies has developed a proud tradition for delivering a quality Undergraduate programme of international repute. Our BSc (Hons) Undergraduate Engineering programmes have all been internationally accredited or are being reaccredited by the Professional Engineering Bodies of the United Kingdom - The Institution of Mechanical Engineers (IMechE), The Institution of Electrical Engineers (IEE), the Institution of Chemical Engineers (IChemE) and the Joint Board of Moderators (JBM). This accreditation leads to a pathway for any of our graduate Engineers wanting to become Chartered Engineers (CEng) - a globally, distinctive brand of professional Engineers. Our Surveying & Land Information Programme is accredited by the Royal Institution of Chartered Surveyors (RICS) of the United Kingdom. Our new Petroleum Geoscience programme was internationally accredited by the Geological Society of London and our graduates can eventually seek to register as Chartered Geologists (CGeoI). Additionally, our graduates are well accepted regionally and have been leading the Engineering profession in the Caribbean for nearly 40 years.

My vision is for you to have an education in the Faculty which can allow you to practise your profession globally. As your Dean, I am therefore committed to enhancing our standards to meet national, regional and global benchmarks. The Faculty is currently engaged in a process of revisiting our Undergraduate programmes with a view to adding greater depth, breadth and industry readiness. The International Accreditation review processes have been pressing us in these directions. There are new, rising international standards expected of an Engineering, university education. The Faculty is preparing to meet these standards and you will be advised accordingly.

The Faculty, working with the Trinidad & Tobago Institute of Technology (TTIT) of the NESC, launched the Bachelor of Applied Technology (BTech) programmes in Mechanical and Electrical Engineering two years ago. These programmes will provide an additional opportunity for students from Trinidad & Tobago, as well as the wider Caribbean for technology training certified by The University of the West Indies. I also welcome those TTIT students who have enrolled in our BTech programmes.

A UWI education must prepare you to become a self-starter in the world of work, to be critical and creative thinkers and problem-solvers, to have a yearning for continuous learning and to develop embracing values of honesty, integrity, trust, etc. Through our combined efforts, we can build better Caribbean societies. In today’s world, one cannot be complacent about quality. Your efforts, and particularly the time and devotion dedicated to your studies and assignments are paramount in our efforts to develop your engineering potential. Use this opportunity to also build new friendships, particularly with other West Indian students, as such relationships will be of lifelong value in an era of complexity and competition, where regional and global partnerships are important for progress. At the end of your Undergraduate studies, I would like you to think that the years spent at the St. Augustine Campus were your best years. I certainly did.

I look forward to seeing you over the next few years. The Heads of Departments, the Deputy Deans, the Dean and your Tutors and Lecturers are going to be important persons in supporting your studies in the Faculty. Get to know them!

I wish you all the very best and every success.

Clement K. Sankat, FIAgrE, CEng.
Professor and Dean, Faculty of Engineering
CONTENTS

Principal Officers of The University of the West Indies .. 1
Mission Statement ... 2
The Dean’s Welcome Address ... 3
Office of the Dean ... 5
An Historical Note ... 6
General Information .. 8
Undergraduate Regulations .. 12
Grade Point Average Regulations ... 17
Department of Chemical Engineering .. 20
 Academic staff .. 22
 Schedule of Courses ... 24
 Syllabus .. 28
Department of Civil & Environmental Engineering ... 40
 Academic staff .. 41
 Schedule of Courses ... 43
 Syllabus .. 45
Department of Electrical & Computer Engineering .. 50
 Academic staff .. 51
 Schedule of Courses ... 52
 Syllabus .. 54
Department of Mechanical & Manufacturing Engineering .. 60
 Academic staff .. 61
 Schedule of Courses ... 63
 Syllabus .. 68
Department of Surveying & Land Information ... 76
 Academic staff .. 77
 Schedule of Courses ... 78
 Syllabus .. 80
Other Courses .. 84
Rules for Readers (Main Library) ... 87
Calendar .. 90
OFFICE OF THE DEAN

Dean
Professor Clement K. Sankat

Deputy Deans

Undergraduate Student Affairs
Dr. Stephan Gift

Research & Postgraduate Student Affairs
Professor Winston Mellowes

Physical Facilities & Administrative, Technical and Service Staff
Dr. Clément Imbert

Distance Education & Outreach
Professor Winston Suite

Senior Administrative Officer
Mrs. Annette Campbell

Administrative Assistants
Ms. Melissa Dattoo (Research & Postgraduate Student Matters)
Mr. Carlyle Maitland
Mrs. Carol Sergeant

Secretary to Dean
Mrs. Margaret Richards

Secretary to Deputy Deans
Mrs. Cindy Lakhan-Hardyal
AN HISTORICAL NOTE

The University of the West Indies was founded in 1948 at Mona, Jamaica as a College in special relationship with the University of London, to serve the British territories in the Caribbean area. It achieved full University status by Royal Charter in 1962, thereby becoming a degree-granting institution in its own right.

A second campus of the University was established in 1960 when the Imperial College of Tropical Agriculture (ICTA) at St. Augustine, Trinidad was incorporated into the University College. On August 25, 1959, a Plan of Operation was signed which provided for a United Nations Special Fund allocation and a Government counterpart contribution for the establishment of a Faculty of Engineering. The then Vice-Chancellor and Principal of the University College, Nobel Laureate Sir Arthur Lewis had the overall responsibility of securing funding for the financing of the Engineering buildings and for expediting the final decision to locate the Faculty of Engineering at St. Augustine.

The initial layout comprised five (5) blocks with a total of 5,400 square metres of floor space of which the laboratories occupied 3,030 square metres.

Construction commenced in 1961 and was completed by the end of 1962. During the 1961/62 Academic year (the first year of teaching), the Faculty was housed in temporary accommodation on the campus. The formal opening of the new buildings of the Faculty took place on February 1, 1963.
Initially, undergraduate and graduate research degrees were offered in the main branches of Engineering - Chemical, Civil, Electrical and Mechanical. The Faculty steadily grew over the years with a major expansion of both physical infrastructure and academic programmes in the 1980s with additional disciplines at the BSc level and several specialist MSc degrees. Floor space now occupies close to 50,000 square metres of classrooms, laboratories and offices, with expansion continuing almost on a yearly basis.

The semester system was introduced on a phased basis in 1990 at the undergraduate level, followed by the MSc programmes at a later date.

From a modest beginning of 28 students in the Academic year 1961/62, the Faculty has produced, up to Academic year 2003/2004, 5604 graduates in fields of Chemical (818), Civil (1,193), Electrical and Computer (1,511), Mechanical (1,393), Industrial (325), Agricultural (79), Biosystems (8), Petroleum (48) and Surveying & Land Information (218). In 2001/2002, the Faculty introduced its BSc (Hons) programme in Petroleum Geoscience, graduating 13 students in 2003/2004.

The Faculty of Engineering continues to dedicate its considerable resources towards the pursuit of excellence in teaching, research and community service.
GENERAL INFORMATION

Programmes of Study

The Faculty offers programmes of study leading to the degrees of BSc, MSc, MPhil and PhD in Agricultural and Biosystems, Chemical & Process, Civil, Electrical & Computer, Industrial, Mechanical, Petroleum Engineering, Petroleum Geoscience, and Surveying & Land Information. The admission requirements of the undergraduate programmes of study are detailed in the Regulations for Undergraduate Programmes.

The BSc programmes are divided into Levels 1, 2 and 3 and are conducted over three (3) academic years of two (2) semesters each. These programmes are accredited by the respective British Professional Engineering Institutions.

A Cooperative Programme (COOP) was introduced in 1994. In the COOP, students who have completed Levels 1 and 2 of their respective BSc degree programmes, may spend a full year in industry undergoing supervised practical engineering training. After completion of this training, they return to Level 3 of their programme.

Specialised Branches of Engineering

(Undergraduate Programmes)

There are many specialised branches of Engineering, four of which may be regarded as the most important and universally known. These four branches which are well established in the Faculty are as follows:

- Chemical Engineering
- Civil Engineering
- Electrical & Computer Engineering
- Mechanical Engineering

Other disciplines which were subsequently offered in the Faculty starting at the Undergraduate level are as follows:

- Biosystems (Agricultural) Engineering
- Industrial Engineering
- Petroleum Geoscience
 and
- Surveying & Land Information
Specialised Branches of Engineering

(Graduate Programmes)
In addition to those specialities offered at the Undergraduate level, certain taught programmes (MSc) are also catered for at the Graduate level. These are as follows:

- Construction Engineering & Management
- Construction Management
- Communication Systems
- Digital Systems
- Energy Systems
- Environmental Engineering
- Engineering Management
- Food Technology
- Geoinformatics
- Land Administration
- Petroleum Engineering
- Petroleum Engineering & Management
- Petroleum Management
- Planning & Development
- Production Engineering & Management
- Production Management
- Project Management

Further details of these programmes can be obtained from the Faculty of Engineering Graduate Studies Booklet.

Prizes
Prizes are awarded for excellent performance at Levels 1, 2 and 3 as well as in other specified areas.

Chemical Engineering

Petrotrin Prize ($1,000)
To the best student in Level 1 Chemical & Process Engineering.

Schlumberger Prize (US$1,000)
To the best all-round student currently in Level 2 Petroleum Geoscience.

Petrotrin Prize ($1,000)
To the best student in Level 2 Chemical & Process Engineering.

Petrotrin Prize ($1,000)
To the student producing the best Chemical & Process Engineering Design Project.

NP Prize ($1,000)
To the student producing the best Chemical & Process Engineering Research Project.

National Agro-Chemicals Ltd. Prize ($1,000)
To the student obtaining the highest mark in the Principles of Food Processing course in the Faculty of Engineering.

EOG Resources Prize ($2,500)
To the best student in Level 3 who did the Natural Gas Engineering and/or Petroleum Engineering option.

GSTT Prize ($1,000)
To the student with the best academic performance and continuing in Level 2 Petroleum Geoscience.

GSTT Prize ($1,000)
To the student with the best academic performance and continuing in Level 3 Petroleum Geoscience.

Schlumberger Prize (US$500)
To the best all-round student currently in Level 3 Petroleum Geoscience.

Civil & Environmental Engineering

Bill Massiah/ Percy Phillips Memorial Prize ($500)
To the best student in Level 1 Civil Engineering.

Bill Massiah/ Percy Phillips Memorial Prize ($500)
To the best student in Theory of Structures including Design Coursework at Level 2 Civil Engineering.

Bill Massiah/ Percy Phillips Memorial Prize ($1,100)
To the best student who is a National of Trinidad & Tobago in Level 2 and not on scholarship.

Bill Massiah/ Percy Phillips Memorial Prize ($500)
To the best student in Level 3 Structural Analysis and Design Courses including coursework.
Yorke Structures Prize ($1,000)
To the best student in Level 2 Civil Engineering.

David Key Prize ($2,000)
To the best student in Level 3 Civil Engineering.

Association of Professional Engineers of Trinidad & Tobago Prize ($600)
To the student producing the best Civil Engineering Design Project.

B.G. Singh Prize ($500)
To the Level 3 Civil Engineering student obtaining the highest mark in Coursework including Design, over the three-year period.

Airports Authority of Trinidad & Tobago Prize ($500)
To the student obtaining the highest Level 3 mark in Transportation Engineering.

H.O. Phelps Prize ($1,000)
To the student obtaining the highest aggregate mark for the two courses in Environmental Engineering.

Desmond Imbert Prize ($1,000)
To the student obtaining the highest mark in the Level 3 course in Civil Engineering Management.

Samuel Naranjit Memorial Prize ($3,000)
To the student obtaining the highest aggregate mark in the Water Resources group of courses.

Lauriston Lewis Memorial Prize ($2,500)
To the best Level 3 Project in the area of Geotechnics.

Thomas Chanona Prize ($1,000)
To the Level 2 student who has the most improved overall performance over his/her First Year.

Electrical & Computer Engineering

Charles R. Massy Book Prize (worth $500)
To the best student in Level 1 Electrical & Computer Engineering.

Charles R. Massy Book Prize (worth $500)
To the best student in Level 3 Electrical & Computer Engineering.

Association of Professional Engineers of Trinidad & Tobago Prize ($600)
To the student producing the best Electrical & Computer Engineering Laboratory Project.

Illuminat Trinidad & Tobago Ltd. Prize ($500)
To the best Level 3 student in Electronics and Communications including Coursework.

Raytheon Canada Prize ($1,000)
To the best Level 3 student doing the Computer Option in Electrical & Computer Engineering.

Trinidad & Tobago Electricity Commission Prize ($1,000)
To the student producing the highest mark in Industrial and Commercial Electrical Systems.

Trinidad & Tobago Electricity Commission Prize ($1,000)
To the student producing the best Level 3 Special Project in Energy Systems.

Telecommunications Services of Trinidad & Tobago Ltd. (TSTT) Prize ($1,500)
To the student with the most innovative Level 3 Special Project.
Association of Professional Engineers of Trinidad & Tobago Prize ($600)
To the student producing the best Mechanical Engineering Special Project.

Damus Ltd. Prize ($1,000)
To the best student in Level 3 Industrial Engineering.

Faculty Prize ($500)
To the best student who has completed Level 3 in Biosystems Engineering Minor.

Powergen Prize ($1,000)
To the student obtaining the highest mark in the course Power Plant Engineering Course.

Powergen Prize ($1,000)
To the student obtaining the highest mark in the course Energy Engineering.

Alvin Daniell Prize ($500)
To the best student in Level 1 Industrial Engineering.

Faculty Prize ($500)
To the best student in Level 2 Industrial Engineering.

Powergen Prize ($1,000)
To the student obtaining the highest mark in the Energy Engineering Course.

Special Prizes

Telecommunications Services of Trinidad & Tobago Ltd. (TSTT) Prize ($1,000)
To the most outstanding Level 1 student.

Yorke Structures Prize ($1,000)
To the most outstanding Level 2 student.

Charles R. Massy Prize ($1,000)
To the most outstanding Level 3 student.

EOG Resources (Trinidad) Ltd. Prize ($2,500)
To the most outstanding Level 2 student.

Ministry of Energy Prize ($5,100)
To the most outstanding Level 3 student.

British Gas Trinidad & Tobago Ltd. Prize ($5,000)
To the graduating student with the best weighted average.

Engineering Students’ Society (ESS) Prize ($500)
To the student who must have made a significant contribution to the ESS.

Hamid Farabi Prize ($1,000)
To the Level 2 student going into Level 3 who has done significant community-oriented social work (excluding sports).

PCS Nitrogen Trinidad Ltd. Prize ($5,000)
To the best student in Level 2 who is a National of Trinidad & Tobago.

NP Prize ($2,500)
To the student producing the best Level 3 Special Project in the area of Environmental Engineering.

Institute of Surveyors of Trinidad & Tobago Prize ($500)
To the Level 3 student producing the best Special Project in Surveying & Land Information.

Bill Barnes Memorial Prize (£120)
To the Level 3 student showing significant ability in professional studies and also in some form of sporting activity.

Surveying & Land Information

Faculty Prize ($500)
To the best student in Level 1 Surveying & Land Information.

Faculty Prize ($500)
To the best student in Level 2 Surveying & Land Information.

Faculty Prize ($500)
To the best student in Level 3 Surveying & Land Information.

Institute of Surveyors of Trinidad & Tobago Prize ($500)
To the Level 1 student producing the best Project in Surveying & Land Information.

Institute of Surveyors of Trinidad & Tobago Prize ($500)
To the Level 2 student producing the best Project in Surveying & Land Information.
UNDERGRADUATE REGULATIONS

THE DEGREE OF BACHELOR OF SCIENCE (ENGINEERING)

BACHELOR OF SCIENCE (PETROLEUM GEOSCIENCE)

BACHELOR OF SCIENCE (SURVEYING & LAND INFORMATION)

1. (a) The Degree of Bachelor of Science (Engineering) (BSc (Eng)) is obtainable in the branches:
 (i) Chemical & Process Engineering
 (ii) Civil Engineering
 (iii) Civil Engineering with Environmental Engineering
 (iv) Electrical & Computer Engineering
 (v) Industrial Engineering
 (vi) Mechanical Engineering
 (vii) Mechanical Engineering with a Minor in Biosystems Engineering

 Degrees may be awarded in each discipline with First Class Honours, Second Class Honours (Upper or Lower Division), Third Class Honours or Pass.

(b) The Degree of Bachelor of Science is obtainable in Petroleum Geoscience. Degrees may be awarded with First Class Honours, Second Class Honours (Upper or Lower Division), Third Class Honours or Pass.

(c) The Degree of Bachelor of Science is obtainable in Surveying & Land Information. Degrees may be awarded with First Class Honours, Second Class Honours (Upper or Lower Division), Third Class Honours or Pass.

QUALIFICATIONS FOR ADMISSION

2. Before a student can be registered for a Degree programme in the Faculty of Engineering, he/she must:
 (a) Have satisfied the University Matriculation Requirements for entry to a Degree programme (see Matriculation Requirements), and

 (b) Either:
 (i) have included among his/her qualifications, passes at the required levels in accordance with the Course Requirements in Regulation 3

 Or:
 (ii) have obtained passes in Natural Sciences at this University* in the subjects:

* Pure and Applied Mathematics, Physics (and Chemistry for those applying for Chemical & Process Engineering) at the Preliminary examinations, or in Mathematics and Physics (and Chemistry for those applying for Chemical & Process Engineering) at the Introductory examinations.
3. Students who wish to pursue programmes of study in the following branches are normally required to have for:

(a) Civil, Electrical & Computer, Industrial and Mechanical Engineering:
 * GCE ‘Advanced’ Level passes in Pure Mathematics or Mathematics (Pure and Applied) and
 * ‘Advanced’ Level in Physics and
 * ‘Ordinary’ Level in Chemistry.

(b) Chemical & Process Engineering:
 * GCE ‘Advanced’ Level passes in Pure Mathematics or Mathematics (Pure and Applied);
 * ‘Advanced’ Level in Physics and in Chemistry.

(c) Petroleum Geoscience:
 * GCE ‘Advanced’ Level passes in Mathematics (Grades A or B);
 * ‘Advanced’ Level in Physics or Chemistry and
 * One other science subject.

(d) Surveying & Land Information:
 * GCE ‘Advanced’ Level passes in Pure Mathematics or Mathematics (Pure and Applied);
 ‘Advanced’ Level in either Physics, Chemistry, Physical Science, Technical Drawing, Engineering Science, Geography, Economics or other relevant subject; and ‘Ordinary’ Level in Physics, where ‘Advanced’ Level in Physics is not attained.

(e) The Faculty will consider for admission:
 Applicants wishing to read Civil, Industrial and Mechanical Engineering who do not have an ‘Advanced’ Level pass in Physics but who have ‘Ordinary’ Level Physics from an ‘Advanced’ Level Examination and at least a Grade ‘B’ average in ‘Advanced’ Level passes in Mathematics (Pure and Applied) or Pure Mathematics and in one other relevant subject such as Chemistry, Physical Science, Technical Drawing or Engineering Science. Applicants wishing to read Chemical & Process Engineering who do not have an ‘Advanced’ Level pass in Physics but who have ‘Ordinary’ level Physics from an ‘Advanced’ Level Examination and at least a Grade ‘B’ average in ‘Advanced’ Level passes in Mathematics (Pure and Applied), or Pure Mathematics, and in Chemistry.

(f) The Faculty will also consider for admission:
 Applicants with equivalent qualifications to 3(a), (b), (c) and (d) from Community Colleges and Technical Schools.

PROGRAMMES OF STUDY

4. A student for the Degree of BSc (Eng), BSc (Surveying & Land Information) or BSc (Petroleum Geoscience) must:

(a) Pursue the curriculum and obtain, within a maximum of 14 semesters, the credits as prescribed in the Schedule except as otherwise provided in Regulations 5 and 23.

(b) Normally pass prerequisites for courses before being allowed to register for those courses.

(c) In any semester, pursue courses worth not less than nine (9) credits except where prerequisites, the timetable and/or the number of courses required for completion of the Degree programme dictate otherwise.

(d) Register in accordance with the number of courses and credits set out in the schedule and must first include all outstanding lower level courses.

(e) Not take more than the normal number of credits as defined in the Schedule for a particular semester unless a single course is being trailed and a minimum average mark of 50% or a GPA of at least 2.0 has been achieved in the Year or Level preceding that semester.

(f) Complete the programme as prescribed in the Schedule in not less than three (3) academic years except as otherwise provided in Regulation 5.

(g) Students requiring up to seven (7) credits to graduate may request permission to write examinations without attending classes provided the examinations are in courses, which are being repeated by the students.
EXEMPTIONS
5. A student who has satisfactorily completed courses outside of the Faculty may be granted up to a maximum of 36 credits towards the fulfilment of Level 1 and Level 2 requirements provided that not less than four (4) semesters of study for the degree in the Faculty are pursued.

6. The course of study and examinations qualifying for such exemption will be subject to the approval of the Board for Undergraduate Studies on the recommendation of the Faculty Board.

SCHEME OF EXAMINATION
7. (a) The examinations shall be conducted by written papers, coursework and or project(s).

(b) A candidate may also be orally examined.

8.* A student who fails to obtain a minimum of ten (10) credits in any academic year shall be required to withdraw from the Faculty** except for:

(a) Students attempting Level 1 for the first time when the required minimum shall be eight (8) credits, and

(b) Students requiring nine (9) or less credits to graduate.

9. A student failing course examinations with a mark of 30% or more shall be granted the opportunity to be orally examined in those courses, up to a maximum of nine (9) credits per semester. The total mark obtainable in a course by this means shall not exceed 40%.

10. A candidate who fails to be present at a written examination and does not submit an acceptable medical certificate for his/her absence, as prescribed in the University Examination Regulations, shall be treated as having failed that examination. If the candidate submits an acceptable medical certificate, he/she will be permitted to write the examination at a later date, without penalty.

11. (a) Except where Regulation 8 applies, a student failing a course is allowed to repeat the course and examination subject normally to a limit of only one (1) repeat of any Level 1 course.

(b) Where a student fails the course examination(s) in no more than two (2) Level 1 courses after two attempts, he/she will be permitted after consultation with the Head of Department to register for a reduced course load which must include the failed courses.

(c) Where a student fails the course examination(s) in more than two (2) Level 1 courses, after two attempts, he/she will be required to withdraw.

COURSEWORK
12. Coursework shall comprise laboratory, drawing and field exercises, literature surveys, problem exercises, in-house tests, or such other assignments as Faculty Board may approve. There are two types of coursework (see Regulation 14):

(a) Coursework which is graded and must be passed but is not taken into account in determining the mark attained in a course.

(b) Coursework which is graded and taken into account in determining the mark attained in the course.

13. A student who is absent from written coursework tests for certified medical reasons, as prescribed in the University Regulations, shall be graded on the tests he/she has taken as if such tests constitute the full test requirement provided that the tests not taken constitute no more than 20% of the total mark for all the tests. If the tests not taken constitute more than 20% of the total mark for all the tests, the candidate shall have to take make-up tests at a later date.

*For students with year of entry 2003/2004 and beyond, Regulation 8 is replaced by GPA Regulation 8

**University requirements are that:
1. “Students required to withdraw from the University for failing to complete their degree programme (Part I or Part II etc.) within the stipulated period or for poor performance as provided for in the Faculty Regulations, may be re-admitted to the Faculty after at least one (1) year has elapsed since their withdrawal.”

2. “Students from one Faculty who had been required to withdraw from the University for failing to complete their degree programme within the stipulated period may be admitted to another Faculty after a period of one year has elapsed since their withdrawal.”
14. (a) Students who fail the examination in any course, but pass the coursework which does not count towards the final mark in that course, need not resubmit that coursework for examination.

(b) Students are required to submit coursework by the prescribed date. Coursework will only be accepted after the deadline with the specific written authority of the Head of Department in extenuating circumstances and in any event, not later than the day before the start of the relevant end of semester examinations of the semester in which the particular course is being offered.

(c) In a course with coursework which, although graded, is not taken into account in determining the mark attained in the course, a candidate will not be accredited with a pass in the course, unless he/she achieves a passing grade in the coursework.

(d) Students who fail a course because of a failure in coursework which does not count toward the final mark shall be required to repeat and pass the coursework before being credited with a pass in the relevant course.

SCHEDULE OF COURSES
15. The programme is ordered by Level in the nine (9) disciplines:

(i) Chemical & Process Engineering
(ii) Civil Engineering
(iii) Civil Engineering with Environmental Engineering
(iv) Electrical & Computer Engineering
(v) Industrial Engineering
(vi) Mechanical Engineering
(vii) Mechanical Engineering with a Minor in Biosystems Engineering
(viii) Petroleum Geoscience
(ix) Surveying & Land Information

For each Level, the Schedule is separated by semester. For each course, the following information is given:

Course code:
Note that a digit as the last character indicates a year-long course that continues over two (2) semesters.

Course name:
(i) Prerequisites, if any, follow the course name in round brackets ()
(ii) Co-requisites, if any, follow the course name in square brackets []

NOTICE OF EXAMINATIONS
16. Examinations involving written papers will take place each year on dates posted on official notice boards within the minimum time prescribed by the University Regulations.

AEGROAT DEGREES
17. A student who has obtained at least three-quarters of the credits required for a Bachelor’s Degree but has been unable through illness to complete the programme may apply under the University Regulations for the award of an Aegrotat Degree.

18. An Aegrotat Degree will not be awarded unless the Board of Examiners considers that, in the courses which he/she has completed, the student has reached a standard which, if also reached in the remainder of the programme, would have qualified him/her for the award of a Degree.

19. An Aegrotat Degree will be awarded without class.

20. Holders of an Aegrotat Degree are not permitted to re-enter for the same Degree programme but may proceed to a second or higher degree on complying with the Regulations for such Degrees.

CLASSIFICATION OF DEGREE
21. The award of the degree BSc (Eng), BSc (Surveying & Land Information) and BSc (Petroleum Geoscience) shall be published in a separate Pass List for each branch of the Degree in which the names of the successful students shall be arranged alphabetically as follows:

(a) First Class Honours
(b) Second Class Honours:
 (i) Upper Division
 (ii) Lower Division
(c) Third Class Honours
(d) Pass
22. (a)* The class of the Degree shall be determined on the results of first attempts at all prescribed course examinations. A weighted average shall be computed using as weighting factors:

For each Level 1 course:
\[1 \times \text{No. of Credits}\]

For each Level 2 course:
\[3 \times \text{No. of Credits}\]

For each Level 3 course:
\[6 \times \text{No. of Credits} \text{ (excluding 6 credit Level 3 projects)}\]

Note: Level 3 compulsory 6 credit special, design, or research projects shall account for 20% of the total weighted average.

Courses for which credit and exemption have been given on the basis of qualifications obtained outside the Faculty/University shall not be taken into account in this calculation, except where the prescribed Schedule of courses allows for a student to take a course outside of the Faculty of Engineering for credit.

(b)* First Class Honours, Second Class Honours (Upper Division), Second Class Honours (Lower Division) or Third Class Honours shall be awarded on the basis of final weighted average mark of 70.0%, 60.0%, 50.0% or 40.0% respectively.

(c) Where a student completes the Degree in more than eight (8) semesters, he/she shall not normally be eligible for Honours. Students who have been granted permission to write examinations without attending classes in up to two (2) courses, or who require up to seven (7) credits in one (1) semester to graduate shall have this period counted as one-half (1/2) of a semester.

(d) For the BSc Programmes in Industrial Engineering, Mechanical Engineering and Mechanical Engineering with a Minor in Biosystems Engineering, the following shall apply:

A candidate, who fails any Level 3 course, including the Industrial Engineering Project or Mechanical Engineering Project, at the first attempt, shall not be eligible for the award of Honours.

(e) A student who does not satisfy the requirements for the award of Honours, but who otherwise meets the requirements for the award of a degree in accordance with the Faculty’s regulations, shall be awarded a Pass Degree.

23. (a) Where a student takes all the course examinations as prescribed in the Schedule but fails a single course examination equivalent to a maximum of four (4) credits, with a minimum mark of 30%, the Degree shall be awarded in accordance with Regulation 22(b).

(b) Where a student takes all the course examinations as prescribed in the Schedule but fails two course examinations equivalent to a maximum of seven (7) credits, with a minimum mark of 30% in each of those two (2) examinations, the Degree shall be awarded but with a classification one level lower than it would otherwise be awarded in accordance with Regulation 22(b). If the student chooses not to accept the lower classification, he/she shall be required to pass at least one of the two course examinations before the Degree can be awarded. In the case of a candidate who would be awarded a Pass Degree in the first instance, the classification shall not be affected.

(c) The choice of the particular course examination(s) for which failure may be allowed in accordance with (a) and (b) above shall be determined by the Department concerned.

* For students with year of entry 2003-2004 to the Faculty, GPA Regulations 2, 3 and 4 will apply.
GRADE POINT AVERAGE REGULATIONS

1. (i) For purposes of these regulations, the following meanings shall apply, except where the context otherwise requires:

Credit Hours Earned

“Credit Hours Earned” means the credits for each course that counted toward the degree requirement and for which a passing grade is obtained.

Quality Hours

“Quality Hours” mean the credits for each course that is included in the GPA calculations. Quality hours shall be assigned even when a grade of F is obtained in a course. Courses that are not used in the determination of the GPA shall be assigned zero quality hours.

Quality Points:

“Quality Points” means the numerical value assigned to the relevant letter grade earned.

(ii) For the purpose of these Regulations:

(a) Level 1, 2 and 3 Courses

Level 1, 2 and 3 Courses are courses so designated by the Board for Undergraduate Studies.

(b) Grade Points

Grade points are determined by multiplying the quality hours by the quality points for a course.

(c) Grade Point Average (GPA)

Grade Point Average is the average obtained by dividing the total grade points earned by the total quality of hours for which the student has registered for any total quality of hours for which the student has registered for any stated period of time, excluding courses taken on a pass/fail basis, audited courses, courses taken for preliminary credit and courses for which the designation I or IP is awarded under Regulations 6 (iv).

(d) Weighted Grade Point Average

Weighted Grade Point Average is the average determined by applying appropriate weights for Level 1, 2 and 3 courses to the grade points and the quality hours used in determining grade point average as set out at Regulations 1 (ii) (c) above.

(e) Credit Hours

The credit values for courses, as well as for projects, laboratory sessions, foreign language classes or other contact hours, shall be determined by the Faculty Board and approved by the Board for Undergraduate Studies.

(iii) Pass/ Fail Course Provision

Credit hours earned in courses taken on a Pass-Fail basis shall not be included in calculating grade point averages.

2. (i) The class of degree shall be awarded on the basis of the Weighted GPA as set out in these Regulations.

Weighted Grade Point Average

(ii) Weighted Grade Point Average is the average determined by applying the appropriate weights of 10%, 30% and 60% for Levels 1, 2 and 3 courses (except the Final Year Project) respectively to the grade points and the quality hours used in determining grade point average as set out at 1.

(iii) Except for the purpose of determining the class of degree, the term GPA in these Regulations shall mean the GPA as defined at Regulation 1 (ii) (c) above.

3. (i) First Degrees awarded by the University for the Bachelor of Science (Engineering) shall be classified as follows:

First Class Honours
(Weighted GPA 3.6 and above)

Upper Second Class Honours
(Weighted GPA 3.00 - 3.59)
Lower Second Class Honours
(Weighted GPA 2.99 - 2.59)

Third Class Honours
(Weighted GPA 1.50 - 1.99)

Pass
(Weighted GPA 1.00 - 1.49)

4. (i) The letter grades for completed courses used in the calculation of GPA shall be the following:

A - four quality points
B - three quality points
C - two quality points
D - one quality point
E - no quality points

(ii) Plus and minus modifiers may be used with letter grades A through D.

(iii) In the determination of GPA, the range of marks, the defined grades with the corresponding quality points shall be:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
<th>Quality Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>80 - 100</td>
<td>4.3</td>
</tr>
<tr>
<td>A</td>
<td>70 - 79</td>
<td>4.0</td>
</tr>
<tr>
<td>A-</td>
<td>67 - 69</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>63 - 66</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>60 - 62</td>
<td>3.0</td>
</tr>
<tr>
<td>B-</td>
<td>57 - 59</td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>53 - 56</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>50 - 52</td>
<td>2.0</td>
</tr>
<tr>
<td>C-</td>
<td>47 - 49</td>
<td>1.7</td>
</tr>
<tr>
<td>D+</td>
<td>43 - 46</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td>40 - 42</td>
<td>1.0</td>
</tr>
<tr>
<td>F<40</td>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

(iv) The following designations may be assigned, but shall not be used in the calculation of Grade Point Average (GPA).

PC: Preliminary Credits - used for matriculation or academic disciplinary purposes only.

EC: Exemption with credit.

E: Exemption.

V: Audited - when the course has been taken in accordance with Regulation 14.

NV: When a student has been permitted to audit a course but has not done so satisfactorily.

P: Pass - a pass obtained in a course taken on a Pass/Fail basis.

NP: Not Passed - when a student has failed a course taken on a Pass/Fail basis.

FM: Failed Medical - when a student is absent from an examination for medical reasons or where failure in an examination is attributed to medical reasons as supported by a certificate from an authorised medical practitioner.

AB: Absent - when a student is absent from an examination for acceptable reasons other than medical reasons.

I: Incomplete - indicates that the student has made progress in a course but at the end of the semester has not finished the work required to receive a letter grade. An 'I' designation is not counted in credit hours earned, or quality hours until a letter grade is reported. If neither a letter grade nor notification of an extension of time is received by the Registry from the Office of the Dean, the 'I' designation is replaced by an 'F' letter grade at the end of the first six (6) weeks into the next semester in which the student is registered. An extension of time may be granted but shall not normally extend beyond the end of the semester in which the extension is granted. Any remaining 'I' symbol at the end of the period of extension will be deemed an 'F'.

NR: Not Reported - when a lecturer fails to submit grades by the published deadline, through no fault of the student.
IP: In Progress - when a dissertation, thesis, project, student teaching, practicum, internship, proficiency requirement, or other course intended to last more than one semester, is not completed during the semester in which the student is registered. The 'IP' designation must be replaced with an appropriate grade on completion of the course.

5. The scheme to be used for conversion of numerical marks to letter grades shall be as prescribed in Regulation 4 (iii) above.

6. (i) Where credit for a course taken at another institution is requested, it is the student’s responsibility to provide all the information needed by the University to enable it to assess the course.

(ii) Credit hours earned from another institution at the time of admission to The University of the West Indies will not be used in the computation of a grade point average.

7. The following shall apply to credits earned by a UWI undergraduate from another approved institution:

(i) A UWI student who wishes to take academic courses elsewhere and apply those credits toward the UWI degree must obtain approval in advance from the relevant Academic Board on the recommendation of the Board of the Faculty in which he/she is registered.

(ii) A student must have obtained a minimum UWI GPA of 2.00 to be approved to take courses as an exchange/transfer student.

(iii) Only the grades earned at another institution and not the marks so earned, shall be used in the computation of the student’s GPA.

8. (i) Except where otherwise prescribed in Faculty Regulations, a student whose GPA for a given semester is less than or equal to 0.75 shall be deemed to be performing unsatisfactorily and shall be placed on probation. A student on probation whose GPA for the succeeding semester is less than 0.75 will be required to withdraw.

(ii) Auditing means recorded attendance at the lectures, tutorials and laboratory sessions for a given course without the requirement of sitting the final exam.

(iii) Satisfactory attendance certified by the Head of Department shall be awarded the designation V. In absence of such certification, the designation ‘NV’ shall be recorded.

(iv) No academic credit may be granted for auditing a course.

9. (i) A student who voluntarily withdraws from the University and who applies for re-admission within five (5) years may elect to:

(a) Have a new GPA record that will be used for determining academic standing and eligibility for graduation started when the student has been approved for re-admission; or

(b) Apply for exemption and credit for courses previously passed subject to the time limit for the maintenance of credit stipulated in the relevant Faculty Regulations.

(ii) Where exemption and credit are granted in accordance with 10(i), the grades obtained at previous attempts at such courses shall be used in the determination of the student’s GPA.

10. A student who was required to withdraw for reasons of failure to progress as prescribed in Faculty Regulations may be re-admitted on the following conditions.

(i) A minimum of one (1) year must have passed since the date of withdrawal.

(ii) All grades previously obtained shall continue to apply for the purpose of determining the student’s GPA.

(iii) Work done at an institution other than UWI during the period between the student being required to withdraw and being granted re-admission may be eligible for credit under Regulation 6.
The Department of Chemical Engineering has traditionally offered a BSc in Chemical & Process Engineering. From the 2001/2002 academic year, the Department has introduced a BSc in Petroleum Geoscience in response to the stated needs of the oil and gas industry.

BSc in Chemical & Process Engineering

One of the key sectors in the economies of the English-speaking Caribbean is that of the process industries. Thus, the petroleum and natural gas industries effectively control the economy in Trinidad & Tobago, and the minerals industry (bauxite, cement, etc.) is of prime importance in Jamaica, with sugar and food having an impact in all territories.

In addition to these industries however, there is a wide range of operations in the medium and small-scale process categories such as soaps and detergents, paints, pharmaceuticals, oils and fats, etc. The discipline of Chemical Engineering is concerned with the design, construction and operation of all the processes involved in these industries. Serious considerations are given in all of these industries to safety and environmental protection. The course of study requires basic knowledge of Physics, Chemistry and Mathematics at Advanced level status and comprises a balanced curriculum of basic chemical engineering analysis but with a significant component of practical and project work in engineering applications, computer studies and industrial plant projects.

In the final year programme, students are required to carry out the design of a plant; this being the culmination of the programme of studies. The programme is ideal as a background for postgraduate studies in many areas including petroleum engineering.

Graduates of the Chemical & Process Engineering Programme will find employment in all aspects of the process industries including design, process engineering, project engineering, operations management, technical services and marketing.

BSc in Petroleum Geoscience

A new programme has been introduced into the Faculty of Engineering - a BSc in Petroleum Geoscience with majors in Petroleum Geology and Petroleum Geophysics. It is a three-year programme that allows students the option of specialising in either Petroleum Geology or Petroleum Geophysics and has been a fast-track initiative within the Faculty of Engineering, Department of Chemical Engineering. The programme was
asked for by the petroleum industry of Trinidad, particularly the GSTT (Geological Society of Trinidad & Tobago) and has the support from all the major upstream hydrocarbon companies and government.

Petroleum Geoscience is concerned with understanding the structure of the earth to depths of five miles to identify potential areas of hydrocarbon deposits, and to identify the hydrocarbon bearing zones, fault patterns and water ingress, and thence to model them in sufficient detail so as to be able to design development programmes for economic exploitation. After a reservoir comes into production, the Petroleum Geoscientists monitor production to ensure that forecasts are accurate and identify potential geological problems and opportunities. Petroleum Geoscientists are the professionals who assess acreage, identify exploration prospects, suggest possible drilling sites for hydrocarbon exploration, appraise new discoveries, plan and implement field development, monitor the wells during production, and generally assist field management by teaming with petrophysicists, drillers, engineers and commercial units.

The professional careers of petroleum geoscientists and engineers can be very varied. Undergraduate education and training therefore needs to be broad. This is reflected in the proposed curriculum in all years, although specialisation is pronounced in the later years. A three-year course delivers the essentials of the topic but a fourth year MSc Petroleum Geoscience provides advanced training for students wishing to become professional petroleum geologists/geophysicists or, perhaps later, enter academia. The first two years of the Petroleum Geoscience course progressively build a broad, sound knowledge in relevant courses in geology, mathematics, essential physical sciences and IT. The courses are integrated through a comprehensive and carefully designed fieldwork programme. At the end of the second year, students have a firm basis for selecting an option and can decide whether to follow the Petroleum Geology or Petroleum Geophysics option.

The Petroleum Geoscience Degree Programme majors in quantitative petroleum geology and geophysics courses but also includes significant basic training in petrophysics and reservoir engineering. It is expected to attract bright science students, fascinated with the earth and wishing to have a productive industrial career in their areas of interest. The quantitative nature of the course demands a good entrance grade in Mathematics. Entrance requirements are, therefore, Advanced Level Grades A or B in Mathematics, in addition to Physics or Chemistry, and one other Science subject.

Head of Department
Dr. Angelus Pilgrim

Administrative Assistant
Mrs. Veronica Corbie

Secretary
Ms. Sharon Subero

Telephone No: 662-2002; Ext: 2196
Academic Staff

Angelus C. Pilgrim,
* BSc (SpHons) (Chem), BSc (Eng), PhD (UWI), REng, MAPETT
 Senior Lecturer and Head of Department
 (Sugar Technology, Industrial Chemistry, Engineering Materials, Biomass Utilisations)

David R. McGaw,
* BSc, MSc (Wales), PhD (UWI), FIChemE, CEng, MAIChemE, MAPETT
 Professor Emeritus in Chemical Engineering
 (Separation Processes, Particle Technology)

George M. Richards,
* CM, MSc (Manch), PhD (Cantab), ARIC, AMCST, FInstPet, MAPE, CEng.
 Professor Emeritus in Chemical Engineering and
 President of The Republic of Trinidad and Tobago
 (Process Design & Economics, Petroleum Technology)

Adebayo Aina,
* BSc (Ibadan), MSc, PhD (Ife), MBA (Lagos)
 Professor of Petroleum Geophysics (CL Financial Duprey Chair)
 (Geophysics)

John Akingbala,
* BSc (Ibadan), MSc, PhD (Texas A&M)
 Professor of Food Technology
 (Food Chemistry & Food Processing)

Richard Dawe,
* BA, MA, DPhil (Oxford), Eur Eng, CEng, FInstE, CChem, FRSC
 Professor of Petroleum Engineering and Trinidad & Tobago Methanol
 Chair in Petroleum Engineering
 (Reservoir Engineering, Hydrocarbon Thermodynamics)

Joseph Hamilton,
* BSc (Lond), IPhil (Oxford)
 Professor of Petroleum Geology
 (Isotope Geochemistry)

Winston A. Mellowes,
* BSc (Eng), MSc, PhD (UWI), MiChemE, CEng, MAIChemE, MCIC, MISSCT,
 FAPETT, MCariFST, REng
 Professor of Chemical Engineering
 (Transport Phenomena, Sugar Technology, Biomass Utilisations)

Clyde Abder,
* BSc (Mech Eng) (UWI), Dual MS (Penns), CQE, CQA, CPIM, CIRM (USA),
 MAPE, MSPE
 Senior Lecturer
 (Drilling & Completions, Production Engineering)

Gail Baccus-Taylor,
* BSc (Agri), Dip, MSc (UWI), MSc (Reading), PhD (Wis-Madison),
 MCariFST, MIFT, MPSA
 Senior Lecturer in Food Technology
 (Food Microbiology, Food Quality Assurance)

Hamid Farabi,
* BSc (Aria-Mehr), MSc, PhD (Aston), MAIChemE, MAPETT, Hon MSFOM,
 MNSC, NEMAS
 Senior Lecturer
 (Process Control, Safety & Loss Prevention)

Michael Foley,
* BSc (Hons) (Queen’s), MSc (Alberta), PhD (Queen’s)
 Senior Lecturer
 (Process Design & Economics)
 (Process Control)

Angelus C. Pilgrim,
* BSc (SpHons) (Chem), BSc (Eng), PhD (UWI), REng, MAPETT
 Senior Lecturer
 (Sugar Technology, Industrial Chemistry, Engineering Materials, Biomass Utilisations)

Sydney Thomas,
* BSc (UWI), MSc (New Brunswick), PhD (McMaster), MAIChemE, MAPETT
 Senior Lecturer
 (Reaction Engineering, Petroleum & Natural Gas Processing)

Tennyson Jagai,
* BSc, MPhil, PhD (UWI), MSPE, MAIChemE
 Lecturer in Petroleum Engineering
 (Reservoir Engineering & Enhanced Oil Recovery)

Ian A. A. Lambert,
* BSc (Hons) (UWI), MSc (Reading), PhD (Rutgers), MCariFST,
 MIFT (US)
 Lecturer in Food Technology
 (Food Process Engineering)

Jill Marcelle-De Silva,
* BSc, MSc (UWI), Eng (Stanford)
 Lecturer in Petroleum Engineering
 (Reservoir Engineering)

Carmen Riverol,
* BSc, MSc (Chem Eng) (Simon Bolivar), PhD (Vigo), CIV, EUSFLAT
 Lecturer
 (Process Design & Economics)
Manas R. Sahoo,
BSc (Ut Kals), MSc, MTech, PhD (IIT)
Lecturer
(Structural Geology)

Jeffrey Smith,
BSc (Hons) (UWI), MASc (Toronto), MAPETT
Lecturer
(Chemical Thermodynamics & Transport Phenomena)

Jeremy Wilson,
BSc, MSc, PhD (Wales)
Lecturer
(Palaeontology & Geology)

Brian Baptiste,
BSc (Mona), Dip Man Studies, MSc (Pet Eng) (UWI)
Part-time Lecturer
(Petroleum Geology, Petroleum Engineering Management)

Donald Charles,
BSc (Psychology), BSc (Geology) (Mona), NWxT (Petrophysics)
Part-time Lecturer
(Petrophysics)

Arnold Corneal,
MSc (Educ) (Nova Southeastern Univ),
BA (Communication) (Florida)
Part-time Lecturer
(Communication)

Tyrone Kalpee,
BSc, MPhil, PhD (UWI)
Part-time Lecturer
(Health, Safety & Environment)

Wilson Lalla,
BSc, MSc (Geology) (Mona)
Part-time Lecturer
(Petroleum Geology)

Heather Okuns,
BSc (UWI), PhD (Sheffield)
Part-time Lecturer
(Applied Chemistry)

Krishna Persad,
BSc, PhD (Geology) (Mona)
Part-time Lecturer
(Petroleum Geology Management)

Winston Rajpaulsingh,
BSc (Geology) (Mona), PG Dip (Man. Studies), MPhil (Pet Eng) (UWI)
Part-time Lecturer
(Petroleum Geology)

Anthony Ramlakhansingh,
BSc (Geology) (Manitoba)
Part-time Lecturer
(Structural, Development & Exploration Geology)

Clement Ramroop,
BSc, MSc (Rheinisich)
Part-time Lecturer
(Petroleum Geoscience)

Kirton Rodriguez,
BSc, PhD (Geology) (Mona), MSc (Env Studies) (Toronto)
Part-time Lecturer
(Geochemistry)

Allan Russell,
BSc (Maths) (UWI), Dip, MSc (Pet Eng)
Part-time Lecturer
(Petroleum Engineering Management)

Liaquat A. Shah,
BSc (Eng), MSc (UWI), MSc (Rutgers)
Part-time Lecturer
(Process Design, Biotechnology)

John Shepherd,
BSc, PhD (UMIST)
Part-time Lecturer
(Seismic Research)

Grant Wach,
BA (Geography) (Ontario), MSc (Geology) (South Carolina),
DPhil (Geology) (Oxford)
Part-time Lecturer
(Sedimentology)

Victor Young On,
BSc (Geophysics), BSc (Geomatics) (Toronto)
Part-time Lecturer
(Geophysics)

Wayne Bertrand,
BSc (UWI), MSc (Brit. Col), SPE, CSPG,
GSTT, AEGG
Visiting Fellow
(Petroleum Geoscience)
Schedule of Courses

BSc in Chemical & Process Engineering

Accredited by the Institute of Chemical Engineers (IChemE) of the UK to the BEng level, en route to CEng.

<table>
<thead>
<tr>
<th>LEVEL 1</th>
<th>Semester 1</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHNG 1000</td>
<td>Introduction to Chemical & Process Engineering (CH10A)</td>
</tr>
<tr>
<td></td>
<td>CHNG 1001</td>
<td>Applied Chemistry I (CH11A)</td>
</tr>
<tr>
<td></td>
<td>ENGR 1001</td>
<td>Information Technology for Engineers (FE11A)</td>
</tr>
<tr>
<td></td>
<td>MATH 1180</td>
<td>Engineering Mathematics I (M17A)</td>
</tr>
<tr>
<td></td>
<td>ECNG 1007</td>
<td>Electrical Engineering Technology (EE18B)</td>
</tr>
<tr>
<td></td>
<td>MENG 1000</td>
<td>Engineering Graphics (ME10A)</td>
</tr>
<tr>
<td></td>
<td>MENG 1005</td>
<td>Workshop Technology (ME14B)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>18 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 1002</td>
<td>Applied Chemistry II (CH11B)</td>
</tr>
<tr>
<td>CHNG 1003</td>
<td>Science of Materials (CH13A)</td>
</tr>
<tr>
<td>CHNG 1004</td>
<td>Chemical Process Principles I (CH14B)</td>
</tr>
<tr>
<td>CHNG 1006</td>
<td>Transport Phenomena I (CH16B)</td>
</tr>
<tr>
<td>CHNG 1007</td>
<td>Chemical Engineering Laboratory I (CH17B)</td>
</tr>
<tr>
<td>ECNG 1007</td>
<td>Electrical Engineering Technology (EE18B)</td>
</tr>
<tr>
<td>MENG 1001</td>
<td>Engineering Thermodynamics I (ME11B)</td>
</tr>
</tbody>
</table>
LEVEL 2

Semester 1: 16 Credits
- **CHNG 2000** Transport Phenomena II (CH20A) (CHNG 1006) (CH16B) E3
- **CHNG 2001** Process Design & Economics I (CH22A) E3
- **CHNG 2002** Chemical Process Principles II (CH23A) E3
- **CHNG 2004** Separation Processes I (CH25A) E3
- **CHNG 2009** Chemical Engineering Laboratory II (CH29A) C1
- **MATH 2230** Engineering Mathematics II (M17A) (M26A) E3

Semester 2: 17 Credits
- **CHNG 2003** Computer-aided Engineering (CH24B) C3
- **CHNG 2005** Plant & Safety Engineering (CH25B) E3
- **CHNG 2006** Process Dynamics & Control (M17A) (CH26B) E3
- **CHNG 2007** Particle Technology (CH27B) E3
- **CHNG 2008** Chemical Engineering Practice (CH28B) C2
- **CHNG 2010** Chemical Engineering Laboratory III (CH29B) C1
- **MATH 2240** Statistics (M26B) E2

LEVEL 3

Semester 1: 15 Credits
- **CHNG 3001** Transport Phenomena III (CH31A) (CHNG 2000) (CH20A) E3
- **CHNG 3004** Chemical Reaction Engineering I (CH33A) E3
- **CHNG 3006** Process Design & Economics II (CH34A) (CHNG 2001) (CH22A) E3
- **CHNG 3007** Separation Processes II (CH35A) (CHNG 2004) (CH25A) E3
- **MENG 3000** Engineering Management I (ME30A) E3

Semester 2: 15 Credits
- **CHNG 3012** Chemical Engineering Design Project (CH35B) C6
- **CHNG 3013** Chemical Engineering Research Project (CH36B) C3

Together with TWO (2) Optional courses, subject to the approval of the Head of Department, to be chosen from:
- **CHNG 3000** Natural Gas Technology (CH30B) E3
- **CHNG 3002** Biochemical Engineering (CH31B) E3
- **CHNG 3003** Process Dynamics & Control II (CH33B) E3
- **CHNG 3005** Chemical Reaction Engineering II (CH33B) E3
- **CHNG 3008** Petroleum Reservoir Engineering (CH37C) E3
- **CHNG 3009** Petroleum Production Engineering (CH37D) E3
- **CHNG 3010** Petroleum Processing Technology (CH38B) E3
- **CHNG 3011** Technology of the Sugar Industry (CH39B) E3
- **CVNG 3008** Environmental Engineering II (CE34B) E3
- **FOST 3001** Principles of Food Processing (FS31B) E3
- **MENG 3001** Engineering Management (ME30B) C3
BSc in Petroleum Geoscience

Accredited by the Geological Society of London en route to CGeol.

LEVEL 1
Semester 1
17 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNG 1001</td>
<td>Applied Chemistry I (CH11A)</td>
<td>E2</td>
</tr>
<tr>
<td>ENGR 1001</td>
<td>Information Technology for Engineers (FE11A)</td>
<td>C3</td>
</tr>
<tr>
<td>MATH 1180</td>
<td>Engineering Mathematics I (M17A)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 1000</td>
<td>Introduction to Geology & Geological History (PX10A)</td>
<td></td>
</tr>
<tr>
<td>PGSC 1001</td>
<td>Introduction to Earth Sciences, Processes & Caribbean Geology (PX13A)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 1003</td>
<td>Engineering Graphics & Geodetics for Petroleum Geoscience (PX15A)</td>
<td>C3</td>
</tr>
</tbody>
</table>

Semester 2
16 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 1001</td>
<td>Mechanics of Fluids I (CH11B)</td>
<td>E3</td>
</tr>
<tr>
<td>CHNG1002</td>
<td>Applied Chemistry II (CH11B)</td>
<td>E2</td>
</tr>
<tr>
<td>MATH 2240</td>
<td>Statistics (M26B)</td>
<td>E2</td>
</tr>
<tr>
<td>PGSC 1002</td>
<td>Paleontology & Biostratigraphy (PX13B)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 1004</td>
<td>Field & Mapping Principles (PX15B)</td>
<td>C3</td>
</tr>
<tr>
<td>PGSC 1005</td>
<td>Geophysics Fundamentals (PX16B)</td>
<td>E3</td>
</tr>
</tbody>
</table>

Internship: 8 weeks with industry (optional)

LEVEL 2
Semester 1
17 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2230</td>
<td>Mathematics (M26A)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 2000</td>
<td>Structural Geology (PX21A)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 2001</td>
<td>Sedimentology (PX21B)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 2003</td>
<td>Mineralogy (PX23A)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 2010</td>
<td>Communication Skills (PX28A)</td>
<td>C2</td>
</tr>
</tbody>
</table>

Semester 2
16 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGSC 2002</td>
<td>Petrophysics (PX22B)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 2004</td>
<td>Geochemistry of Petroleum (PX23B)</td>
<td>C2</td>
</tr>
<tr>
<td>PGSC 2006</td>
<td>Stratigraphy (PX24A)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 2007</td>
<td>Igneous & Metamorphic Petrology (PX25A)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 2008</td>
<td>HSE for Upstream Petroleum Industry (PX25B)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 2009</td>
<td>Field & Geologic Mapping (PX27B)</td>
<td>C3</td>
</tr>
</tbody>
</table>

Internship: Working for 12 weeks with industry

Petroleum Geology Option

LEVEL 3
Year-long Course:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGSC 3000</td>
<td>Oil & Gas Field Project</td>
<td>C6</td>
</tr>
</tbody>
</table>

Semester 1
16 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 3000</td>
<td>Engineering Management (ME30A)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 3001</td>
<td>Petroleum Geology of the Southeast Caribbean (PX30A)</td>
<td>E2</td>
</tr>
<tr>
<td>PGSC 3002</td>
<td>Petroleum Exploration - Geological Methods (PX31A)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 3003</td>
<td>Formation Evaluation (PX33A)</td>
<td>E2</td>
</tr>
<tr>
<td>PGSC 3004</td>
<td>Essential Petroleum Engineering (PX34A)</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2
16 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGSC 3005</td>
<td>Computational Petroleum Geology & Geophysics (PX30B)</td>
<td>C3</td>
</tr>
<tr>
<td>PGSC 3006</td>
<td>Reservoir Development Geology & Reservoir Modelling (PX32B)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 3007</td>
<td>Basin/Structure Analysis (PX33B)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 3008</td>
<td>Prospect Assessment, Evaluation & Petroleum Economics (PX35B)</td>
<td>E3</td>
</tr>
<tr>
<td>PGSC 3009</td>
<td>Geoscience Seminar (PX37B)</td>
<td>C1</td>
</tr>
</tbody>
</table>
Petroleum Geophysics Option

LEVEL 3
Year-long Course:
PGSC 3000 Oil & Gas Field Project (PX330) C6

Semester 1
16 Credits
MENG 3000 Engineering Management I (ME30A) E3
PGSC 3001 Petroleum Geology of the Southeast Caribbean (PX30A) C2
PGSC 3003 Formation Evaluation (PX33A) E2
PGSC 3004 Essential Petroleum Engineering (PX34A) E3
PGSC 3010 Wave Propagation & Wave Theory (PX32A) E3

Semester 2
16 Credits
PGSC 3005 Computational Petroleum Geology & Geophysics Methods (PX30B) C3
PGSC 3008 Prospect Assessment, Evaluation & Petroleum Economics (PX35B) E3
PGSC 3009 Geoscience Seminar (PX37B) C1
PGSC 3011 Petroleum Exploration - Geophysical Methods (PX34B) E3
PGSC 3012 Seismic Data Acquisition, Processing & Interpretation (PX36B) E3

Course Codes
CVNG Civil Page 45
CHNG Chemical Page 28
ECNG Electrical Page 54
ENGR Faculty Page 85
IENG Industrial Page 69
MENG Mechanical Page 68
PGSC Petroleum Geoscience Page 33
SURV Land Surveying Page 80
COMP* Computer Science Page 84
MATH* Mathematics Page 86

*Non-departmental

Note: The letter “E” or “C” preceding the credit allocation indicates Examination by written papers or by coursework, respectively.
Syllabus

BSc in Chemical & Process Engineering

LEVEL 1

CHNG 1000 (CH10A)
Introduction to Chemical & Process Engineering
3 Credits

CHNG 1001 (CH11A)
Applied Chemistry I
2 Credits

CHNG 1002 (CH11B)
Applied Chemistry II
2 Credits

CHNG 1003 (CH13A)
Science of Materials
3 Credits

CHNG 1004 (CH14B)
Chemical Process Principles I
3 Credits

Applications of material and energy balances to special processes: single phase systems, multiphase systems, combustion, recycle processes. Transient balances. Introduction to flowsheet development. Property estimation techniques. Chemical kinetics. Introduction to reactor design.

CHNG 1005 (CH15A)
Science of Materials A
1 Credit

CHNG 1006 (CH16B)
Transport Phenomena I
3 Credits

CHNG 1007 (CH17B)
Chemical Engineering Laboratory I
(Coursework)

LEVEL 2

CHNG 2000 (CH20A)
Transport Phenomena II
3 Credits

CHNG 2001 (CH22A)
Process Design & Economics I
3 Credits

CHNG 2002 (CH23A)
Chemical Process Principles II
3 Credits

CHNG 2003 (CH24B)
Computer-aided Engineering
3 Credits
CHNG 2004 (CH25A)
Separation Processes I
3 Credits
Identification, use and characteristics of separation processes. Phase contacting in stage and continuous processes. Analysis of selected processes for the separation of binary mixtures - distillation, absorption, liquid/liquid and solid/liquid extraction. Stage efficiency determination.

CHNG 2005 (CH25B)
Plant & Safety Engineering
3 Credits

CHNG 2006 (CH26B)
Process Dynamics & Control I
3 Credits

CHNG 2007 (CH27B)
Particle Technology
3 Credits
Properties of particles. Interactions between particles and fluids: individual particles, beds of particles. Fluidisation. Processing of particulate materials; storage and transport, size reduction and enlargement, mixing and blending, separation of particles from liquids and gases, separation by size and species.

CHNG 2008 (CH28B)
Chemical Engineering Practice
2 Credits
Study of specific process industry. Industrial plant evaluation.

CHNG 2009 (CH29A)
Chemical Engineering Laboratory II
0 Credits
(Coursework)

CHNG 2010 (CH29B)
Chemical Engineering Laboratory III
0 Credits
(Coursework)
LEVEL 3

CHNG 3000 (CH30B)
Natural Gas Technology
3 Credits

CHNG 3001 (CH31A)
Transport Phenomena III
3 Credits

CHNG 3002 (CH31B)
Biochemical Engineering
3 Credits

CHNG 3003 (CH32B)
Process Dynamics & Control II
3 Credits
Analysis and design of advanced control systems. Feedback control of systems with large dead-time or inverse response; control systems with multiple loops; feedforward and ratio control; Adaptive and inferential control systems; Design of control systems for multivariable processes; Synthesis of alternative control configurations for multiple-input, multiple output processes; Interaction and decoupling of control loops; Design of control systems for complete plants; Process control using digital computers; Digital computer control loops, continuous to discrete-time systems; z-transforms; Discrete-time response of dynamic systems; Design of digital feedback controllers; Process identification and adaptive control.

CHNG 3004 (CH33A)
Chemical Reaction Engineering I
3 Credits

CHNG 3005 (CH33B)
Chemical Reaction Engineering II
3 Credits

CHNG 3006 (CH34A)
Process Design & Economics II
3 Credits
CHNG 3007 (CH35A)
Separation Processes II
3 Credits

CHNG 3008 (CH37C)
Petroleum Reservoir Engineering
3 Credits
Classification of rocks. Origin, migration and trapping of hydrocarbons. Brief description of the reflection technique used in oil/gas exploration; usefulness of a seismic section. Properties of reservoir rocks and fluids, FVP's, compressibility, capillary pressure, porosity, viscosity and permeability. Types of well logs and their functions. Reservoir mechanics - definitions using a P-T diagram of black oil, volatile oil, dry gas, wet gas and condensate gas reservoirs, the material balance and its applications; immiscible flooding. Introduction to reservoir characterisation using drawdown and buildup techniques.

CHNG 3009 (CH37D)
Petroleum Production Engineering
3 Credits
Modern design and operating practices for completing, producing and stimulating wells and for handling produced fluids at the surface - Inflow performance, multiphase flow in pipes and the flowing well. Artificial lift methods - gas lift, sucker rod pumping, hydraulic pumping, electrical submersible pumping. Recent advances in artificial lift methods. Analysis, design and application for production and processing equipment, including separation problems, emulsions, corrosion, treating; storage and transmission systems. Casing and tubing design, principles of cementing, well completion materials, well perforating, equipment and operative standards, acidising, fracturing, problem well analysis and remedial treatment design.

CHNG 3010 (CH38B)
Petroleum Processing Technology
3 Credits

CHNG 3011 (CH39B)
Technology of the Sugar Industry
3 Credits

CHNG 3012 (CH35B)
Chemical Engineering Design Project
6 Credits
(Coursework)

CHNG 3013 (CH36B)
Chemical Engineering Research Project
3 Credits
(Coursework)
BSc in Petroleum Geoscience

LEVEL 1

PGSC 1000 (PX10A)
Introduction to Geology & Geological History
3 Credits

PGSC 1001 (PX13A)
Introduction to Earth Sciences, Process & Caribbean Geology
3 Credits

PGSC 1002 (PX13B)
Palaeontology & Biostratigraphy
3 Credits
Environmental variable and evolutionary theory. Biostratigraphy of ammonites and bivalves, ecology and history of reef communities, the Cretaceous/tertiary boundary. Introduction to paleoecology. Micropaleontology; details of the more important microfossil groups; plat spores, pollen grains, dinoflagellates, benthis and planktonic foraminifera, calcareous nannofossils, and ostracods; historical development; technology development; Applied Biostratigraphy; global biozonations, sequence stratigraphic applications and the role of biostratigraphy in hydrocarbon exploration.

PGSC 1003 (PX15A)
Engineering Graphics & Geodetics for Petroleum Geoscience
3 Credits
Instruments and their use - orthographic drawing and sketching; point lines and planes in space; auxiliary views: point, edge and normal views; isometric and perspective drawings, sectional views. Geodetic control; specification, classification. Control survey methods, triangulation, azimuths; projections, boundary and topographic surveys, ellipsoid references, international, Clarke(1858), WGS84, units, datum shifts. GIS. (Coursework)

PGSC 1004 (PX15B)
Field & Mapping Principles
3 Credits
Dip and strike, folds and fault nomenclature and symbols. Purpose and fundamentals of subsurface mapping. Preparation and uses of structure contour, isopach, paleogeographic and facies maps, cross sections and fence diagrams. Reservoir sandstone types, payzones, structural traps, sealing shales, source rocks and oil seeps. Field trips and lab exercises. (Coursework)

PGSC 1005 (PX16B)
Geophysics Fundamentals
3 Credits
Physics of the earth. Vibration and waves, reflection and refraction, earthquake and earth structure, magnetism of the earth, variation with time of earth's magnetic field, magnetic prospecting, earth's gravity, principles of gravity prospecting, Geoelectrics.
LEVEL 2

PGSC 2000 (PX21A)
Structural Geology
3 Credits
Description, classification, and origin of earth structures. Ways in which the continental crust can deform; link scales of structure from the field, outcrops, hand specimen, thin section by integrating analytical techniques with practical examples. Theoretical and meso to microscale analysis of structures developed through a linked series of lectures and practicals; practical 2D strain analysis; 3D strain concepts; incremental strain, kinematics and polyphase deformations; fold construction and classes; fault evolution and section balancing; fault rock microstructures; fault and fold mechanics, current concepts in plate tectonics, cross-section construction techniques, structural interpretation of seismic data, structural styles in different tectonic settings (thrust and fold belts, rifts, strike-slip, gravity tectonics, inversion), structural geology of reservoir units.

PGSC 2001 (PX21B)
Sedimentology
3 Credits
Origin of sediments and sedimentary rocks; climate, weathering, and weathering products; transport, deposition, and depositional environments for sediments; field and laboratory studies in description and interpretation of genesis of sedimentary rocks; principles of stratigraphy and basin analysis; plate tectonics and the formation of sedimentary basins stratigraphic nomenclature; geologic time and correlation; sequence stratigraphy and basin architecture. Physical processes of sedimentation: basics of flow and sediment transport; bedforms generated in unidirectional, oscillatory and multidirectional flows; soft sediment deformation and erosional sedimentary structures; depositional environments and facies analysis; Depositional environments and facies models for clastic sedimentary systems including, braided and meandering rivers, deltas, coasts and continental shelves, deep marine basins, alluvial fans and lakes. Composition and classification of carbonate rocks.

PGSC 2002 (PX22B)
Petrophysics
3 Credits
Rock properties; porosity and permeability laboratory measurements of rock properties and their application to reservoir studies. Scope of petroleum petrophysics; vocabulary; rock properties; porosity; permeability; seismic velocity; compressibility; elasticity; fracturing; resistivity; core analysis. Density; S.P; well logs and their interpretation.

PGSC 2003 (PX23A)
Mineralogy
3 Credits
Introduction to minerals, mineral study techniques. Rock classification; physical properties of minerals and rocks; Mineralogy; crystallography, crystal chemistry, mineral chemistry, optical crystallography, physical properties, and geologic occurrence of rock-forming and economic minerals. Weathering. Review of structure of silicate materials, mineral chemistry and solid solutions of major rock-forming minerals, introduction to thermodynamics, real crystals, defects, grain boundaries and diffusion.

PGSC 2004 (PX23B)
Geochemistry of Petroleum
2 Credits
Basic concepts and terminology of petroleum geochemistry; processes related to preservation of organic matter in sedimentary environments; composition and characterisation of kerogen, bitumen, and petroleum; conversion of kerogen to hydrocarbon; principles and interpretation of geochemical data; basic concepts of maturity modelling; integrating measured geochemical data with conceptual geologic models. Aspects of pure and applied inorganic and organic geochemistry; isotope geology.
(Coursework)
PGSC 2005 (PX24A)
Fundamental Petroleum Geology & Petroleum Geophysics
3 Credits
Nature, generation, migration and entrapment of petroleum. Nature of source, reservoir and cap rocks and the relationships between them. Introduction to the habitat of petroleum in the Caribbean and South American region, particularly the main controls of oil and gas distribution in the Orinoco basin. The scope of geophysics in petroleum exploration. Overview of the acquisition, processing and interpretation of seismic reflection data. Strengths and limitations of seismic data; sources of errors and uncertainties; influence of subjectivity in seismic data processing.

PGSC 2006 (PX24B)
Stratigraphy
3 Credits
Mechanisms of basin formation and structure of basins; tectonic controls on sedimentation; origins and sedimentary and/or geomorphic impact of sea-level changes; sequence stratigraphic principles and concepts. Processes and products of near-surface and burial diagenesis in clastic and carbonate sediments. Principles of sequence stratigraphy, seismic expression of depositional systems; stratigraphic architecture; sequence boundaries and flooding surfaces. Nature and significance of high-resolution depositional sequences and their stacking patterns based on core, outcrop and wireline log data. Sequence stratigraphic interpretation and mapping of seismic data. Applied biostratigraphy; palynomorphs, spores and pollen, dinoflagellates, benthic and planktonic foraminifera, calcareous nannofossils, global biozonations, sequence stratigraphic applications and the role of biostratigraphy in hydrocarbon exploration.

PGSC 2007 (PX25A)
Igneous & Metamorphic Petrology
3 Credits
Introduction to the origin and evolution of igneous, sedimentary, and metamorphic rocks; classification and petrographic analysis of major rock types; relationships to tectonic settings. Identification in field, hand specimen and under the microscope.
Metamorphic Petrology: Metamorphic rocks as equilibrium systems; petrogenetic grids, phase diagrams and projections. Progressive metamorphism of major rock types, metamorphic facies. Metamorphic processes and the role of fluids; deformation accompanying metamorphism. Geodynamic settings of metamorphism.
Sedimentary Petrology: weathering, petrologic provinces, introduction to sedimentary facies.

PGSC 2008 (PX25B)
HSE for the Upstream Petroleum Industry
3 Credits
EIA for seismic, drilling and production locations; drilling hazards that affect safety and environment, blow outs, disposal of drilling fluids and drill cuttings; effluent gases and waters in production operations. Use and disposal of CO2 and H2S. Disposal of BS&W. Management of chemicals; oil spills on land and marine; legal framework for HSE in Trinidad, emissions trading, Kyoto protocol. Safety policies and procedures. Hazops.
PGSC 2009 (PX27B)
Field & Geologic Mapping
3 Credits
Field trips to observe, analyse and interpret the geology and geophysics of selected localities in Trinidad & Tobago and adjacent regions; complements classroom experience. Methods of geologic mapping with topographic maps and aerial photographs. Field studies include measuring sections, interpretation of stratigraphy, structure, environments of deposition of various sedimentary rocks. Construction of geologic cross sections; geological expression of structural styles and terrain histories; application of subsurface well and seismic data in the preparation of structural contours and facies maps. Use of remote sensing images to plan exploration strategies; Strengths and limitations of different remote sensing tools; assessment of relief, drainage, solid and drift lithologies, tectonic and sedimentary features from the appropriate images; comparison of data from images with geological map information; synthesis of data in the form of sketch maps and cross-sections; analysis of complex problem maps using structure contours; construct accurate cross-sections in areas of complex structure and stratigraphy.
(Coursework)

PGSC 2010 (PX28A)
Communication Skills
2 Credits
Review of personal and transferable skills and use of this information to compile careers documents, including CVs; word processing and use of spreadsheets. Improve oral presentation skills with practice and training in giving a talk; oral presentation of a selected topic relevant to petroleum geoscience. Library searches; collecting information. Enhance certain transferable skills such as team working and writing skills; improve written communication and scientific skills by undertaking literature reviews of scientific controversies and new developments.
(Coursework)

LEVEL 3

PGSC 3000 (PX330)
Oil & Gas Field Project
6 Credits
This course is an extended practical exercise where well, outcrop, seismic and other geophysical data are interpreted in order to evaluate the exploration potential of an area, or an individual study to solve a particular geological/geophysical problem in a field. The students may work in groups. If in a team, the team will take a field from initial discovery stage (seismic plus one well) through appraisal into planning development, reservoir zonation, selection of pay zones and a calculation of in-situ reserves.
(Coursework)

PGSC 3001 (PX30A)
Petroleum Geology of the South-east Caribbean
2 Credits
Geological evolution of the Caribbean; Geology of the South-east Caribbean from Suriname to Barbados with emphasis on hydrocarbon basins in the region.

PGSC 3002 (PX31A)
Petroleum Exploration - Geological Methods
3 Credits (Geology option)
Use of modern geological techniques of structure, basin evolution, sequence stratigraphy, facies analysis, geochemistry and mapping techniques to predict trap configuration, integrity and timing; reservoir quality; source and hydrocarbon volume generation, timing and migration; and seal integrity. Case histories will be included.
PGSC 3003 (PX33A)
Formation Evaluation
2 Credits

PGSC 3004 (PX34A)
Essential Petroleum Engineering
3 Credits

PGSC 3005 (PX30B)
Computational Petroleum Geology & Geophysics
3 Credits
Introduction to a variety of computational tools for solving common quantitative problems in geology and geophysics; statistical description and modelling of data sets; overview and comparison of various techniques applied to modelling of geophysical processes, including mapping and graphics; use of UNIX and modern commercial software (Landmark and Geoquest). (Coursework)

PGSC 3006 (PX32B)
Reservoir Development & Modelling
(Reservoir Development Geology & Reservoir Modelling)
3 Credits
Fundamentals of development geology, including the geological controls on hydrocarbon distribution, recovery and fluid flow. Evaluation of the nature and distribution of reservoir quality patterns in clastic and carbonate deposits. Reservoir geological modelling, reservoir mapping and reservoir simulation. Subsurface facies analysis, sedimentological characteristics of clastic and carbonate depositional systems in relation to the distribution of reservoir, source and seal facies. Diagenesis; effects on reservoir properties, compaction, cementation and dissolution in siliciclastic and carbonates. Subsurface diagnosis of sedimentary environments from cores, ditch cuttings and wireline logs. Prediction of the distribution, geometry and orientation of reservoir bodies, engineering analysis of reservoirs; measuring and monitoring reservoir pressures and reservoir formation evaluation, predicting reservoir history; determining well locations for infill drilling; principles of primary, secondary, and tertiary reservoir performance and recovery; reservoir modelling.
PGSC 3007 (PX33B)
Basin/Structure Analysis
3 Credits (Geology option)
Use of physical and geophysical data to define mechanisms responsible for basin formation, interval structure and stratigraphy of different basin types, and hydrocarbon occurrence in basins. Reservoirs, seals and pressures; petrography and petrophysics of reservoir rocks, including the nature, origin and distribution of porosity and permeability. Description, identification and interpretation of reservoir rocks from cores and ditch cuttings. Recognition and distribution of cap rocks and subsurface seals. Diagenesis and fluid flow. Nature and origin of subsurface fluids and pressures. Effects of plate tectonics on reservoir formation; sedimentation, metamorphism, igneous activity, and deformation patterns at rift zones, subduction zones, and transform margins. Plate motion and interactions through time; structural geology, paleontology, petrology and stratigraphy of plate margins such as compressional mountain belts, passive margins, mid-oceanic ridges and transform boundaries. Applied structural geology for subsurface evaluation, including the development of folds, faults and halokinetic structures in orogenic and non-orogenic regions. Fracture formation and distribution.

PGSC 3008 (PX35B)
Prospect Assessment, Evaluation & Petroleum Economics
3 Credits
Introduction to the geography and international politics of oil and gas, exploration/production licensing, taxation and development planning. Hydrocarbon history of Trinidad & Tobago. Differences in oil economy and gas economy. Prospect evaluation, risk analysis and volumetric reserves estimates. Reserve estimation, production profiles, parameterisation of risk factors, net present value, rate of return, profit to investment ratios, tax and royalties. Geostatistics; introduction to the software and techniques of geostatistics and their applications to quantifying risk and uncertainty in petroleum geoscience.

PGSC 3009 (PX37B)
Geoscience Seminar
1 Credit
Each student is assigned a topic on an aspect of petroleum geoscience of a selected geographic region or discussion of a subject of current importance and presents it in a seminar. (Coursework)

PGSC 3010 (PX32A)
Wave Propagation & Wave Theory
3 Credits
Theoretical basis for the various seismic wave modes in the earth. Physical and mathematical foundations for seismic ray theory; linear system analysis in time and frequency domains, methods and problems in deriving velocity information from reflection and refraction seismic data to S/N improvement and velocity spectra. Wave propagation in a multilayered medium. Seismic attenuation, dispersion and scattering. Seismic anisotropy. Reflection amplitude (variations with offset). Seismic attribute analysis. Fourier theory, sampling theory, convolution, filtering, the X-transform, correlation, Wiener filtering, spectral analysis, two-dimensional filtering. Potential field theory. Sampling (wavefield sampling), F-K analysis (application to dip filtering and migration); deconvolution (deterministic and predicative); velocity estimation and tomography (travel time inversion); imaging in time and depth (migration); Zoeppritzis equation, AVO and AVAZ.

PGSC 3011 (PX34B)
Petroleum Exploration - Geophysical Methods
3 Credits
Use of modern geophysical techniques including gravity, magnetics and 2D, 3D and 4D seismic in petroleum exploration and development. Case histories will be included.
PGSC 3012 (PX36B)
Seismic Data Acquisition, Processing &
Interpretation
3 Credits
Seismic sources and source arrays. Receivers (geophones and hydrophones) and receiver arrays. Cables and streamers. Recording instruments. Positioning (offshore and onshore) 2D, 3D, 3C and 4D field and marine seismic acquisition. Complete processing sequence for the petroleum industry needs including deconvolution filtering, DMO, ray tracing and full wave equation migration. Data binning, effects of feathering, migration aperture. Introduction to the problems of reflection time, velocity impedance, amplitude and phase to geologic parameters of lithology. Acquisition and processing of three-dimensional seismic data with emphasis on the applications of modern software packages. Seismic stratigraphy and structural interpretation of seismic data. Introduction to computerised interpretation used in modern exploration and reservoir studies. Acoustic wave propagation in boreholes and the acquisition and analysis of full waveform acoustic logs and crosswell and VSP data.
DEPARTMENT OF
CIVIL & ENVIRONMENTAL ENGINEERING

Civil Engineering is the discipline that covers the conversion of resources through the application of the laws of science and engineering to facilities, products and systems that sustain and improve the quality of life. Civil Engineering concerns itself with the provision of roads, bridges, buildings, airports, seaports, dams, water supply, beaches, marinas, ports and harbours, recreational facilities and environmental plant and systems, all as integrated components of civil infrastructure and facilities that support towns, cities, countries and regions.

The Department offers training in the five essential engineering sub-disciplines, Geotechnical Engineering, Structural Engineering, Transportation Engineering, Water Resources and Coastal Engineering, and Environmental Engineering. Civil Engineering Management is also included to cover the effective management of the conversion of resources to social, commercial and recreational infrastructure, and the event and impact of hurricanes, earthquakes and other natural hazards today form an essential module of the discipline.

Civil Engineering is also concerned with the sustainability of infrastructure and society, and emphasis on Environmental Engineering is now considered vital to the discipline. Accordingly, the Department now offers two streams of engineering education, one in the traditional Civil Engineering, and the other in Civil with Environmental Engineering.

The Civil Engineering Degree Programme provides core competency in the essential engineering sub-disciplines and Project Management, and offers a wide choice of specialisation within any of the five sub-disciplines in the final year of the programme.

The Civil with Environmental Engineering Degree Programme also provides core competency in the five sub-disciplines and Civil Engineering Management and offers streamlined specialisation in Environmental Engineering in the final year of the programme.

The Department’s programmes are accredited to the joint requirements of the Institution of Civil Engineers (UK), the oldest professional engineering organisation in the world, and the Institution of Structural Engineers (UK).

Head of Department
Mr. Francis R. Charles

Administrative Assistant
Mrs. Andrea Perreira

Secretary
Mrs. Angela Crichlow

Telephone No: 662-2002; Ext: 2504
Academic Staff

Francis R. Charles,
BSc, MPhil (UWI), MAPETT, FIAT, FICE, REng
Senior Lecturer and Head of Department
(Highway Engineering, Coastal Zone Engineering & Management)

Ignatius D. C. Imbert,
ME (NUI), PhD (Dub), CEng, MIEI, MASCE, FAPETT
Professor Emeritus in Construction Engineering & Management
(Construction Engineering & Management)

Harry O. Phelps,
CMT, BSc (Wales), PhD (Manch), DIC, FICE, CEng, FAPETT
Professor Emeritus in Civil Engineering
(Water Resources, Environmental Engineering)

Anil K. Sharma,
BSc (BHU), ME (Roorkee), PhD (Raj), MICE, MSET, MISTE, MACI, MAPETT, MASCE, MIFS, CEng
Professor of Structural Engineering
(Structural Analysis & Design)

Winston H. E. Suite,
BSc (Sp Physics), BSc (Eng), MSc, PhD (UWI), FAPETT, MASCE
Professor of Construction Engineering & Management
(Construction Engineering & Management, Engineering Law, Natural Hazards, Project Management)

Chintanapalli Venkobachar,
BTech (IIT, Madras), M Tech (IIT, Kanpur)
Professor of Environmental Engineering
(Environmental Engineering)

Patrick Holmes,
BSc, PhD (Swansee), MICE, MCGI
Visiting Professor, Imperial College, University of London
(Coastal Zone Engineering & Management)

Timothy M. Lewis,
BEng, MEng (Liverpool), MSc (Stirling), PhD (UWI), MICE, CEng, MAPETT, FASCE
Senior Lecturer in Construction Engineering & Management
(Project Management & Project Economics)

Robin W.A. Osborne,
BSc, PhD (UWI),
Senior Lecturer in Construction Engineering & Management
(Construction Materials Technology, Built Environment)

Kangala N. Ramamurthy,
BE (Madras), M Tech (IIT, Madras)
Senior Lecturer in Construction Engineering & Management
(Construction Engineering & Management, Building Technology)

Gyan S. Shrivastava,
BTech, M Tech (IIT), MSc (Lond), PhD (UWI), CEng, MICE
Senior Lecturer
(Water Resources, Coastal Zone Engineering)

Dilip Baidya,
BE (Eng) (Calcutta), M Tech (IIT), PhD (IISC) (Bangalore)
Lecturer
(Geotechnical Engineering)

Tariq Cheema,
BSc (Punjab), MSc (Leeds), PhD (South Dakota)
Lecturer
(Engineering Geology, Hydrogeology & Environmental Geology)

Richard Clarke,
BSc, MPhil, PhD (UWI), MIFS, CQE, REng
Lecturer
(Structural Analysis & Design)

Vincent Cooper,
MEng (McGill), MASc (Nova Scotia), BSc (Eng), PhD
Lecturer
(Water Resources)

Derek Gay,
BSc (Eng) (UWI), DIC, MSc (Lond), PhD (Texas), MAPETT
Lecturer
(Geotechnical Engineering, Coastal Zone Engineering)

Joanna Ibrahim,
BSc (Oceanography), MSc, PhD (Plymouth)
Lecturer
(Coastal Zone Engineering & Management)

Ian Khan-Kernahan,
BSc, MSc (Maths) (Lond), BSc, PhD (UWI), MAPETT
Lecturer
(Structural Analysis & Design, Information Technology)

Madaniyo Mutabazi,
BSc (Eng) (Dar Es Salaam), MSc (Wisconsin), PhD (Kansas)
Lecturer
(Transportation Engineering)
Everson Peters,
BSc (UWI), MSc (Guelph), PhD (New Zealand)
Lecturer
(Water Resources & Environmental Engineering)

Keith Sirju,
BSc (UWI), MSc (Lond), DIC, CEng, MAPETT, FASCE, MICE
Lecturer
(Structural Analysis & Design)

Kenrick Burgess,
BSc (Hons) (UWI), MBA (Brunel), DipCon, Eng. & Man, DipPA (UWI),
DipMan (UK), MA
Part-time Lecturer
(Project Management)

Myron W. Chin,
BSc (Loughb), PhD (Manch), CEng, FICE, MASCE, FAPETT, FIStructE
Part-time Lecturer
(Construction Engineering & Management, Natural Hazards)

Francis Ellis,
MSc (CE&M), DipUM (Wales)
Part-time Lecturer
(Quantity Surveying)

Constantin Stere,
BSc, MSc, PhD (Eng) (Romania)
Part-time Lecturer
(Coastal Zone Engineering)

Dave Basco,
PhD, PE (USA)
Honorary Fellow
(Coastal Engineering)

Selwyn Lee Young,
BSc (Eng), PhD (Liverpool)
Honorary Fellow
(Professional Practice)

Jerry Medford,
BSc, MSc (Eng) (UWI)
Industry Liaison

Ravi Baboolal,
BSc (Eng) (UWI)
Research Assistant
(Water Resources)

Anameka Dharry,
BSc (Eng) (UWI)
Research Assistant
(Natural Hazards)

Deborah Lamb,
BSc (Eng) (UWI)
Research Assistant
(Coastal Zone Engineering)

Christina Rodriguez-Stewart,
BSc (Human Ecology), MSc (UWI)
Research Assistant
(Civil Engineering)

Ian Samaroo,
BSc (Eng) (UWI)
Research Assistant
(Structural Engineering)

Muhammad Abdul-Latif,
BSc (Eng) (UWI)
Research Assistant
(Construction Engineering & Management)

Kiola Swanston,
BSc (Earth Science) (UWI)
Research Assistant
(Coastal Zone Management)
Schedule of Courses

Being accredited by the Joint Board of Moderators (JBM) of the UK to the BEng level, en route to CEng status.

BSc in Civil Engineering

LEVEL 1

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 1000</td>
<td>Mechanics of Solids (CE10A)</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 1004</td>
<td>The Civil Engineer in Society (CE14B)</td>
<td>E2</td>
</tr>
<tr>
<td>ENGR 1000</td>
<td>Introduction to Engineering (FE10A)</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR 1001</td>
<td>Information Technology for Engineers (FE11A)</td>
<td>C3</td>
</tr>
<tr>
<td>MATH 1180</td>
<td>Engineering Mathematics I (M17A) (M26A)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 1000</td>
<td>Engineering Graphics (ME10A)</td>
<td>C3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNG 1005</td>
<td>Science of Materials A (CH15A)</td>
<td>E1</td>
</tr>
<tr>
<td>CVNG 1001</td>
<td>Mechanics of Fluids I (CE11B)</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 1002</td>
<td>Civil Engineering Design I (CE12C)</td>
<td>C2</td>
</tr>
<tr>
<td>CVNG 1003</td>
<td>Construction Techniques (CE13B)</td>
<td>C2</td>
</tr>
<tr>
<td>CVNG 1005</td>
<td>Science of Materials B (CE15B)</td>
<td>E2</td>
</tr>
<tr>
<td>ECNG 1007</td>
<td>Electrical Engineering Technology (EE18B)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 1001</td>
<td>Engineering Thermodynamics I (ME11B)</td>
<td>E3</td>
</tr>
</tbody>
</table>

LEVEL 2

Year-long Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 2002</td>
<td>Soil Mechanics (CVNG 1000) (CE22B)</td>
<td>E4</td>
</tr>
<tr>
<td>CVNG 2006</td>
<td>Structural Design 1 (CVNG1000) (CE225) (CE10A)</td>
<td>C4</td>
</tr>
</tbody>
</table>

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 2000</td>
<td>Geology (CVNG 1000) (CE10A) (CE20A)</td>
<td>E4</td>
</tr>
<tr>
<td>CVNG 2001</td>
<td>Structural Mechanics (CVNG 1000) (CE21A) (CE10A)</td>
<td>E3</td>
</tr>
<tr>
<td>MATH 2230</td>
<td>Engineering Mathematics II (M17A) (M26A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2004</td>
<td>Surveying for Civil Engineers (SV24C)</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 2003</td>
<td>Civil Engineering Design II (CE26C) (CE202) (CE12C)</td>
<td>C2</td>
</tr>
<tr>
<td>CVNG 2004</td>
<td>Civil Engineering Law (CE27B)</td>
<td>E2</td>
</tr>
<tr>
<td>CVNG 2005</td>
<td>Mechanics of Fluids II (CVNG 1001) (CE28B) (CE11B)</td>
<td>E3</td>
</tr>
<tr>
<td>MATH 2240</td>
<td>Statistics (M26B)</td>
<td>E2</td>
</tr>
<tr>
<td>SURV 2005</td>
<td>Surveying Project for Agricultural & Civil Engineers (SV24D)</td>
<td>C0</td>
</tr>
</tbody>
</table>
Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 3000</td>
<td>Civil Engineering Management (CE30C)</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 3003</td>
<td>Structural Design II (CVNG 3002) (CE31C) (CE31D)</td>
<td>C2</td>
</tr>
</tbody>
</table>

Plus ONE (1) of the following course options, subject to the approval of the Head of Department:

- CVNG 3001 Structural Engineering (CE31B) (CVNG 2001) (CVNG 2006) (CVNG 3002) (CE21A) (CE225) (CE31C)
- CVNG 3004 Structural Dynamics (CVNG 3002) (CE31E) (CE31C)
- CVNG 3006 Environmental Geotechnics (CE32B) (CVNG 3005) (CE32A)
- CVNG 3008 Environmental Engineering II (CE34B) (CVNG 2005) (CE28B)
- CVNG 3010 Transportation Engineering (CE37B) (CVNG 3009) (CE37A)
- CVNG 3011 Pavement Design & Management (CE37C) (CVNG 3009) (CE37A)
- CVNG 3013 Coastal Engineering (CE39C) (CVNG 2005) (CE28B)
- ENGR 3001 Natural Hazards & Disaster Management In the Caribbean (FE31B)

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNG 1005</td>
<td>Science of Materials A (CH15A)</td>
<td>E1</td>
</tr>
<tr>
<td>CVNG 1001</td>
<td>Mechanics of Fluids I (CE11B)</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 1002</td>
<td>Civil Engineering Design I (CE12C)</td>
<td>C2</td>
</tr>
<tr>
<td>CVNG 1003</td>
<td>Construction Techniques (CE13B)</td>
<td>C2</td>
</tr>
<tr>
<td>CVNG 1005</td>
<td>Science of Materials B (CE15B)</td>
<td>E2</td>
</tr>
<tr>
<td>ECNG 1007</td>
<td>Electrical Engineering Technology (EE18B)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 1001</td>
<td>Engineering Thermodynamics I (ME11B)</td>
<td>E3</td>
</tr>
</tbody>
</table>

LEVEL 2

Year-long Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 2002</td>
<td>Soil Mechanics (CVNG 1000) (CE22B)</td>
<td>E4</td>
</tr>
<tr>
<td>CVNG 2006</td>
<td>Structural Design I (CVNG 1000) (CE225) (CE10A)</td>
<td>C4</td>
</tr>
</tbody>
</table>

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 2000</td>
<td>Geology (CVNG 1000) (CE10A) (CE20A)</td>
<td>E4</td>
</tr>
<tr>
<td>CVNG 2001</td>
<td>Structural Mechanics (CVNG 1000) (CE21A) (CE10A)</td>
<td>E3</td>
</tr>
<tr>
<td>MATH 2230</td>
<td>Engineering Mathematics II (M17A) (M26A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2004</td>
<td>Surveying for Civil Engineers (SV24C)</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 3015</td>
<td>Special Investigative Project (Environmental) (CE360)</td>
<td>C3</td>
</tr>
</tbody>
</table>

LEVEL 3

Year-long Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

BSc in Civil with Environmental Engineering

LEVEL 1

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 1000</td>
<td>Mechanics of Solids (CE10A)</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 1004</td>
<td>The Civil Engineer in Society (CE14B)</td>
<td>E2</td>
</tr>
<tr>
<td>ENGR 1000</td>
<td>Introduction to Engineering (FE10A)</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR 1001</td>
<td>Information Technology for Engineers (FE11A)</td>
<td>C3</td>
</tr>
<tr>
<td>MATH 1180</td>
<td>Engineering Mathematics I (M17A)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 1000</td>
<td>Engineering Graphics (ME10A)</td>
<td>C3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 2000</td>
<td>Geology (CVNG 1000) (CE10A) (CE20A)</td>
<td>E4</td>
</tr>
<tr>
<td>CVNG 2001</td>
<td>Structural Mechanics (CVNG 1000) (CE21A) (CE10A)</td>
<td>E3</td>
</tr>
<tr>
<td>MATH 2230</td>
<td>Engineering Mathematics II (M17A) (M26A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2005</td>
<td>Surveying for Civil Engineers (SV24C)</td>
<td>E3</td>
</tr>
</tbody>
</table>

BSc in Civil with Environmental Engineering

LEVEL 2

Year-long Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 2002</td>
<td>Soil Mechanics (CVNG 1000) (CE22B)</td>
<td>E4</td>
</tr>
<tr>
<td>CVNG 2006</td>
<td>Structural Design I (CVNG 1000) (CE225) (CE10A)</td>
<td>C4</td>
</tr>
</tbody>
</table>

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 2000</td>
<td>Geology (CVNG 1000) (CE10A) (CE20A)</td>
<td>E4</td>
</tr>
<tr>
<td>CVNG 2001</td>
<td>Structural Mechanics (CVNG 1000) (CE21A) (CE10A)</td>
<td>E3</td>
</tr>
<tr>
<td>MATH 2230</td>
<td>Engineering Mathematics II (M17A) (M26A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2005</td>
<td>Surveying for Civil Engineers (SV24C)</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 3015</td>
<td>Special Investigative Project (Environmental) (CE360)</td>
<td>C3</td>
</tr>
</tbody>
</table>

LEVEL 3

Year-long Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

UNDERGRADUATE FACULTY BOOKLET 2004 – 2005

The Faculty of Engineering

[Page 44]
Semester 1
15 Credits
CVNG 3002 Structural Analysis (CE31C)
(CVNG 2001) (CVNG 2006) (CE21A)
(CE225)
CVNG 3005 Foundation Engineering (CVNG 2002)
(CE32A) (CE22B)
CVNG 3007 Environmental Engineering I (CE34A)
CVNG 3009 Highway Engineering (CE37A)
CVNG 3012 Water Resources (CVNG 2005)
(CE38B) (CE28B)

Semester 2
8 Credits
CVNG 3000 Civil Engineering Management (CE30C)
(CVNG 3002) (CVNG 3007)
CVNG 3016 Design of Environmental Systems
(CE31F) (CE32B) (CE38B) (CE28B)

Plus ONE (1) of the following course options, subject to the approval of the Head of Department.
CVNG 3006 Environmental Geotechnics (CE32B)
(CVNG 3005) (CE32A)
CVNG 3008 Environmental Engineering II (CE34B)
(CVNG 2005) (CVNG 3007) (CE28B)
(CE34A)
CVNG 3013 Coastal Engineering (CVNG 2005)
(CE39C) (CE28B)
ENGR 3001 Natural Hazards Management (FE31B)
E3

Note: The letter “E” or “C” preceding the credit allocation indicates Examination by written papers or by Coursework, respectively.

1. Course loadings in any semester shall not exceed the credits as stated above, unless approved by the University.
2. A minimum of 96 credits is required for graduation.

Syllabus
LEVEL 1
CVNG 1000 (CE10A)
Mechanics of Solids
3 Credits

CVNG 1001 (CE11B)
Mechanics of Fluids I
3 Credits

CVNG 1002 (CE12C)
Civil Engineering Design I
2 Credits
Concept of design and its contribution to the quality of life; Civil Engineering Design, the role of geomatics, the environment, and scientific laws in design; Introduction to the design of buildings and Civil Engineering Infrastructure, site appraisal; Risk and vulnerability in design; Health and safety in Civil Engineering Design, environmental impact assessment; Civil Engineering drawing, CAD techniques, introduction to GIS techniques.

FOR COURSE CODES, SEE PAGE 27
CVNG 1003 (CE13B)
Construction Techniques
2 Credits
Introduction to Construction: Construction in the context of National Physical Planning, land development: construction techniques of sewer, drainage, road and wastewater collection and disposal systems. Building systems, construction delivery systems and construction contracts, the principles of construction management, construction capacity, legislation, regulations, and funding; Materials handling, construction health and safety.

CVNG 1004 (CE14B)
The Civil Engineer in Society
2 Credits
Historical development of Civil Engineering; contribution to the quality of life; branches and sub-disciplines in Civil Engineering; The investigative process and technological progression; the role of the environment, conservation and restoration in the provision of buildings and infrastructure; Risk, vulnerability and mitigation in the provision of social, commercial and lifeline facilities; Ethical issues in Civil & Environmental Engineering, their nature and character; International standards of professional behaviour and codes of ethics.

CVNG 1005 (CE15B)
Science of Materials
2 Credits
Fundamental structure, properties and behaviour of other major materials used in Civil Engineering; concrete, asphalt, timber, soil, rock, paints, polymers, adhesives, composite materials; Durability and deterioration; Hazardous materials, classification and handling; Hazardous materials, classification and handling.

LEVEL 2

CVNG 2000 (CE20A)
Geology
4 Credits
Fundamental geology for Civil Engineers: The Rock Cycle Structure and geological history of the Earth, surface geological processes, structural geology, geologic maps and their interpretation. Engineering geology - topics and concepts: Principles of rock mechanics, engineering properties of rocks, the stability of slopes and cuttings, industrial rocks and minerals, hydrogeology, geotechnical investigation, engineering seismology, dams and reservoirs. Field trips, tutorial sessions.

CVNG 2001 (CE21A)
Structural Mechanics
3 Credits
Introductory concepts, equilibrium and compatibility, statical determinacy; compatibility of deformations, flexibility method applied to simple flexural systems; analysis of beams (flexure, shear, thin-walled sections); compression members, strain energy and related theorems. Analysis of beams (asymmetrical bending); simple plastic theory (hinges, mechanism, equilibrium diagram method, redistribution of bending moments, moment capacity, fundamental theorems of plastic collapse), approximate methods of analysis; influence lines for statically determinate systems.

CVNG 2002 (CE22B)
Soil Mechanics
4 Credits
CVNG 2003 (CE26C)
Civil Engineering Design II
2 Credits
Innovation in design, the investigative process: designing for health and safety, risk and vulnerability; role of analysis, synthesis and optimisation in design; project planning, networks and graphs; embankments, dams, drainage design, geometric design of roads, environmental impact assessment.

CVNG 2004 (CE27B)
Civil Engineering Law
2 Credits
The impact of Law on the delivery of Civil Engineering services and works; the building process, regulating agencies, national physical development planning, approvals, standard form of construction contracts; Health and safety laws and regulations; liability, claims, conflict resolution, conciliation, arbitration and litigation; the value of engineering ethics, professional worthiness, consequences of ethical and unethical behaviour; professional practice, partnerships, companies and cooperatives; industrial relations, labour legislation and trade unions.

CVNG 2005 (CE28B)
Mechanics of Fluids II
3 Credits
Rotational and irrotational flow; potential flow. Euler and Navier-Stokes equations. Bernoulli theorem, Reynolds stresses, lift and drag, curved flow, vortices. Open channel flow, energy and momentum principles, critical depths, hydraulic jump, backwater curves, surges, resistance to flow, waves, model analysis, sediment transport.

CVNG 2006 (CE225)
Structural Design I
4 Credits
Conceptual design of structures; structural design of steel, reinforced concrete, timber and masonry structures, use of construction materials in design.

LEVEL 3

CVNG 3000 (CE30C)
Civil Engineering Management
3 Credits
Introduction to management theory; human resource management, leadership, corporate strategy, communication, conduct of meetings; Management information systems (MIS); resolution of engineering ethics, Civil Engineering case studies, resources and reasoning methods; Civil Engineering project management, networks and graphs, quality management; Facilities management, maintenance management, managing health and safety; Introduction to management accounting and financial management.

CVNG 3001 (CE31B)
Structural Engineering
3 Credits

CVNG 3002 (CE31C)
Structural Analysis
3 Credits
Symmetry and anti-symmetry, indeterminacy, slope deflection, moment distribution, structural dynamics, stability, pre-stressed concrete, plates, combined bending and axial loads, arches, influence lines, suspension cables.

CVNG 3003 (CE31D)
Structural Design II
2 Credits
Computer modelling, hurricane resistant design, earthquake resistant design, liquid retaining structures, shear walls, pre-stressed concrete.
CVNG 3004 (CE31E)
Structural Dynamics
3 Credits

CVNG 3005 (CE32A)
Foundation Engineering
3 Credits
Site investigations, bearing capacity and settlement, design of spread footings and rafts, pile foundations, sheet pile walls.

CVNG 3006 (CE32B)
Environmental Geotechnics
3 Credits
Geotechnical aspects of environmental control - expansive soils, identification and classification, design of buildings and pavements. Landslides, geotech investigations, stability analysis, stabilisation techniques. Earthquakes, liquefaction of sands, effect on retained structures and earthdams. Land-use planning.

CVNG 3007 (CE34A)
Environmental Engineering I
3 Credits
Environmental needs and priorities, pollution, the role of environmental engineering, water quality standards, unit operations in water treatment, sources of wastewater, wastewater quality and effluent standards, unit operations in wastewater treatment, on site treatment and disposal, stream purification processes, sources of solid wastes, treatment of solid and faecal wastes, control of leachates, recycling, environmental impact assessment, soil conservation systems and mitigation of forest destruction.

CVNG 3008 (CE34B)
Environmental Engineering II
3 Credits
Water supply systems, wastewater collection and disposal systems, hydraulics of treatment plants, pumping stations, urban storm water drainage systems, industrial wastewater and pollutants, treatment systems for industrial and agricultural waste water, solid waste collection systems disaster mitigation, environmental engineering in the built environment.

CVNG 3009 (CE37A)
Highway Engineering
3 Credits
Highway traffic characteristics, capacity of roadways and intersections, design of intersections, traffic management, parking studies; environmental impact, road safety; route location, economic analysis, introduction to transportation planning; pavement materials, pavement and drainage design; quality control and pavement maintenance management systems.

CVNG 3010 (CE37B)
Transportation Engineering
3 Credits
Transport policy, economics and mathematics; design operation and management of air, land and sea transportation systems; Transportation planning, Intelligent Transportation Systems (ITS), architecture design and management; Road safety management systems; managing the environmental impact of transportation.

CVNG 3011 (CE37C)
Pavement Design & Management
3 Credits
Roads and highways pavement design, airport runway design, seaports and special pavements, pavement management systems, road rehabilitation and maintenance.
CVNG 3012 (CE38B)
Water Resources
3 Credits
The water resource system, meteorology, hydrologic cycle, hy-
dro-meteorologic measurements and instrumentation, hydro-
logic statistics, rainfall and run-off, unit hydrographs, low flows,
impoundment reservoirs, reservoir safety, groundwater flow,
flow to wells, seawater intrusion, and contaminant transport.

CVNG 3013 (CE39C)
Coastal Engineering
3 Credits
Introduction to coastal zone management; The marine envi-
ronment, coastal processes; Wave generation and propagation;
Coastal sediment transport, sediment budget; Port and ma-
rine structures. Design of coastal defense works; Port-plan-
ing and management. Coastal pollution control, EIA and waste
dealposal in the coastal zone.

CVNG 3014 (CE335)
Civil Engineering Design Project
6 Credits
The purpose of this course is to develop the student’s ability in
Civil Engineering Design, as well as the ability to work in a
team. The emphasis is on self-learning, creativity, design, un-
derstanding, project team-working and communication skills,
as well as engineering judgement and problem solving. The
project gives professional orientation to work in the final year
by simulating as closely as is possible the investigation and
design works which are required for substantial Civil Engi-
eering works and projects in the provision of buildings, life-
line facilities and Civil Engineering infrastructure. The inte-
gration of health and safety, and risk and vulnerability in the
design process gives the student a complete outlook on the
design process.

CVNG 3015 (CE360)
Special Investigative Project
3 Credits
This course is a project-based one, designed to generate an
investigative learning atmosphere. The project work is carried
out year-long, engenders a sense of enquiry, research and veri-
fication in the student, and draws on the first two years of
learning in the programme. The emphasis is on self-learning,
creativity, understanding, communication skills, as well as on
engineering analysis and problem solving. The projects are
supervised by tutors from the Department of Civil & Environ-
mental Engineering. Special permission may be sought to pur-
sue a relevant engineering-based project in other Departments
in the Faculty of Engineering.

CVNG 3016 (CE31F)
Design of Environmental Systems
2 Credits
Environmental and hydraulic design of water treatment sys-
tems; design of domestic wastewater collection and treatment
systems; functional design of advanced wastewater treatment
systems; design of industrial water and wastewater treatment
systems; structural design of water and wastewater treatment
systems and vessels; structural design of conduits, and sup-
ports; earthquake, hurricane and hazard-resistant design pro-
cedures and typical details for hydraulic structures, conduits
and supports.
DEPARTMENT OF
ELECTRICAL & COMPUTER
ENGINEERING

Electrical & Computer Engineering is primarily concerned with the application of electrical, electronic and electromechanical technology to diverse aspects of human endeavour in business and industry, for entertainment and health services. These activities may include generation, distribution and utilisation of electrical energy; design, production and installation of electrical and electronic equipment; development of systems for communication; use of systems for monitoring and automatic control of engineering equipment; and development of systems for storing, communicating and processing all types of information.

Electrical technology has found widespread use in fields such as measurement, control, automatic computation and bioengineering. Moreover, the exploitation of abstract systems-oriented concepts, which have evolved largely from the rigorous analysis of problems in Electrical Engineering, has engendered fields of exploration and endeavour which are essentially independent of the basic physical principles of electron flow. These new fields include areas such as Information Technology and Software Engineering that are concerned with the development of systems for managing data flow. Unprecedented advances in all aspects of information technology have contributed significantly to the predominance of Electrical Engineering as the fastest growing discipline in the field of engineering.

The successful practice of Electrical & Computer Engineering very often requires the application of the advanced mathematics and physics. A good engineer must therefore master the relevant concepts so as to be able to competently analyse and resolve the various issues which arise in the field.

Head of Department
Dr. Brian Copeland

Administrative Assistant
Ms. Simone Roberts

Clerical Assistant
Ms. Susan Turnbull-Fortune
Academic Staff

Brian R. Copeland,
BSc (Eng) (UWI), MSc (Toronto), PhD (USC)
Senior Lecturer and Head of Department
Leader, Control Systems Group
(Control Systems, Digital Electronics, Microprocessors)

Kenneth S. Julien,
CMT, BSc (Nott), PhD (UBC), FIEEE, FIEEE
Professor Emeritus in Energy Systems

Stephan J. G. Gift,
BSc (Eng), PhD (UWI), FAPETT, SMIEEE, MCAS
Senior Lecturer
Leader, Electronics Systems Group
(Electronics & Control Systems)

Kim Mallalieu,
BSEE (MIT), MSc (Rochester), PhD (Lond), MSPIE, MAPETT
Senior Lecturer
Leader, Communications Group
(Communications, Optics)
(Digital Communications)

Chandrabhan Sharma,
BSc, MSc (Eng), PhD (UWI), SMIEEE, MAPETT, SenMemISA, MAWEA, REng
Senior Lecturer
Leader, Energy Systems Group

Jagat N. Tripathi,
BSc (Agra), BE (IISc, Bangalore), ME (IISc, Bangalore), PhD (Aston), CEng, MIEEE, FIETE (India)
Senior Lecturer
(Telecommunications, Electronics)

St. Clair A. King,
BSc, MSc (MIT) (Eng), PhD (Glas)
Senior Lecturer (Temporary)
(Electrical Circuits & Control Systems)

Fernando Castellanos,
BSc, MSc (Colombia), PhD (British Colombia)
Lecturer
(Energy Systems Simulation)

Ronald De Four,
BSc, MPhil (Eng) (UWI), MIEEE
Lecturer
(Electronics, Power Systems)
(Power Electronics, Energy Systems)

Albert Kong,
BSc, MPhil, PhD (Eng) (UWI)
Lecturer
(Artificial Intelligence Systems, Computers & Controls)

Alvin Lutchman,
BSc, PhD (Eng) (UWI), MIEEE
Lecturer
(Computing, Electronics)

Feisal Mohammed,
BSc, PhD (Eng) (UWI), MIEEE
Lecturer
(Computing, Electronics)

Richelle Adams,*
BSc, MSc (Eng) (UWI/Lucent)
Assistant Lecturer
(Data Communication Systems)

Varun Chogah,
BSc, MSc (Eng) (UWI)
Assistant Lecturer
(Communication Systems)

*On leave
Tarun Pinto-Pereira,
BSc (Eng) (UWI), MSc (UMIST)
Assistant Lecturer
(Communication Systems)

Frances Correia,
BSc (Comp Eng Systems) (Florida), BSc (Business Mngt) (Florida)
Honorary Consultant
(Computer Systems)

Winston Lakshman,
BSc (Eng) (UWI), MSc (Florida)
Honorary Consultant
(Control Systems)

Bernard Mitchell,
BSc, MSc (Eng) (UWI), MSc (Bus Adm) (Scotland)
Honorary Consultant
(Communication Systems)

Linus Rogers,
BSc (Eng), MSc (USA)
Honorary Consultant
(Electronic Systems)

Indarjit Singh,
BASc, MEng (Toronto)
Honorary Consultant
(Energy Systems)

Kirk Lashley,
BSc (Eng) (UWI)
Assistant Development Engineer

Byron Marcel,
BSc (Eng) (UWI)
Research Superintendent

Patrick Browne,
BSc (Eng) (UWI)
Teaching Assistant

Benoit Heumez,
BEng (France), BSc, MPhil (UK)
Teaching Assistant

Emily Ramoutar,
BSc (Eng) (UWI)
Teaching Assistant

Schedule of Courses

Accredited by the Institute of Electrical Engineers (IEE) of the UK to the BEng level, en route to CEng status.

BSc in Electrical & Computer Engineering

LEVEL 1

Semester 1
ECNG 1003 Electronics (EE13D)
ECNG 1009 Introduction to Programming (EE10C)
ECNG 1010 Communication Skills for Engineers (EE10G)
ECNG 1012 Engineering Science & Technology (EE12E)
ECNG 1180 Engineering Mathematics I (M17A)

Semester 2
ECNG 1000 Electrical Circuits (EE10A)
ECNG 1004 Introduction to Electrical Energy Systems (EE14B) (ECNG 1000)
ECNG 1006 Laboratory & Project Design I (EE17D)
ECNG 1013 Introduction to Thermodynamics (EE12F)
ECNG 1014 Digital Electronics (EE19D)

LEVEL 2

Semester 1
ECNG 2000 Electromechanical Energy Conversion Systems (ECNG 1004) (EE20A)
ECNG 2004 Laboratory & Project Design II (ECNG 1006) (EE24C)
ECNG 2011 Signals & Systems (EE20C)
ECNG 2012 Electronics & Instrumentation (EE26D)
MATH 2210 Engineering Mathematics II (M26A)
<table>
<thead>
<tr>
<th>Semester 2</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 2001</td>
<td>Communications I (EE22A) E3</td>
</tr>
<tr>
<td>ECNG 2005</td>
<td>Laboratory & Project Design III (EE24D) C3</td>
</tr>
<tr>
<td>ECNG 2007</td>
<td>Computer Systems & Software Design (EE26A) E3</td>
</tr>
<tr>
<td>ECNG 2009</td>
<td>Control Systems (ECNG 1005) (EE27B) E3</td>
</tr>
</tbody>
</table>

Level 3

<table>
<thead>
<tr>
<th>Year-long Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 3020 Special Project (EE302) C6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Compulsory</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 3015</td>
<td>Industrial & Commercial Electrical Systems (EE36C) E3</td>
</tr>
<tr>
<td>ECNG 3021</td>
<td>Introduction to Engineering Management & Accounting Systems (EE30A) E4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 3022</td>
</tr>
</tbody>
</table>

All other courses are chosen from the regular list of options to a total minimum of 33 credits, i.e., a programme total of 93 credits, subject to the approval of the Head of Department to be chosen from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3100</td>
<td>Operating Systems (CS31A) E4</td>
</tr>
<tr>
<td>COMP 3700</td>
<td>Compiling Techniques (CS36E) E4</td>
</tr>
<tr>
<td>COMP 3750</td>
<td>Numerical Computing I (CS37A) E4</td>
</tr>
<tr>
<td>ECNG 3001</td>
<td>Communication Systems II (EE31B)(ECNG 2001) (EE22A) E3</td>
</tr>
<tr>
<td>ECNG 3002</td>
<td>Data Communication Systems (EE31D) E3</td>
</tr>
<tr>
<td>ECNG 3003</td>
<td>Telecommunication Networks (EE31T) E3</td>
</tr>
<tr>
<td>ECNG 3004</td>
<td>Control Systems Applications (EE32D)(ECNG 2009) (EE27B) E3</td>
</tr>
<tr>
<td>ECNG 3005</td>
<td>Modern Control Theory (EE32D) (ECNG 2009) (EE27B) E3</td>
</tr>
<tr>
<td>ECNG 3006</td>
<td>Microprocessor Systems Design & Applications (ECNG 2006) (EE33A) (EE25M) E3</td>
</tr>
<tr>
<td>ECNG 3007</td>
<td>Network Synthesis (EE33B) E2</td>
</tr>
<tr>
<td>ECNG 3008</td>
<td>Power Electronics Circuits (EE33D) (ECNG 2000) (EE20A) E3</td>
</tr>
<tr>
<td>ECNG 3009</td>
<td>Instrumentation Systems (EE35E) E3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 3010</td>
<td>Electrical Machines & Drive Systems (ECNG 2000) (EE20A) (EE35M) E3</td>
</tr>
<tr>
<td>ECNG 3011</td>
<td>Power Systems Protection (EE35P) E3</td>
</tr>
<tr>
<td>ECNG 3012</td>
<td>Power Systems Analysis (EE35S) (ECNG 3015) (EE36C) E3</td>
</tr>
<tr>
<td>ECNG 3013</td>
<td>Electrical Transmission & Distribution Systems (EE35T) E3</td>
</tr>
<tr>
<td>ECNG 3014</td>
<td>Discrete Signal Processing (EE36A) E2</td>
</tr>
<tr>
<td>ECNG 3016</td>
<td>Digital Electronics III (EE37C) (ECNG 2003) (EE23B) E3</td>
</tr>
<tr>
<td>ECNG 3017</td>
<td>Computer Applications in Energy Systems (EE38B) C3</td>
</tr>
<tr>
<td>ECNG 3018</td>
<td>Advanced Software Engineering (EE38D) E2</td>
</tr>
<tr>
<td>ECNG 3019</td>
<td>Digital Control System Design (EE39B) (ECNG 2009) (EE27B) E2</td>
</tr>
<tr>
<td>ECNG 3023</td>
<td>Introduction to Software Engineering (EE38C) C3</td>
</tr>
<tr>
<td>ENGR 3000</td>
<td>The Technology of the Steelpan (FE30B) (M26A) E3</td>
</tr>
<tr>
<td>IENG 3009</td>
<td>Database Systems Design (IE34A) E4</td>
</tr>
<tr>
<td>MATH 3530</td>
<td>Mathematics III (M26A) (M37A) E3</td>
</tr>
<tr>
<td>MENG 3001</td>
<td>Engineering Management II (ME30B) E2</td>
</tr>
<tr>
<td>MENG 3006</td>
<td>Production Management Distribution Systems (ME31C) E3</td>
</tr>
</tbody>
</table>

Provided that the total number of credits over the two semesters amounts to not less than 33 and that course loadings as recommended by the University are not exceeded. A minimum of 93 credits is required for graduation.

Students doing Level 3 courses must first register for courses listed above as compulsory. They must then select one of the following streams of specialty by registering for those courses which are listed in the Department’s 2001/2002 Student Guide, as mandatory for that stream:

- Communication Systems
- Computer Systems
- Control Systems
- Electronic Systems
- Energy Systems
Students are asked to note that:

i. The above lists all courses which the Department is authorised to teach at the Undergraduate level. Year 3 students should consult the Student Guide for the list of optional courses which the Department will actually offer and their respective semesters of offering.

ii. Selection of a particular stream of specialisation does not exclude the possibility of registering for courses in other areas. Students are advised to consult the Department's current Student Guide for the list of mandatory courses.

iii. Registration for Level 3 courses will not be approved until credits for all required Level 1 courses have been attained. The Student Guide as well as other more detailed information may be obtained from the Department’s website at: http://www.eng.uwi.tt/depts/elec

Note: The letter “E” or “C” preceding the credit allocation indicates Examination by written papers or by Coursework, respectively. All “CS” courses are completely administered by the Department of Mathematics & Computer Science.

Syllabus

LEVEL 1

ECNG 1000 (EE10A)
Electrical Circuits
3 Credits
Introduction to signals and systems, modelling of electrical systems and devices, network theorems, nodal and loop analysis, circuits with reactances. Transient response, AC steady state analysis, phasor analysis of single phase systems.
(Prerequisites: None)

ECNG 1002 (EE12E)
Engineering Science & Technology
3 Credits

ECNG 1003 (EE13D)
Electronics
3 Credits

ECNG 1004 (EE14B)
Introduction to Electrical Energy Systems
3 Credits
Steady state power analysis, polyphase circuits, magnetically coupled circuits, introduction to magnetic circuits, variable frequency-networks and filters, two-port networks.

FOR COURSE CODES, SEE PAGE 27
ECNG 1006 (EE17D)
Laboratory & Project Design I
3 Credits

ECNG 1009 (EE10C)
Introduction to Programming
3 Credits
Standard algorithms and general problem-solving using algorithms. Number representations and binary number manipulation. Algorithm coding on a language-independent platform and in C++. Evaluation is 100% by coursework.

ECNG 1010 (EE10G)
Communication Skills for Engineers
2 Credits
This course is an introduction to technical writing and oral presentation. It covers the basics of analysing and writing for audiences; writing technical reports, instructions, proposals; preparing for and presenting oral reports; using headings, lists, and notices; creating tables, charts, graphs, illustrations; finding and documenting information; technical-writing-specific mechanics and style; and a review of grammar, usage, and punctuation.

ECNG 1013 (EE12F)
Introduction to Thermodynamics
2 Credits

ECNG 1014 (EE19D)
Digital Electronics
3 Credits
Boolean algebra, number systems, binary arithmetic and number codes. Karnaugh map representations. Function minimisation using the Karnaugh map. Introduction to logic families, common logic devices, noise levels. Sequential logic and design. Logic design using CPLDs and FPGAs.

LEVEL 2

ECNG 2000 (EE20A)
Electromechanical Energy Conversion Systems
3 Credits
(Prerequisite: EE14B Electrical Circuit Analysis II)

ECNG 2001 (EE22A)
Communications I
3 Credits
ECNG 2004 (EE24C)
Laboratory & Project Design II
3 Credits
Non-routine laboratory exercises and simple design projects, based on the courses covered in Year 1 and Semester 1 Year 2; Computer-aided electrical network analysis.

ECNG 2005 (EE24D)
Laboratory & Project Design III
3 Credits
Advanced laboratory exercises including design and application of computer programmes. Design of common sub-systems and systems used in electrical engineering.

ECNG 2006 (EE25M)
Introduction to Microprocessors
3 Credits

ECNG 2007 (EE26A)
Computer Systems & Software Design
3 Credits

ECNG 2008 (EE26B)
Electronics & Instrumentation
3 Credits

ECNG 2009 (EE27B)
Control Systems
3 Credits
Dynamical linear system control using the classical approach. *(Prerequisite: EE15B Signals & Systems)*

ECNG 2010 (EE29B)
Introduction to Software Engineering
3 Credits

ECNG 2011 (EE20C)
Signals & Systems
3 Credits
Introduction to continuous and discrete linear time invariant (LTI) systems including State Space Representation. Fourier, Laplace and Z transforms (LTI) models. Applications of these models in system analysis and simple design.
LEVEL 3

ECNG 3001 (EE31B)
Communication Systems II
3 Credits
(Prerequisite: EE22A Communication Systems I)

ECNG 3002 (EE31D)
Data Communication
3 Credits

ECNG 3003 (EE31T)
Telecommunication Networks
3 Credits
Telecommunication vs. data communication networks. Structure, functional components and operating principles of telecommunication networks. The following subsystems are treated in detail: transmission systems (examples drawn from PDH and SONET), switching systems (circuit, packet, frame and cell switching using time and space division technologies), signalling systems (examples drawn from SS7) and access systems (examples drawn from cellular radio and digital subscriber line technology).

ECNG 3004 (EE32E)
Control Systems Applications
3 Credits
Introduction to Chemical Processes, Chemical process control elements, actuators, electrical, hydraulic and pneumatic instrumentation, Signal Protocols, PLCs, Instrumentation installation standards, SCADA and DCS systems. The course entails a mini project which contributes to the final grade.
(Prerequisite: EE27B Control Systems)

ECNG 3005 (EE32D)
Modern Control Systems
3 Credits
(Prerequisite: EE27B Control Systems)

ECNG 3006 (EE33A)
Microprocessor Systems - Design & Applications
3 Credits
(Prerequisite: EE25M Introduction to Microprocessors)

ECNG 3007 (EE33B)
Network Synthesis
2 Credits
ECNG 3008 (EE33D)
Power Electronics Circuits
3 Credits
Characteristics of thyristors, switching devices; commutation principles; controlled rectifiers, choppers, AC phase controllers, inverters and cyclo converters; applications.

ECNG 3009 (EE35E)
Instrumentation Systems
3 Credits
Instrument performance. Sensors and sensing techniques. Review of signal conditioning, non-linearity and linearisation, transmission, conversion system design, computer-based instrumentation, noise and error analysis, computer communications in instrumentation, reliability, case study, e.g., in biomedical instrumentation.

ECNG 3010 (EE35M)
Electrical Machines & Drive Systems
3 Credits
Power electronics and drive systems for control of electrical machines; general characteristics, rectifier fed DC motors; induction motor drives with AC phase controllers; inverter fed induction motor drives; slip energy recovery schemes. Electric traction.
(Prerequisite: EE20A Electromechanical Energy Conversion)

ECNG 3011 (EE35P)
Power Systems Protection
3 Credits
Operating principles of relays - electromagnetic relays - static relays - overcurrent relays - directional relays - differential relays - distance protection - protection of transformers, generators, busbars, feeders - CTs and PTs - pilot wire and other communications used in protection - microprocessors and computer applications in protection - testing and maintenance of protective systems.

ECNG 3012 (EE35S)
Power Systems Analysis
3 Credits

ECNG 3013 (EE35T)
Electrical Transmission & Distribution Systems
3 Credits
Analysis and design of transmission and distribution systems - insulators and cables - power system economics - tariff structures - power factor correction - maintenance techniques and reliability analysis.

ECNG 3014 (EE36A)
Discrete Signal Processing
2 Credits

ECNG 3015 (EE36C)
Industrial & Commercial Electrical Systems
3 Credits
Symmetrical components: fault levels/fault calculations; protection devices and their applications; earthing and earthing design; basic illumination engineering and lighting layout design; switchgear and applications; parallel operation of transformers; codes/standards.
ECNG 3016 (EE37C)
Digital Electronics III
3 Credits

ECNG 3017 (EE38B)
Computer Applications in Energy Systems
3 Credits
Use and design of software for power system applications. Computer-aided planning, design and operation of power systems. Computer-aided design of electrical machines. Introduction to SCADA and real time systems as applied to energy systems.

ECNG 3018 (EE38D)
Advanced Software Engineering
2 Credits
Propositional and predicate calculus. System modelling and analysis: Functional, operational modelling and analysis using primitive date types; visualisation tools. Introduction to design: methodologies; policies; decomposition; implementation bias. Implementation; documents; maintenance; software engineering software tools.

ECNG 3019 (EE39B)
Digital Control System Design
2 Credits
Overview of the control problem; review of discrete time. System modelling, state space methods; feedback designs, performance criteria, stability considerations; optimal discrete time control, microprocessor implementation of digital controllers; real time control systems; computers in industrial control; distributed data processing and control.

ECNG 3020
Special Project
6 Credits
Special projects will be undertaken by all students under the supervision and direction of academic staff of the department. Examination will be by coursework.(Coursework)

ECNG 3021 (EE30A)
Introduction to Engineering Management & Accounting Systems
4 Credits
Accounting and Finance: Introduction to Financial Accounting, financial statements and analysis; Time Value of Money; NPV and DCF; capital budgeting cash flows & techniques. Management & Organisational Theory: Theory of Organisations; motivation; leadership, communication, human resource development/strategic planning; Organisational Development and Change. Marketing: conceptual framework and analytical skills required for the analysis of markets and marketing activities of firms in a dynamic environment. Production Management, planning and control: Demand Forecasting and analysis; Break even analysis; Inventory control; Project Management, PERT, CPM, Project evaluation; Quality Management. Introduction to Business Law: formation of companies and general legal requirements; general principles of Contract and Tort; Law of Agency; sale of goods and Hire Purchase Act.

ECNG 3022 (EE30C)
Electromagnetic Field Theory
3 Credits
The Faculty of Engineering

DEPARTMENT OF MECHANICAL & MANUFACTURING ENGINEERING

The mission of the Department is to provide high quality education at undergraduate and graduate levels in order to provide well-informed, highly motivated engineering graduates with the necessary technical, analytical and management competence and social awareness to have the potential to become the future leaders and to enhance the quality of life within the Caribbean and beyond, particularly the creation of products, systems and service.

Mechanical Engineering is concerned with the design, manufacture, testing, operation and maintenance of various types of machinery, industrial plants and systems and often includes the executive management of industries.

Manufacturing Engineering deals with creative and innovative activities and operations involving product design, materials selection, production planning, quality assurance and management, and marketing of consumer products, intermediate and capital goods. It includes the concurrent design and development of tooling, processes, machines and equipment, and methods for integrating facilities and systems by which products may be manufactured for local, regional and global markets.

Industrial Engineering is concerned with the analysis, design and improvement of integrated industrial systems that stress enterprise development, entrepreneurship and technological innovation. It includes process and systems design, operations research, human factors, information technology and project management that cut across other major engineering and management disciplines. Industrial engineering has applications to a broad range of industries including manufacturing firms, processing plants, off-shore operations, banks, insurance companies, hospitals and government departments.

Mechanical Engineering with Minor in Biosystems Engineering –

Biosystems Engineering is defined as the application of engineering principles to modern food and fibre production, and to bulk handling, storage and processing systems for biological products. It covers the areas of mechanisation (field, transport and plant), infrastructural development, post-harvest technology and food engineering, including food plant machinery. All the courses are rooted in the fundamentals of engineering, e.g., heat and mass transfer, fluid mechanics, dynamics and mechanics of machines, engineering mathematics, etc. However, engineering applications are focused in the biological/food production areas. This will be the definition followed in the pro-
posed Minor and, as can be seen from the course structure appended to Mechanical Engineering.

Head of Department
Dr. Winston G. Lewis

Secretary
Mrs. Marlene Fletcher-Cockburn

Telephone No: 662-2002; Ext: 2170

Academic Staff

Winston G. Lewis,
BSc (Eng), MPhil (UWI), PhD (Tuns), MAPETT, MISS, MTSISSL
Senior Lecturer and Head of Department
(Manufacturing Technology, Plant Layout & Ergonomics)

Gurmohan Singh Kochhar,
BE (Baroda), MS (Wisconsin), PhD (UWI), MASME, MASHRAE, FAPETT
Professor of Mechanical Engineering
(Applied Thermodynamics, Energy)

Chris Vasisht Narayan,
BSc, MSc (Guelph), PhD (Mich State), MAPETT
Professor of Agricultural Engineering
(Engineering Design, Agricultural Mechanisation)

Upamaka Rama Krishna Rao,
BTech, MTech (IIT) (Kharagpur), DIC, MSc, PhD (London)
Professor of Production Engineering & Management
(Machine Tools, Metal-cutting, CAD/CAM, Production Systems)

Clement K. Sankat,
BSc (Eng), MSc (UWI), PhD (Guelph), FI AgrE, CEng, MASAE, MAPETT
Professor and Dean of Faculty
(Post-harvest & Food Process Engineering, Engineering Graphics & Design)

Edwin Ikenna Ekwue,
BEng (Nigeria), MSc, PhD (Cranfield), MASAE, MNSAE
Senior Lecturer
(Land & Water Engineering, Structures & Environment)

Clément A.C. Imbert,
BSc (Eng) (UWI), MScTech (Brunel), PhD (UWI), FAPETT, MASME, REng
Senior Lecturer
(Materials Technology & Manufacturing Processes)

Srirangapattanam Y. Keshavan,
BE (Bangalore), ME, PhD (IIS)
Senior Lecturer
(Stress Analysis, Applied Mechanics)

Stanley Lau,
BSc (Eng) (UWI), MEng (Cornell), MSc (Accounting) (UWI)
Senior Lecturer, CSE, MAPETT, MIEEE
(Industrial Management, Engineering Economics & Finance)

Prakash Persad,
BSc (Eng), PhD (UWI), AMASME, MAPETT
Senior Lecturer
(Control Systems, Robotics, Energy)
Kit Fai Pun,
MSc (Stirling), MEd (Manchester), MSc (Middlesex), MPhil (City Univ, Hong Kong), PhD (Newport), PhD (Middlesex), CEng, EurIng, CPEng
Senior Lecturer
(Industrial Engineering & Management)

Nagamuttu S. Arumugadasan,
BSc (Eng) (Ceylon), MSc (Sussex), MPhil (UWI), CEng, FIMechE, FIE (Sri Lanka), CQE, MORS, MASQ
Lecturer
(Systems Modelling & Optimisation)

Jacqueline Bridge,
BSc (Eng) (UWI), PhD (Cornell), Dip Ed (UTech), MASME
Lecturer
(Applied Mechanics, Vibrations)

Boppana V. Chowdary,
BTech (Nagarjuna), MTech, PhD (IIT Delhi)
Lecturer
(Production Technology, CAD/CAM, Manufacturing Systems)

Ruel Ellis,
BSc (Eng) (UWI), MSc (Brunel)
Lecturer
(Industrial Engineering)

Krishpersad Manohar,
BSc (Eng), PhD (UWI), MASME, AMASHRAE
Lecturer
(Applied Thermodynamics)

Nishantha Arumugadasan,
BSc (Elec), MSc (Eng Man) (UWI)
Part-time Lecturer
(Maintenance & Safety Engineering)

Keith Belle,
BSc (Eng), PG Dip (Brunel)
Part-time Lecturer
(Materials Technology)

Benedict Chatoor,
BSc (UWI), PG Dip (Aston)
Part-time Lecturer
(Materials Technology)

Arnim Drakes,
BSc (Eng) (UWI), MSc (Bir)
Part-time Lecturer
(Maintenance & Safety)

Kishore J hagroo,
BSc, MSc (Eng) (UWI)
Part-time Lecturer
(Maintenance Engineering & Management)

Jason Mohammed,
BA (Cambridge), MSc (Eng Man) (UWI), ACCA Dip (Fin Mgt)
Part-time Lecturer
(Materials Technology)

Karene Ramkissoon,
BA (Psychology) (New York), EMBA (UWI)
Part-time Lecturer
(Industrial Marketing)

Pallant Ramsundar,
BSc (Mech Eng) (UWI), MSc (Prod Eng & Mgt) (UWI), Dip (Mgt Stud) (UWI),
Part-time Lecturer
(Production Design & Development)

Franklin Sankar,
BSc (Elec) (UWI), MSc (Prod Eng & Mgt)
Part-time Lecturer
(Project Management)

Lennox Sealy,
BSc (Agric), Dip (Tech) (UWI), Dip (French Lang & Civ), MS (France),
PhD (Biochem & Physiology) (France), Dip (Mgt Stud) (UWI), EMBA (UWI)
Part-time Lecturer
(Human Resource Management)

Selwyn Tom Pack,
BSc, MSc (Eng) (UWI)
Part-time Lecturer
(Engineering Graphics & Design)

Sennen Matabadal,
BSc, MSc (UWI)
Honorary Lecturer in Mechanical Engineering
(Power Plant Engineering)
Schedule of Courses

BSc (Hons) Programmes in the Department of Mechanical and Manufacturing Engineering have been accredited by the Institute of Mechanical Engineers (IMechE) of the UK to the BEng level, en route to CEng.

BSc in Industrial Engineering

LEVEL 1

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 1001</td>
<td>Information Technology for Engineers (FE11A)</td>
<td>C3</td>
</tr>
<tr>
<td>MATH 1180</td>
<td>Engineering Mathematics I (M17A)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 1000</td>
<td>Engineering Graphics (ME10A)</td>
<td>C3</td>
</tr>
<tr>
<td>MENG 1003</td>
<td>Engineering Statics (ME13A)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 1005</td>
<td>Workshop Technology (ME14B)</td>
<td>C3</td>
</tr>
<tr>
<td>MENG 1006</td>
<td>Introduction to Engineering (ME15A)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 1007</td>
<td>Introduction to Strength of Materials (ME16A)</td>
<td>E2</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNG 1003</td>
<td>Science of Materials (CH13A)</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 1001</td>
<td>Mechanics of Fluids I (CE11B)</td>
<td>E3</td>
</tr>
<tr>
<td>ECNG 1007</td>
<td>Electrical Engineering Technology (EE18B)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 1001</td>
<td>Engineering Thermodynamics I (ME11B)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 1002</td>
<td>Engineering Drawing & Design (ME12B)</td>
<td>C3</td>
</tr>
<tr>
<td>MENG 1004</td>
<td>Engineering Dynamics (ME13B)</td>
<td>E3</td>
</tr>
</tbody>
</table>

LEVEL 2

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IENG 2000</td>
<td>Work Study & Ergonomics (IE20A)</td>
<td>E3</td>
</tr>
<tr>
<td>IENG 2001</td>
<td>Accounting (IE21A)</td>
<td>E2</td>
</tr>
<tr>
<td>IENG 2002</td>
<td>Operations Research I (IE23A)</td>
<td>E2</td>
</tr>
<tr>
<td>MATH 2230</td>
<td>Engineering Mathematics II (MI7A) (M26A)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 2004</td>
<td>Mechanics of Machines I (ME22C) (MENG 1004) (ME13B)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 2005</td>
<td>Engineering Design I (ME23A)</td>
<td>C2</td>
</tr>
</tbody>
</table>
Semester 2
17 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2800</td>
<td>Fundamentals of Information Systems Development</td>
<td>E4</td>
</tr>
<tr>
<td></td>
<td>(ENGR 1001)</td>
<td></td>
</tr>
<tr>
<td>IENG 2003</td>
<td>Engineering Economics & Financial Management</td>
<td>E2</td>
</tr>
<tr>
<td>MATH 2250</td>
<td>Industrial Statistics (M17A) (M26C)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 2000</td>
<td>Heat and Mass Transfer (ME20A)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 2006</td>
<td>Engineering Design II (MENG 102) (ME23B) (ME12B)</td>
<td>C2</td>
</tr>
<tr>
<td>MENG 2008</td>
<td>Manufacturing Technology (ME25B) (MENG 1005) (ME14B)</td>
<td>E3</td>
</tr>
</tbody>
</table>

LEVEL 3
Year-long Course:
IENG 3012 Industrial Engineering Project (IE302) C6

Semester 1
12/13 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IENG 3000</td>
<td>Industrial Management (IE30A)</td>
<td>E3</td>
</tr>
<tr>
<td>IENG 3005</td>
<td>Quality Control & Reliability Engineering (IE32B)</td>
<td>E2</td>
</tr>
<tr>
<td>IENG 3011</td>
<td>Industrial Instrumentation (IE35A)</td>
<td>E3</td>
</tr>
</tbody>
</table>

Together with TWO (2) courses, subject to the approval of the Head of Department, to be chosen from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IENG 3006</td>
<td>Automation (IE32C)</td>
<td>E2</td>
</tr>
<tr>
<td>IENG 3009</td>
<td>Industrial Database Design (CS22E) (IE34A)</td>
<td>E2</td>
</tr>
<tr>
<td>IENG 3010</td>
<td>Project Management (IE34B)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 3013</td>
<td>Product Design & Development (ME34A)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 3015</td>
<td>Materials Technology (ME35A)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 3016</td>
<td>Maintenance & Safety Engineering (ME36A)</td>
<td>E2</td>
</tr>
</tbody>
</table>

Semester 2
13/14 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IENG 3001</td>
<td>Production Planning & Control (IE30B)</td>
<td>E3</td>
</tr>
<tr>
<td>IENG 3004</td>
<td>Control Systems Technology (IE32A) (IE33A)</td>
<td>E2</td>
</tr>
<tr>
<td>IENG 3007</td>
<td>Operations Research II (IE23A) (IE33A)</td>
<td>E2</td>
</tr>
</tbody>
</table>

Together with THREE (3) courses, subject to the approval of the Head of Department, to be chosen from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 3000</td>
<td>The Technology of the Steelpan (M26A) (FE30B)</td>
<td>E3</td>
</tr>
<tr>
<td>IENG 3002</td>
<td>Plant Layout & Materials Handling (IE31A)</td>
<td>E2</td>
</tr>
<tr>
<td>IENG 3003</td>
<td>Behavioural Science in Management (IE31B)</td>
<td>E2</td>
</tr>
<tr>
<td>IENG 3008</td>
<td>Simulation (IE33B)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 3014</td>
<td>Computer-Aided Design & Manufacture (ME 34B)</td>
<td>E2</td>
</tr>
</tbody>
</table>

Students doing Level 3 courses must first register for compulsory courses listed above. They must then select one (1) of the two (2) streams of specialty listed below by registering for those courses which are listed under that stream in the Undergraduate Students’ Guide of the Department of Mechanical Engineering.

- Industrial Systems Technology & Integration
- Engineering & Operations Management
- Manufacturing (Design, Processes & Systems)

Students are asked to note that:

(i) Selection of a particular stream of specialisation does not exclude the possibility of registering for courses in other areas.

(ii) Registration for Level 3 courses will not be approved until credits for all required Level 1 courses have been attained.

Note: The letter “E” or “C” preceding the credit allocation indicates evaluation by written examination paper(s) (and may also include a coursework component) or by coursework only, respectively.
BSc in Mechanical Engineering

LEVEL 1
Semester 1 18 Credits
ENGR 1001 Information Technology for Engineers (FE11A) C3
MATH 1180 Engineering Mathematics I (M17A) E3
MENG 1000 Engineering Graphics (ME10A) C3
MENG 1003 Engineering Statics (ME13A) E2
MENG 1005 Workshop Technology (ME14B) E2
MENG 1006 Introduction to Engineering (ME15A) E2
MENG 1007 Introduction to Strength of Materials (ME16A) E2

Semester 2 18 Credits
CHNG 1003 Science of Materials (CH13A) E3
CVNG 1001 Mechanics of Fluids I (CE11B) E3
ECNG 1007 Electrical Engineering Technology (EE18B) E3
MENG 1001 Engineering Thermodynamics I (ME11B) E3
MENG 1002 Engineering Drawing & Design (ME12B) C3
MENG 1004 Engineering Dynamics (ME13B) E3

LEVEL 2
Semester 1 17 Credits
ECNG 2000 Electromechanical Energy Conversion (EE20A) (ECNG 1007) (EE18B) E3
MATH 2230 Engineering Mathematics II (M17A) (M26A) E3
MENG 2001 Strength of Materials I (ME21A) (ME1007) (ME16A) E3
MENG 2004 Mechanics of Machines (MENG 1004) (ME22C) (ME13B) E3
MENG 2005 Engineering Design I (ME23A) C2
MENG 2007 Engineering Thermodynamics II (ME24B) (MENG 1001) (ME11B) E3

Semester 2 15 Credits
MATH 2240 Statistics (M26B) E2
MENG 2000 Heat & Mass Transfer (ME20A) E3
MENG 2002 Strength of Materials II (ME21B) (MENG 1007) (ME16A) E2
MENG 2003 Mechanical Vibrations (ME22B) (MENG 1004) (ME13B) E3
MENG 2006 Engineering Design II (ME23B) (MENG 1002) (ME12B) C2
MENG 2008 Manufacturing Technology (ME25B) (MENG 1005) (ME14B) E3

Level 3
Year-long Course:
MENG 3019 Mechanical Engineering Project (ME302) C6

Semester 1 14/18 Credits
IENG 3011 Industrial Instrumentation (IE35A) E3
MENG 3000 Engineering Management I (ME30A) E3
Together with FOUR (4) courses, subject to the approval of the Head of Department, to be chosen from:

 ECNG 3015 Industrial & Commercial Electrical Systems (EE36C) E3
 IENG 3006 Automation (IE32C) E2
 MENG 3003 Traction and Earthworking Equipment (ME30T) E2
 MENG 3006 Production Management (ME31C) E3
 MENG 3009 Energy Engineering (MENG 2007) E3
 (ME24B) (ME32C)
 MENG 3013 Product Design & Development (ME34A) E3
 MENG 3015 Materials Technology (ME35A) E2
 MENG 3016 Maintenance & Safety Engineering (ME36A) E2

Or other Mechanical Engineering or Industrial Engineering Level 3 course(s) subject to the approval of the Head of Department.
Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IENG 3004</td>
<td>Control Systems Technology (IE32A)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 3001</td>
<td>Engineering Management II (ME30B)</td>
<td>E2</td>
</tr>
</tbody>
</table>

Together with THREE (3) courses, subject to the approval of the Head of Department, to be chosen from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 3000</td>
<td>The Technology of the Steelpan (M26A)</td>
<td>E3</td>
</tr>
<tr>
<td></td>
<td>(FE30B)</td>
<td></td>
</tr>
<tr>
<td>MENG 3010</td>
<td>Power Plant Engineering (MENG 2007)</td>
<td>E3</td>
</tr>
<tr>
<td></td>
<td>(ME32D) (ME24B)</td>
<td></td>
</tr>
<tr>
<td>MENG 3012</td>
<td>Environmental Control Engineering (MENG 2007)</td>
<td>E3</td>
</tr>
<tr>
<td></td>
<td>(ME24B) (ME33C)</td>
<td></td>
</tr>
<tr>
<td>MENG 3014</td>
<td>Computer-aided Design & Manufacture (ME34B)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 3017</td>
<td>Finite Element Methods in Engineering Practice (CENG 1001)</td>
<td>E3</td>
</tr>
<tr>
<td></td>
<td>(MENG 2000) (MENG 2001) (CE11B) (M26A) (ME20A) (ME21A) (ME37B)</td>
<td></td>
</tr>
</tbody>
</table>

Or other Mechanical Engineering or Industrial Engineering course(s) subject to the approval of the Head of Department.

Students doing Level 3 courses must first register for compulsory courses listed above. They must then select one (1) of the three (3) streams of specialty listed below by registering for those courses which are listed under that stream in the Students’ Guide of the Department of Mechanical Engineering.

- Thermal Engineering & Energy Systems
- Engineering Mechanics & Design
- Manufacturing (Design, Processes & Systems)

Students are asked to note that:

(i) Selection of a particular stream of specialisation does not exclude the possibility of registering for courses in other areas.

(ii) Registration for Level 3 courses will not be approved until credits for all required Level 1 courses have been attained.

BSc in Mechanical Engineering with a Minor In Biosystems Engineering

Level 1

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 1001</td>
<td>Information Technology for Engineers (FE11A)</td>
<td>C3</td>
</tr>
<tr>
<td>MATH 1180</td>
<td>Engineering Mathematics I (M17A)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 1000</td>
<td>Engineering Graphics (ME10A)</td>
<td>C3</td>
</tr>
<tr>
<td>MENG 1003</td>
<td>Engineering Statics (ME13A)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 1005</td>
<td>Workshop Technology (ME14B)</td>
<td>C3</td>
</tr>
<tr>
<td>MENG 1006</td>
<td>Introduction to Engineering (ME15A)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 1007</td>
<td>Introduction to Strength of Materials (ME16A)</td>
<td>E2</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNG 1003</td>
<td>Science of Materials (CH13A)</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 1001</td>
<td>Mechanics of Fluids I (CE11B)</td>
<td>E3</td>
</tr>
<tr>
<td>ECNG 1007</td>
<td>Electrical Engineering Technology (EE18B)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 1001</td>
<td>Engineering Thermodynamics I (ME11B)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 1002</td>
<td>Engineering Drawing & Design (ME12B)</td>
<td>C3</td>
</tr>
<tr>
<td>MENG 1004</td>
<td>Engineering Dynamics (ME13B)</td>
<td>E3</td>
</tr>
</tbody>
</table>

FOR COURSE CODES, SEE PAGE 27
LEVEL 2

Semester 1
17 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 2000</td>
<td>Electromechanical Energy Conversion (ECNG 1007) (EE18B) (EE20A)</td>
<td>E3</td>
</tr>
<tr>
<td>MATH 2230</td>
<td>Engineering Mathematics II (M17A) (M26A)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 2001</td>
<td>Strength of Materials I (MENG 1007) (ME21A) (ME16A)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 2004</td>
<td>Mechanics of Machines (ME22C) (MENG 1004) (ME13B)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 2005</td>
<td>Engineering Design I (ME23A)</td>
<td>C2</td>
</tr>
<tr>
<td>MENG 2007</td>
<td>Engineering Thermodynamics II (ME24B) (MENG 1001) (ME11B)</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2
15 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2240</td>
<td>Statistics (M26B)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 2000</td>
<td>Heat & Mass Transfer (ME20A)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 2002</td>
<td>Strength of Materials II (MENG 1007) (ME16A) (ME21B)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 2003</td>
<td>Mechanical Vibrations (ME22B) (MENG 1004) (ME13B)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 2006</td>
<td>Engineering Design II (ME23B) (ME1002) (ME12B)</td>
<td>C2</td>
</tr>
<tr>
<td>MENG 2008</td>
<td>Manufacturing Technology (ME25B) (MENG 1005) (ME14B)</td>
<td>E3</td>
</tr>
</tbody>
</table>

LEVEL 3

Year-long Course
16 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 3019</td>
<td>Mechanical Engineering Project (ME302)</td>
<td>C6</td>
</tr>
</tbody>
</table>

Semester 1
16 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 3007</td>
<td>Environmental Engineering I (CE34A)</td>
<td>E3</td>
</tr>
<tr>
<td>FOST 3000</td>
<td>Principles of Food Science (FS31A)</td>
<td>E3</td>
</tr>
<tr>
<td>IENG 3011</td>
<td>Industrial Instrumentation (IE35A)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 3000</td>
<td>Engineering Management I (ME30A)</td>
<td>E3</td>
</tr>
</tbody>
</table>

Together with TWO (2) courses, subject to the approval of the Head of Department, to be chosen from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 3003</td>
<td>Traction & Earthworking Equipment (ME30T)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 3004</td>
<td>Soil & Water Engineering (ME30W)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 3020</td>
<td>Elements of Food Engineering (ME30F, inactive)</td>
<td>E2</td>
</tr>
</tbody>
</table>

Semester 2
12/13 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IENG 3004</td>
<td>Control Systems Technology (IE32A)</td>
<td>E2</td>
</tr>
<tr>
<td>MENG 3001</td>
<td>Engineering Management II (ME30B)</td>
<td>E2</td>
</tr>
</tbody>
</table>

Together with THREE (3) courses, subject to the approval of the Head of Department, to be chosen from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 3002</td>
<td>Post-harvest Technology (ME30P)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 3005</td>
<td>Infrastructure for Biosystems (ME31B)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 3007</td>
<td>Drainage & Irrigation Engineering (ME31D)</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 3008</td>
<td>Field Machinery & Equipment (ME31M)</td>
<td>E2</td>
</tr>
</tbody>
</table>

Note

The letter “E” or “C” preceding the credit allocation indicates evaluation by written examination paper(s) (and may also include a coursework component) or by coursework only, respectively.

Registration for Level 3 courses will not be approved until credits for all required Level 1 courses have been attained.
Syllabus

LEVEL 1

MENG 1000 (ME10A)
Engineering Graphics
3 Credits
Instruments and their use; orthographic drawing and sketching; points, lines and planes in space; auxiliary views: point, edge and normal views; isometric and perspective drawings, sectional views.

MENG 1001 (ME11B)
Engineering Thermodynamics I
3 Credits

MENG 1002 (ME12B)
Engineering Drawing & Design
3 Credits
The design and manufacturing processes; intersections and developments; technical drawings - sections and conventional practices, fasteners and joining, machine elements; size description - dimensions, notes, limits, tolerances; working drawing; introduction to computer graphics.

MENG 1003 (ME13A)
Engineering Statics
2 Credits

MENG 1004 (ME13B)
Engineering Dynamics
3 Credits

MENG 1005 (ME14B)
Workshop Technology
3 Credits

MENG 1006 (ME15A)
Introduction to Engineering
2 Credits
An introduction to the following: historical development of engineering; formation of the engineer; role and functions of engineers and professional organisations; technical communications; ethics; liability; safety; legal forms of association; contracts; company law; intellectual property; engineering economics and business operations; infrastructure; energy systems and economics, environment and sustainable development. Scope of safety engineering. Hazardous materials used in engineering practice. Non-destructive testing. Introduction to plant maintenance. Condition monitoring. Hazards in the process industries. Rupture of process vessels.
MENG 1007 (ME16A)
Introduction to Strength of Materials
2 Credits

LEVEL 2

IENG 2000 (IE20A)
Work Study & Ergonomics
3 Credits
Productivity; method study; work measurement - rating, allowances, standard time, PMTS; work sampling; fatigue and boredom; job enlargement; working conditions and influence on output; work place design.

IENG 2001 (IE21A)
Accounting
2 Credits
Basic accounting concepts and policies, financial statements, analysis of financial statements, management accounting, financial planning and control with budgeting, cost-volume-profit relationships, cost analysis and estimating.

IENG 2002 (IE23A)
Operations Research I
2 Credits

IENG 2003 (IE24B)
Engineering Economics & Financial Management
2 Credits
Techno-economic evaluation of capital investment projects, capital budgeting techniques, manufacturing systems economics, capital structure/leverage, financial planning for initial capitalisation, working capital management, valuation of securities, multi-national financial management topics.

IENG 2004 (IE26A)
Industrial Database Systems & Design
3 Credits
Introduction to Information Systems; data requirements; Industrial Database Applications; conceptual database design; Database and Systems Planning; database design techniques and methods; Relational Database Design; Relational and Distributed Systems; database systems implementation and maintenance; Introduction to HTML, XML and Web Applications. Note: To be offered from Academic year 2005/2006.
MENG 2000 (ME20A)
Heat & Mass Transfer
3 Credits
Steady and unsteady state heat conduction. Analytical, graphical and numerical solutions, convection - forced and free convection on flat plates and in pipe flow; Radiation - properties, shape factor and exchange between surfaces, Introduction to heat exchangers; combined mode of heat transfer. Introduction to mass transfer.

MENG 2001 (ME21A)
Strength of Materials I
3 Credits
Elastic theorems, three-moment theorem, distribution of shear stresses, Struts and beam columns. General concept of stresses, strains, true stress and true strain, theories of failure, thin shell theory, design of bolted and welded joints. Concept of product of inertia, principal axes of moment of inertia, asymmetrical bending combined stresses, stress concentration, plastic behaviour of solids. Creep, fatigue.

MENG 2002 (ME21B)
Strength of Materials II
2 Credits
Stresses due to shock, stresses due to rotation, analysis of thick cylinders, bending of curved beams, design of springs, practical applications of strain gauge circuitry, fatigue, introduction to finite element analysis.

MENG 2003 (ME22B)
Mechanical Vibrations
3 Credits

MENG 2004 (ME22C)
Mechanics of Machines
3 Credits

MENG 2005 (ME23A)
Engineering Design I
2 Credits
Presentation of Design reports, assembly and detail drawings, notes and specifications, bills of materials and costs. The design process - problem formulation, conceptualisation, consideration of alternatives, evolution of final design. Load analysis, stress and strain calculations. The influence of geometry and discontinuities, stress concentration and related factors. Theories of failure, dynamic loading and fatigue. Special design factors, based on current design data. Selection of materials including wood and plastics. Selection of standard sections. Selection of components. Limits, fits and tolerances. Evolution of a design.

MENG 2006 (ME23B)
Engineering Design II
2 Credits
MENG 2007 (ME24B)
Engineering Thermodynamics II
3 Credits
Non-reactive and reactive mixtures, psychrometry, one-dimensional compressible fluid flow; vapour and gas power cycles; reciprocating engines and machine systems; refrigeration and heat pump cycles.

MENG 2008 (ME25B)
Manufacturing Technology
3 Credits

LEVEL 3

IENG 3000 (IE30A)
Industrial Management
3 Credits

IENG 3001 (IE30B)
Production Planning & Control
3 Credits
Production systems; forecasting; resource planning; production planning; aggregate planning; master schedule; requirements planning systems; production scheduling; progress control; integrated production control systems.

IENG 3002 (IE31A)
Plant Layout & Materials Handling
2 Credits
Plant location; plant layout - types, layout planning and evaluation of layouts; plant services; principles of materials handling system design; techniques for analysis and solution of plant location, plant layout and material handling problems. Materials handling equipment. Warehousing - principles, design and operations.

IENG 3003 (IE31B)
Behavioural Science in Management
2 Credits

IENG 3004 (IE32A)
Control Systems Technology
2 Credits
Structure of control systems; modelling of analog and discrete system; stability techniques; pneumatic, hydraulic, analog and digital electronic controllers. Introduction to control system design.

IENG 3005 (IE32B)
Quality Control & Reliability Engineering
2 Credits
Number systems, Boolean algebra, combinational logic design, Karnaugh maps, hazards, MSI logic devices, state machines, state minimisation and assignment, design of sequential systems, microprocessor and microcomputer process automation, microprocessor interfacing, programmable logic controllers and ladder logic. Automation elements: stepper motors, encoders, lead screws, etc.

IENG 3006 (IE32C)
Automation
2 Credits
Number systems, Boolean algebra, combinational logic design, Karnaugh maps, hazards, MSI logic devices, state machines, state minimisation and assignment, design of sequential systems, microprocessor and microcomputer process automation, microprocessor interfacing, programmable logic controllers and ladder logic. Automation elements: stepper motors, encoders, lead screws, etc.
IENG 3007 (IE33A)
Operations Research II
2 Credits

IENG 3008 (IE33B)
Simulation
2 Credits
Introduction to simulation, components of a simulation model, hand simulation, random number generation, random variate generation, common distribution functions used in simulation, collection of data and goodness of fit, output data analysis, presenting simulation results, basic concepts of promodel.

IENG 3009 (IE34A)
Industrial Database Design
2 Credits
Production systems and data requirements; evolution of database systems and technology; database applications and systems development; conceptual database design; principles and modelling; systems planning and database design; data element design; relational database design; introduction to E-business, E-commerce, and enterprise resources planning systems; introduction to HTML, XML and Web applications.

IENG 3010 (IE34B)
Project Management
2 Credits
Introduction, feasibility of projects, definitions, organising for projects, steps in project management, project management systems, project planning, project organising, project controlling, project evaluation, project management information systems.

IENG 3011 (IE35A)
Industrial Instrumentation
3 Credits
Characteristics of measurement systems - steady state: calibration accuracy, sensitivity, linearity; transient response: time constant, settling time, overshoot. Systematic and random errors. Active and passive sensors and transducers. Signal conditioning - instrumentation amplifiers; bridges: AC and DC, null and deflection; filters: active and passive. Transmission techniques and systems - telemetry; shielding and guarding techniques; voltage and current transmission; optical isolators; boosters. Interfacing multiplexers; A/D and D/A converters, counters; displays; data storage; data logging; microprocessors. Introduction to industrial instrument system design - project.

IENG 3012 (IE302)
Industrial Project
6 Credits
Special project in the field of Industrial Engineering will be undertaken by all students under the supervision and direction of academic staff in the Department. Examination will be by coursework - a presentation and project report.

IENG 3013 (IE33C)
Simulation of Industrial & Business Processes
3 Credits
Overview of simulation systems; components of simulation models; simulation processes; modelling methodologies and techniques; computer interfacing and networking fundamentals; system dynamics approach to modelling and decision support; simulation applications in manufacturing and service operations.
Note: To be offered from Academic year 2005/2006.

IENG 3014 (IE34C)
Applied Project Management
3 Credits
Definitions and feasibility of projects; project management processes; project management knowledge areas; project management information systems; team communication and conflict resolution; experimental/action-learning workshop.
Note: To be offered from Academic year 2005/2006.
IENG 3015 (IE36A)
Enterprise Information Systems
3 Credits
Organisation dynamics; Enterprise resource planning; data sources and data quality requirements; design, development and deployment of data warehouses; web-enabled data management and e-commerce; Knowledge management; strategic implications of EIS.
Note: To be offered from Academic year 2005/2006.

MENG 3000 (ME30A)
Engineering Management I
3 Credits
Management functions - corporate governance, planning and control. Strategic management - SWOT analysis, strategy formulation, strategy implementation. Marketing - marketing mix (products, pricing, promotion, distribution). Human resources - legal and ethical issues in managing people, motivational theories, management styles and leadership, labour-management relations. Accounting and finance - financial statements and analysis, capital budgeting and project evaluation, financial and risk management.

MENG 3001 (ME30B)
Engineering Management II
2 Credits
Management science - linear programming, decision analysis, queues, etc; the Engineering manager and the legal environment (legal forms of association, contracts, torts, company law, intellectual property).

MENG 3002 (ME30P)
Post-harvest Technology
3 Credits
An introduction to post-harvest physiology, physical properties of plant material; materials handling, cleaning and grading; handling, pre-treatment, packaging, and storage requirements for fruits, vegetables, root crops and cut flowers, modified and controlled atmosphere storage; packing-house layout and design; drying and drying systems, processing of durable Caribbean crops, e.g., rice, coffee, coconuts, cocoa, nutmeg, peas; milling and mixing.

MENG 3003 (ME30T)
Traction & Earth Working Equipment
2 Credits

MENG 3004 (ME30W)
Soil & Water Engineering
3 Credits

MENG 3005 (ME31B)
Infrastructure for Biosystems
3 Credits
Layout, structural design and environmental requirements for agricultural buildings and structures. Access road construction and maintenance. Local water supplies: planning water source works including design of ponds, boreholes and farm reservoirs. Introduction to aquaculture engineering.

MENG 3006 (ME31C)
Production Management
3 Credits
Operations strategy; product-process-capacity planning; forecasting and investment analysis; operations layout; materials management - inventory, JIT, MRP; shop-planning and scheduling; quality assurance/quality control; project management.
MENG 3007 (ME31D)
Drainage & Irrigation Engineering
3 Credits

MENG 3008 (ME31M)
Field Machinery & Equipment
2 Credits

MENG 3009 (ME32C)
Energy Engineering
3 Credits
Energy, energy analysis and applications to design and operations. Fundamentals of Energy Management: the energy audit, energy use planning, targeting and monitoring, costing and financing. Introduction to alternate energy technology.

MENG 3010 (ME32D)
Power Plant Engineering
3 Credits
Power plants: the steam power plant, the gas turbine power plant and the reciprocating internal combustion engine - their selection and applications in electrical power generation systems and process/power generation systems. Co-generation systems. Plant and component performance characteristics and analysis. Power plant economics.

MENG 3011 (ME33A)
Advanced Mechanics of Solids
3 Credits
Elasticity, plasticity, torsion of prismatic bars, thin plates, shells, thermal stresses, photo-elasticity and fracture mechanics. Applications of the finite element method.

MENG 3012 (ME33C)
Environmental Control Engineering
3 Credits
Refrigeration systems, analysis, applications and operations. Sizing and selection of equipment. Environmental requirements for human comfort conditions. Air-conditioning systems, analysis, design, applications and operations. Use of computer software and databases. Sizing and selection of equipment.

MENG 3013 (ME34A)
Product Design & Development
3 Credits
Synthesis of materials, design and processes into final products/components. Emphasis will be placed on the following: sheet metal products, case or moulded metal products, plastics, composites, machined products. Special machining processes. Generation of forms, tooling design, use of jigs and fixtures. Assembly processes, costing.

MENG 3014 (ME34B)
Computer-aided Design & Manufacture
2 Credits
Review of the role and elements of computer-aided design. Development of integrated databases for design and manufacture. Solid and surface modelling techniques for design and manufacture. Generation of tool path data from solid and surface models. Numerical Control technology:- manual part programming, computer-assisted part programming, CAI applications for tool path generation, e.g.: SMARTCAM.
MENG 3015 (ME35A)
Materials Technology
2 Credits
Basic background to the relationship between structure and properties of engineering materials with respect to selection of materials for design, processing and fabrication, the behaviour of materials in service and methods of evaluating performance. Topics include: metal alloy systems, metal structure texture and strengthening mechanisms; non-metallic materials, destructive and non-destructive testing, failure analysis, corrosion and use of standard specifications.

MENG 3016 (ME36A)
Maintenance and Safety Engineering
2 Credits

MENG 3017 (ME37B)
Finite Element Methods In Engineering Practice
3 Credits
Introduction to finite element analysis - determinations. Applications: analysis of problems described by parabolic differential equations - torsion and moisture diffusion. Multidimensional finite element formation and solutions for solid bodies subjected to various boundary conditions. One-dimensional finite element formation and solution for heat transfer with mass transport. Solution to an axisymmetric stress distribution problem using the constant strain triangle method. Applications to beam, plate and trip elements.

MENG 3019 (ME302)
Mechanical Engineering Project
6 Credits
Special projects in Mechanical Engineering will be undertaken by all students under the supervision and direction of academic staff of the Department. Examination will be by coursework - a presentation and project report.

Bachelor of Applied Technology (BTech) Degree in Electrical Engineering
Effective September 2002, The University of the West Indies began awarding the Bachelor of Applied Technology Degrees (BTech) in Electrical Engineering and Mechanical Engineering. These degrees are offered at the Trinidad & Tobago Institute of Technology (TTIT) at Brechin Castle, Couva, on a part-time basis, i.e., on evenings and weekends. The Bachelor of Applied Technology degree programmes are intended to produce Engineering Technologists or Incorporated Engineers. Full details of these programmes are available at TTIT, Brechin Castle, Couva.
DEPARTMENT OF
SURVEYING &
LAND INFORMATION

Land Surveying is the general term used to refer to several sub-disciplines; Geodetic Surveying: the theoretical basis and the control framework for all other surveys; Topographical Surveying: mapping of the physical and cultural features on the earth's surface; Engineering and Mining Surveying: the provision of spatial data for the design, construction and monitoring of engineering and mining works; Cadastral Surveying: delineation and parcellation of property rights and the establishment of a base for effective land administration; Hydrographic Surveying: offshore position-fixing, tidal studies and mapping of water features and coastal areas.

Land Surveying provides spatial (geographical) and attribute information in the form of maps and other manual records or computer-compatible format to meet the multitude of user needs. The products of Land Surveying are invaluable tools for informed decisions in all spatially-oriented land and marine-based activities. Satellites and computers have changed the technology of measurement, processing and presentation of information used by the surveying profession. Simultaneously, Spatial Information and Information theory and practice have acquired greater emphasis in Land Surveying.

Land Surveying requires a firm background in Mathematics, Computer Science, Information Systems, Law, Planning, Valuation and Management as well as surveying disciplines of Geodesy, Cadastre, Engineering surveys, Photogrammetry, Remote Sensing Cartography and Hydrography.

The graduate Land Surveyor can be usefully employed in many institutions other than those specially dedicated to the surveying profession.

Head of Department
Dr. Keith Miller

Administrative Assistant
Ms. Nancy Ayoung

Secretary
Ms. Monique Joseph

Telephone No: 662-2002; Ext: 2108
Academic Staff

Keith Miller,
BSc (CNAA), PhD (CNAA)
Lecturer and Head of Department
(Geodesy, Hydrography, Adjustment)

Serwan M.J. Baban,
BSc, MSc (Baghdad), PhD (East Anglia), PGCertTL (Coventry), FRGS, FGS, FRSPSoc
Professor
(Geosciences, Environmental Remote Sensing & Geographic Information Systems)

Milica Bajić Brković,
Dipl Eng, Arch (Belgrade), MCRP (Berkeley), PhD (Belgrade), IsoCaRP, IFRHS, UUS, TTSP
Professor
(BPTT Chair in Planning & Development)(Design for Development, Human Settlements Planning, Coastal Zone Development & Planning)

Jacob Opadeyi,
BSc, MSc (Lagos), MEng, PhD (New Brunswick), ANIS (Nigeria), MBA (UWI), ACSM (USA), MRICS
Senior Lecturer
(Engineering Surveying, Land/Geographic Information Systems, Land Administration)

Raid Al-Tahir,
BSc (Baghdad), MSc, PhD (Ohio), MASPRS, MISTT
Lecturer
(Photogrammetry, Digital Photogrammetry, Remote Sensing)

Charisse Griffith-Charles,*
BSc, MPhil (UWI), MISTT
Lecturer
(Cadastral Studies, Surveying & Land Administration)

Asad Mohammed,
BSc (Hons) (Waterloo), MRP, PhD (Cornell), MTTSP
Lecturer
(Planning & Development, Human Settlements, Land Administration)

Michelle Mycoo,
BA (Hons) (UWI) (Mona), MSc (Hong Kong), PhD (Mc Gill), MTTSP, MRTPI
Lecturer
(Land Use & Natural Resources Management, Institutional Environment, Planning Analysis)

Bheshem Ramlal,
BSc (UWI), PG Dip, MSc (ITC Netherlands), PhD (Maine), MISTT
Lecturer
(Cartography, Geographic Information Systems, Engineering Surveying)

Dexter Davis,
BSc (Hons) (UWI), PhD (Newcastle-upon-Tyne)
Temporary Lecturer
(Surveying, Digital Photogrammetry)

Kameel Khan,
BSc (Polytechnic, London), FRICS
Part-time Lecturer
(Valuation)

David Neale,
Dip Hydrography (US Naval Ocean School), PG Dip Hydrography (Plymouth) MSc (Plan. & Dev.) (UWI)
Part-time Lecturer
(Hydrography)

Keith Scott,
BSc (UWI), LLB (London)
Part-time Lecturer
(Land Law, Conveyancing)

Deborah Heather-Dawn Thomas,
BA, MSc (Oxford Polytechnic), PhD (Cambridge)
Part-time Lecturer
(Planning & Development)

Paul Williams,
BSc (ITC), Dip Photo (UCL), Lic’d Surveyor, FRICS (UK), MACSM (USA)
Part-time Lecturer
(Professional Practice)

On leave
Schedule of Courses

Accredited by the Royal Institute of Chartered Surveyors (RICS) of the UK.

BSc in Surveying and Land Information

LEVEL 1

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 1001</td>
<td>Information Technology for Engineers (FE11A)</td>
<td>C3</td>
</tr>
<tr>
<td>MATH 1180</td>
<td>Engineering Mathematics I (M17A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 1000</td>
<td>Fundamentals of Land Development (SV11A) (inactive)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 1001</td>
<td>Surveying I (SV12A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 1002</td>
<td>Surveying Technology & Computing (SV13A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 1004</td>
<td>Introduction to Cartography (inactive) (SV15C)</td>
<td>E2</td>
</tr>
<tr>
<td>SURV 1009</td>
<td>Cartography (SV15E)</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2230</td>
<td>Engineering Mathematics II (M17A) (M26A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2001</td>
<td>Introduction to Photogrammetry (SV21A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2002</td>
<td>Planning & Valuation (inactive) (SV22A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2007</td>
<td>Adjustment Computations I (M17A) (SV26A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2008</td>
<td>Measurement Systems (SURV 1000) (SURV 1001) (SV11A) (SV13A) (SV26B)</td>
<td>E2</td>
</tr>
<tr>
<td>SURV 2009</td>
<td>Hydrographic Surveying (SURV 1006) (SV16B) (SV27C)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2011</td>
<td>Elements of GIS (SV29B)</td>
<td>E3</td>
</tr>
</tbody>
</table>

Level 2

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2230</td>
<td>Engineering Mathematics II (M17A) (M26A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2001</td>
<td>Introduction to Photogrammetry (SV21A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2002</td>
<td>Planning & Valuation (inactive) (SV22A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2007</td>
<td>Adjustment Computations I (M17A) (SV26A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2008</td>
<td>Measurement Systems (SURV 1000) (SURV 1002) (SV11A) (SV13A) (SV26B)</td>
<td>E2</td>
</tr>
<tr>
<td>SURV 2009</td>
<td>Hydrographic Surveying (SURV 1006) (SV16B) (SV27C)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2011</td>
<td>Elements of GIS (SV29B)</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURV 2000</td>
<td>Geodetic Surveying (SURV 1006) (SURV 1008) (M17A) (SV16B) (SV18B) (SV20A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2006</td>
<td>Land Law (SV25A)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2010</td>
<td>Mapping Project (SV28B)</td>
<td>C3</td>
</tr>
<tr>
<td>SURV 2012</td>
<td>Introduction to Planning (SV22C)</td>
<td>E3</td>
</tr>
<tr>
<td>SURV 2013</td>
<td>Remote Sensing (SV26C)</td>
<td>E3</td>
</tr>
</tbody>
</table>

Credits

- Semester 1: 20 Credits
- Semester 2: 18 Credits
- Total: 38 Credits
LEVEL 3
Year-long Course:
SURV 3007 Research Project (SV340) C6

 Semester 1
MENG 3000 Engineering Management I (ME30A) E3
SURV 3002 Surveying with Satellites I (SV26A) (SV32A) (inactive) E3
SURV 3004 Cadastral Studies (SURV 2006) (SV25A) (SV33A) E3
SURV 3006 Hydrography (SURV 2009) (SV27C) (SV34A) E3
SURV 3015 Adjustment Computations II (SV31C) (SV2000) (SV20A) E3

Together with one three (3) credit elective subject to the approval of the Head of Department.

 Semester 2
SURV 3008 Engineering Surveying (SURV 2008) (SV35A) (SV26B) E3
SURV 3009 Remote Sensing (SV36A) (inactive) E2
SURV 3010 Professional Practice (SURV 2006) (SV36B) E3
SURV 3011 Analytical Photogrammetry (SV37A) (inactive) E2
SURV 3016 Valuation & Land Economy (SURV 2012) (SV32C) (SV22C) E3

Together with one three (3)-credit elective subject to the approval of the Head of Department.

Electives
Candidates in Level 3 are required to gain 6 credits of elective courses from the list below, or other courses subject to the approval of the Head of Department.

AGSL 3004 Watershed Management (AS34C) E3
AGEX 3002 Communication Skills for Professionals (AX36A) E3
ENGR 3001 Natural Hazards & Disaster Management in the Caribbean (FE31B) E3
SURV 3000 Gravimetric Geodesy (SV30A) (inactive) E3
SURV 3001 Adjustment Computations II (SV31B) (inactive) E2
SURV 3003 Surveying with Satellites II (SV32B) (inactive) E2
SURV 3005 Land Information Systems (SV33B) (inactive) E3
SURV 3012 Advanced Topics in Photogrammetry (SV37B) (inactive) E2
SURV 3013 Digital Cartography (SURV 1005) (SV38B) (SV15D) (inactive) E2
SURV 3014 Land Economy (SURV 2002) (SV39B) (SV22A) (inactive) E2

Note: The letter “E” or “C” preceding the credit allocation indicates Examination by written papers or by Coursework, respectively.

FOR COURSE CODES, SEE PAGE 27
Syllabus

Level 1
SURV 1001 (SV12A)
Surveying I
3 Credits

SURV 1002 (SV13A)
Surveying Technology & Computing
3 Credits
Introduction to measurements, booking, reporting. Conventional distance measurements. Height measurement, angular measurement, tests and adjustment of basic survey instruments, level circuit including adjustment of results. Traverse circuit including adjustment of results. Distance measurement: optical and electronic. Intersection and resection. Barometric heighting, sun azimuth. Introduction to FORTRAN programming.

SURV 1003 (SV14B)
Geometric Geodesy
3 Credits

SURV 1006 (SV16B)
Surveying II
3 Credits
Topographical surveying including organisation and execution of projects, specification and representation of data in different formats. Route surveys including setting out vertical and transition curves and slope stakes. Introduction to the theory of adjustments computation. Coordinate transformation. Map projections.

SURV 1007 (SV17B)
Geologic & Seismic Surveying
3 Credits
Elements of resource management. Dynamic processes that have contributed to the formation of the earth’s crust. Agents and processes that are responsible for the constant and continuous changes of the earth’s crust. The properties, behaviour and movement of the soil and rock. Gravity, magnetic and seismic methods in determining earth structures. Seismology: Tectonics of the Caribbean and prospecting surveying for minerals.

SURV 1008 (SV18B)
Surveying Project
3 Credits
Topographic survey of selected site including land use, vegetation, soil types, location of services. Production of topographic maps and thematic plans, compilations and reports. Design layout to be prepared from given specifications. Setting out. (Coursework)

SURV 1009 (SV15E)
Cartography
3 Credits
Introduction to cartography, cartographic communication, representation of spatial data; symbol design, survey drawing, name design and placement, the components of a map, map design, map generalisation methods, map projection systems, topographic mapping, thematic mapping, map production methods, reprographics: emulsions, contact, copying, process camera, colour separation/non-photographic processing, proofing and printing, digital mapping.
LEVEL 2

SURV 2000 (SV20A)
Geodetic Surveying
3 Credits
Geodetic control: design and strength analysis of geodetic networks. Control survey methods, observations, data corrections and reductions. Height systems, trigonometric heighting. Network adjustment, analysis and quality control. Field work in the design, execution and analysis of control surveys. Statistical testing and reliability analysis of observations and parameters in adjustment.

SURV 2001 (SV21A)
Introduction to Photogrammetry
3 Credits

SURV 2004 (SV24C)
Surveying for Civil Engineers
3 Credits
Plane surveying principles; plane tabling. Horizontal control: theodolite construction and adjustment, angle measurement, distance measurement, traversing, errors. Vertical control; optical level construction and adjustment, levelling errors. Topographical survey, tacheometry, plotting, area measurement, air survey and photographic interpretation. Electromagnetic distance measurement. Civil engineering surveying applications. Alignment instruments, including lasers: simple figure adjustment, intersection, resection, trigonometric heighting, hydrographic survey; deformation monitoring.

SURV 2005 (SV24D)
Surveying Project for Agricultural & Civil Engineers
0 Credits
(Coursework)

SURV 2006 (SV25A)
Land Law
3 Credits

SURV 2007 (SV26A)
Adjustment Computations I
3 Credits

SURV 2009 (SV27C)
Hydrographic Surveying
3 Credits
Brief on different areas of interest. Introduction to various sounding data and establishment of marine data. Simple tidal analysis and studies. Position fixing - principles and techniques: planimetric - optical and electronic position fixing, vertical - lead lines and acoustic soundings. Sources of errors in position fixing. Instrument calibration. The hydrographic survey process - from pre-planning to chart production.
SURV 2010 (SV28B)
Mapping Project
3 Credits
Topographic mapping of a selected area using photogrammetry. Provision of control. Field completion and verification. Production of machine plot, computation and report. (Coursework)

SURV 2011 (SV29B)
Elements of GIS
3 Credits
Concepts of systems, Information System and Geographic Information Systems, hardware and software systems, spatial data issues - acquisition and input, data structures, data management, data processing, data manipulation, data analysis, spatial data quality, designing and implementing GIS: data requirement, technical requirement, institutional requirement.

SURV 2012 (SV22C)
Introduction to Planning
3 Credits

SURV 2013 (SV26C)
Remote Sensing
3 Credits

SURV 2014 (SV21B)
Digital Mapping
3 Credits

LEVEL 3

SURV 3004 (SV33A)
Cadastral Studies
3 Credits

SURV 3006 (SV34A)
Hydrography
3 Credits
Hydrographic Surveying in four dimensions. Underwater acoustics, tidal and non-tidal sea level variations and their analysis. Physical properties of atmosphere, seawater and seabed. Demarcation of maritime boundaries with particular application to the Caribbean.

SURV 3007 (SV340)
Surveying Research Project
6 Credits
Research project generally involving literature review, data acquisition, processing, analysis and conclusions in respect of identified survey problems of interest to the region or individual states. (Coursework)
SURV 3008 (SV35A)
Engineering Surveying
3 Credits

Instrumentation methods and specifications, high precision. Survey requirements: feasibility, design, construction, maintenance (as-built) and monitoring stages. Applications in surface transportation, airports, irrigation, utilities and buildings. Optical tooling and industrial applications. Building surveying. Underground service location techniques. Underground surveys: transference of planimetric and height control from surface to underground: techniques for controlling error propagation.

SURV 3010 (SV36B)
Professional Practice
3 Credits

Professional negligence and liability; misrepresentation; Law of Evidence; surveyor as a professional witness. Professional ethics and conduct. Practice of Land Surveying and Mapping in the State and private sectors in Trinidad & Tobago and the West Indies.

SURV 3015 (SV31C)
Adjustment Computations II
3 Credits

Satellite carrier phase observations and ambiguity resolution in real time. Adjustment computations: phased and sequential approaches, adjustment with constraints and conditions. Map projections: projection equations, the projection of observed and computed parameters onto the projection plane. Application of adjustment techniques in the design of 2 and 3-D networks and models. Network adjustment using GPS data and integrated with land survey data.

SURV 3016 (SV32C)
Valuation & Land Economy
3 Credits

Introduction to property management. Land acquisition - practice and procedures. The concept of economic rent. The impact of planning and statutes on property values. Land surveying in the context of the land economy of the Caribbean. Theoretical issues: the nature of real property; land rent theory; locational theory; the role of the State in the land economy and property taxation; the real estate industry and the finance sector; land and property speculation; relationship between formal and informal land economy.
OTHER COURSES

Syllabus

Computer Science

COMP 2800 (CS22E)
Fundamentals of Information Systems
3 Credits

COMP 3100 (CS31A)
Operating Systems
4 Credits

COMP 3700 (CS36E)
Compiling Techniques
4 Credits
Aims of a compiler. Planning a project. Lexical analysis. Use of regular grammars and automata theory. Interpreters and compilers. Diagnostics. Documentation. Testing, syntax and semantic considerations. Grammars, such as LL(K), LR(K), operators precedence; the symbol table. Run-time support: storage management, input/output, libraries, diagnostics. Code generation; optimisation.

COMP 3750 (CS37A)
Numerical Computing I
4 Credits
Faculty of Engineering

ENGR 1000 (FE10A)
Introduction to Engineering
3 Credits
An introduction to the following: historical development of engineering; formation of the engineer; role and functions of engineers and professional organisations; creative and critical thinking; technical communications; ethics; liability; safety; legal forms of association; contracts; company law; intellectual property; engineering economics and business operations; infrastructure; energy systems and economics, environment and sustainable development; approaches to design.

ENGR 1001 (FE11A)
Information Technology for Engineers
3 Credits
Word-processing: menus, checking documents for grammar and spelling, formatting by page, character and paragraph, outlines, tables, styles and sections, equation editing. Presentations: creating a presentation and templates, inserting objects from other applications, making the presentation. Spreadsheets: Introduction to spreadsheets for repeat computations, creating and editing graphs and charts, use of solver, introduction to analysis tools. Databases: constructing a database using tables and forms, retrieving information through reports and queries. The computer: Introduction to computer architecture, storage media and peripherals. Binary computations: storage of data within the computer, variable types and limitations imposed on computations. Algorithms: algorithms for simple numerical methods. Development of algorithms. Programming: coding of algorithms, syntax for data types, input and output, mathematical operations, loops, functions and pointers.

ENGR 3000 (FE30B)
The Technology of the Steelpan
3 Credits
This course attempts to summarise and present, in a formal fashion, current knowledge on various technological aspects of the steelpan musical instrument. The major technologies that impact on the instrument are acoustics, mechanical vibrations, metallurgy, physical structure and signal analysis. However, no special prerequisite knowledge is required in any of these areas. The course starts off with an overview of the very subjective area of the perception of music. This is essential as it provides a reference point for later discussions. Other topics include the manufacturing process, including a discussion on the types of metallurgical properties required for different instrument characteristics, the modal properties of the instrument and the dynamics of the stick impact. The course ends with some consideration of significant recent developments.

ENGR 3001 (FE31B)
Natural Hazards & Disaster Management in the Caribbean
3 Credits
Definitions and concepts, characteristics of natural hazards in the Caribbean, economic, social and environmental impacts; techniques for identification, mapping and prediction, vulnerability and risk assessment, the disaster management cycle, structural and non-structural mitigation, emergency planning, recovery and reconstruction, disaster management and development planning, disaster management and agriculture, tourism, public health, public policy and legislation, sociology of disasters, disaster education.
Mathematics

MATH 1180 (M17A)
Engineering Mathematics I
3 Credits

MATH 2230 (M26A)
Engineering Mathematics II
3 Credits
Ordinary differential equations; power series solution, Legendre’s equation, Bessel’s equation. Laplace transform: convolution theorem; application to simple initial value problems and integral equations; periodic function. Fourier series: Euler’s formulae; even and odd functions; half range expansions; solution of some ordinary differential equations. Partial differential equations: classification; the one-dimensional wave equation, the heat conduction and diffusion equation; Laplace’s equation in polar coordinates. Circular membrane; Laplace’s equation in cylindrical and spherical polar coordinates. Vector calculus: scalar and vector fields; vector calculus; curves, arc length, tangent, curvature and torsion; directional derivatives, divergence and curl of a vector field; line integrals; surface integrals; Stoke’s theorem and divergence theorem.

MATH 2240 (M26B)
Statistics
2 Credits
Statistics and probability; frequency distribution, frequency polygons and histograms; introduction to probability; basic axioms; conditional probability, Bayes theorem, mutual independence; introduction to random variables; probability distribution, Bernoulli trials, the binomial distribution and the Poisson distribution; probability density and mass functions of a continuous random variable; expectation and variance; the exponential and normal distributions; distributions of sample means; point estimates; confidence intervals; statistical inference - tests of significance; linear regression.

MATH 2250 (M26C)
Industrial Statistics
3 Credits
Statistics and probability; frequency distributions, frequency polygons and histograms; introduction to probability; basic axioms, conditional probability, Bayes theorem, mutual independence; introduction to random variables; probability distribution, Bernoulli trials, the Binomial distribution and the Poisson distribution; probability density and mass functions of a continuous random variable; expectation and variance; the exponential and normal distributions; distribution of sample means; point estimates; confidence intervals; statistical inference - tests of significance. Regression analysis; analysis of multiple regression; non-parametric statistical methods; analysis of variance; design of experiments; randomised block design and analysis.

MATH 3530 (M37A)
Mathematics III
3 Credits
Linear algebra: systems of equations, vector spaces, determinants, eigenvalues, similarity, positive definite matrices, singular value decomposition. Optimisation and mathematical programming, calculus of variations.
RULES FOR READERS
(Main Library)

1. Hours
 - Semesters
 - Mon - Thurs: 8:30 am - 10:00pm
 - Fri & Sat: 8:30 am - 5:00pm
 - Christmas: Mon: 8:30 am, Tues - Fri: 8:30 am, Sat: 8:30 am
 - Vacation: Mon: 6:30 pm, Tues - Fri: 5:00 pm, Sat: 12:30 pm
 - Long/Summer: Mon: 8:30 am, Tues - Wed: 8:30 am, Thurs - Sat: 8:30 am
 - Vacation hours will apply to the first week of each academic year.

2. Membership
 - UWI: The Library is open to all registered graduate and undergraduate students and staff of all campuses of The University of the West Indies.
 - Non-UWI:
 - a. Visiting research workers, faculty and students of other universities and tertiary level institutions may be granted reading and reference privileges on recommendation of a faculty member and at the discretion of the Librarian.*
 - b. Other non-university persons over the age of 16 may be granted reading and reference privileges. This is, however, subject to a review by the Librarian on duty and is dependent on the specific need of the particular person.
 - c. A fee may be charged for long periods of use or repeated use as outlined in Information Bulletin No. 9 (Rev.)
 - d. Users in this category are not allowed loans.

3. Loans
 - General: No book, periodical or other library material may be removed from the Library unless it has been legitimately charged out at the Loans Desk and the date label stamped by the member of staff on duty. A user is responsible for any book or other item borrowed in his/her name. This responsibility ends only when the loan is officially cancelled. Failure to comply with this rule will be treated as a major and deliberate offence.
5. Users’ identification cards are not transferable. It is a major offence to lend or borrow identification cards. Persons contravening this rule may have their library privileges withdrawn or may be referred to the Principal for further action.

6. Certain publications may not be removed from the Library. These include all materials from the West Indiana and Special Collections Division as well as reference books, specially marked items from the closed reserve collection and works of special value. All such material will be clearly marked.

7. Loans may extend for varying periods depending on the extent of demand for each item. All material loaned will be subject to recall by the Librarian at any time. No loans may be renewed for more than seven (7) days. In cases where a book issued on loan is requested by another user it may be recalled after it has been on loan for a minimum of seven (7) days. A new date due is assigned and fines are charged for non-return of the item after the new date.

8. **Undergraduates**
 Undergraduate students of the University may have on loan up to six (6) books at a time. They may not borrow serials. Two Reserve items may be borrowed at a time either for use in the Library or on overnight loan. Two additional items from the Reserve Collection may also be borrowed for three (3) or seven (7) days.

9. **Postgraduates**
 Postgraduate students of the University may have on loan up to ten (10) items (including serials) at a time.

10. **Graduate Research Assistants/ Teaching Assistants (Non-Postgraduate Students)**
 Research assistants may have on loan up to ten (10) items at a time (including serials).

11. **Academic and Senior Administrative Staff**
 Academic and senior administrative staff of the University may have up to fifteen (15) items on loan (including serials). In case of special need, additional items may be loaned at the discretion of the Librarian. All loans are subject to recall by the Librarian at any time.

12. **Support Staff**
 Support staff of the University may have two (2) items on loan. They may not borrow from the Reserve Collection.

13. Departments’ library materials may be loaned for extended periods to departments of the University under certain conditions and at the discretion of the Librarian.

14. **Reserve Books**
 All persons to whom the Library is open under Rule 2 may borrow two (2) books reserved for overnight use only and two (2) short loan items from the Reserve Collection. These may not be borrowed before the specified times posted at the Loans Desk and must be returned by 9:00 a.m. the next day, or on the following Monday if borrowed on a Saturday. Evening or part-time students shall have until 6:30 p.m. the following weekday or Monday (as the case may be) to return them. Copies for part-time students have a green sticker and are separately identified.

15. **Serials**
 Periodicals and other serials (excluding certain titles and newspapers, which are not for loan) may be issued on loan for a period of seven (7) days to postgraduate students and to members of the academic and research staff only. These loans shall NOT be renewable. The most recently received issue of a periodical may not be borrowed except at the discretion of the Librarian.

16. **Overdues**
 The Librarian is empowered to levy a fine upon all users who fail to return library material within the prescribed period. The fine for late return of books is fifty cents (0.50c) for each day the loan is overdue. This fine will apply to normal loans and books recalled to satisfy other borrowers’ requests. The fine for late return of books in the Reserve Collection will be fifteen cents (0.15c) per hour for short loan, one dollar ($1.00) per hour for three-(3)-hour and overnight loans. The maximum for each overdue item in all categories is One Hundred Dollars ($100.00), after which further disciplinary action may be taken.

17. After a third overdue notice is dispatched, all borrowing privileges will be automatically suspended. Books which are not returned after due notice will be presumed lost and treated accordingly.
18. When, after due notice, a fine or replacement cost has not been paid, the Librarian is authorised to request the Bursar to arrange for the amount of the fine/ replacement cost to be recovered by the University.

19. The names of all those students who are not in good standing with the Library, that is, those who after due notice have failed to return overdue publications or to pay for books lost or other outstanding fines - will be submitted to the Principal once per year for further action.

20. The Librarian shall have power to remit or reduce fines in any case at his/her discretion.

21. All users are required to return promptly to the Library all items on loan on completion of his/her period of study or termination of employment.

22. **Conduct**
 a. The Library is provided exclusively for the purpose of academic study and research. Any conduct inconsistent with this purpose or detrimental to its pursuit by others shall constitute a breach of these rules.

 b. All library users must be prepared to present the appropriate identification cards entitling them to use the Library and/or its special collections at any time when asked to do so by a member of the Library or security staff. The use of such ID cards is mandatory for admission to the West Indiana and Special Collections Division.

 c. Silence shall be observed in the Library.

 d. No bags, briefcases, handbags, parcels or other receptacles exceeding 15 inches (10” x 6” x 4”) or 30cm (20 cm x 15cm x 10 cm) may be brought inside the Library. Such bags, briefcases, handbags, etc. may be left in the lockers (open or rented) provided in the walkways leading to the entrance of the Library. The University accepts no responsibility for loss or damage of any articles so left.

 e. Laptop computers on battery power may be used in the Library.

 f. Pagers and cellular phones should be used with discretion and should not be a disturbance to other library users.

 g. Chairs and tables and other library equipment, fittings and furniture may not be marked, defaced or disarranged.

 h. Food or drink may not be brought into the Library’s service areas or there consumed.

 i. The Library has been designated a smoke-free area and smoking is strictly forbidden.

 j. Books, periodicals, etc., taken from shelves and used in the Library should be left on the tables after use and NOT replaced on the shelves.

 k. All users leaving the library must show all books, folders, periodicals, papers, etc., in their possession whether these belong to the University or not. Users may also be required to open for inspection any receptacle carried out of the Library.

 l. All members of the Library and security staff are empowered to require users to comply with these rules.

 m. The Librarian shall at all times have authority to maintain good order in the Library and may exclude from it or suspend from its use any user who breaks these rules. The Librarian may report to the appropriate University authority any person responsible for serious or persistent breach of these rules; such conduct by any member of the University community shall be considered a breach of University discipline.

23. **Theft, Mutilation and Loss**

 Loss or damage to library material on loan to a user should be reported (book or other item), in addition to any fine which may have accrued.

 Replacement costs will include library processing costs up to Twenty-five Dollars ($25.00) per item. Where damage to library material is reported, the user may be subject to a fine appropriate to the extent of the damage. When such damage is not reported but discovered, this may be treated as a major offence.
24. The following will be considered a major offence against the University:

 a. The illegal removal of library materials.

 b. Any attempt to obtain library materials or to gain access to library facilities by false pretences or forgery.

 c. The intentional misplacement of books in the Library.

 d. The wilful mutilation or defacement of library material. Any University person who commits such offences will be reported to the appropriate University authority for disciplinary action, which may include suspension or expulsion. Non-University persons who commit such offences will be subject to legal action.

25. Any breach of these rules by a user may render him/her liable to a fine not exceeding One Hundred Dollars ($100.00) at the discretion of the Librarian.

26. The Librarian may institute such operating rules and procedures in addition to the above as may be deemed necessary and appropriate for good library economy and service.

NB: a. “Librarian” means the Campus Librarian or anyone delegated by her/him.

 b. Major offences are specified in “The Charter of Principles and Responsibilities.”

CALENDAR

SEMESTER ONE - 2004

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday August 29</td>
<td>Semester I begins.</td>
</tr>
<tr>
<td>Monday August 30</td>
<td>Registration opens.</td>
</tr>
<tr>
<td>Friday September 3</td>
<td>Registration closes.</td>
</tr>
<tr>
<td>Monday September 6</td>
<td>Teaching begins.</td>
</tr>
<tr>
<td>Friday December 3</td>
<td>Teaching ends.</td>
</tr>
<tr>
<td>Monday December 6</td>
<td>Examinations begin.</td>
</tr>
<tr>
<td>Wednesday December 22</td>
<td>Examinations end.</td>
</tr>
<tr>
<td>Wednesday December 22</td>
<td>Semester ends.</td>
</tr>
</tbody>
</table>

SEMESTER TWO - 2005

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday January 16</td>
<td>Semester II begins.</td>
</tr>
<tr>
<td>Monday January 17</td>
<td>Teaching begins.</td>
</tr>
<tr>
<td>March 27 - April 2</td>
<td>Mid-semester break.</td>
</tr>
<tr>
<td>Friday April 22</td>
<td>Teaching ends.</td>
</tr>
<tr>
<td>Wednesday April 27</td>
<td>Examinations begin.</td>
</tr>
<tr>
<td>Friday May 13</td>
<td>Examinations end.</td>
</tr>
<tr>
<td>Friday May 13</td>
<td>Semester ends.</td>
</tr>
</tbody>
</table>

For further information, contact the
Office of the Dean
Tel: 1 (868) 662-2002; ext 2199/ 3396
Notes
Notes