APPLYING GNSS & CORS TECHNOLOGY TO LAND DEVELOPMENT:
A CADASTRAL PERSPECTIVE

Dr. Dexter Davis
Department of Geomatics Engineering & Land Management, UWI
OUTLINE

- Overview
- GNSS & CORS Evolution
- Cadastral Considerations & Challenges
- Cadastral Criteria
- International Experiences
- Potential Benefits
- Conclusion
GPS/GNSS is a maturing technology
- Gone beyond traditional hindrances
 - Cost, confusion about capabilities, geodesy, best practices etc
- Accepted and embraced in engineering and topographic survey applications
GNSS & CORS Evolution

- Global Positioning System (GPS)
 - US DoD
- Real Time Kinematic (RTK)
 - Base & Rover, radio link
- Global Navigation Satellite Systems (GNSS)
 - GLONASS, Galileo
GNSS & CORS Evolution

- CORS
- Virtual Reference Station (VRS)

Server uses VRS position to create "corrected" RTCM/CMR real-time data.

Rover surveys as in "normal" RTK - but getting VRS data as if from a nearby reference station.
GNSS & CORS Evolution

- GNSS
- RTK
- GPS
- VRS
- CORS

Land Conference 2011: Land Ownership in Trinidad and Tobago: Issues and Challenges
April 28-29, 2011
GNSS & CORS Evolution

- Where we are
 - GPS
 - RTK
 - GNSS
 - CORS
 - VRS
CADASTRAL CONSIDERATIONS

- Base Station Location
 - Security & Power
 - Clear skyview
 - Radio range/base distance
 - Multipath & interference free environment

- Vegetation
 - Working in forest/dense vegetation
CADASTRAL CONSIDERATIONS

- Establishing/Redefining boundaries
 - Observing ‘Found’ and setting out ‘Put’ irons
 - Final positions

- Topographic Mapping
 - Re-observing marks
 - Topographic details to appear on plan
CADAstral CONSIDERATIONS

- Atmospheric Conditions
 - Ionospheric influences
 - Tropospheric influences

- Other Accuracy Considerations
 - WGS84 transformations
 - Antenna Phase Centre Variations
 - Obstructions/Interferance factors
 - Mask Angles
CADASTRAL CHALLENGES

- Legislation
 - Use of hand-held GPS units
 - Accuracy
- Professional Buy-In
CADASTRAL CRITERIA

- Speed
 - Outperform competing approaches
- Cost Effective
 - Reduce unit cost of survey
- Relevant to local survey community
 - Technology & Cost
Cadastral Criteria

- Accuracy
 - Matches legal specifications
- Simple field operation
 - Process must allow for operations under variable field conditions
- Digital Cadastral Database
 - Role towards the development of DCDB
INTERNATIONAL EXPERIENCES

NETHERLANDS

- 2000 RTK GPS introduced to measure cadastral boundaries – until then GPS used for control surveys
- In 2002, in-depth study conducted to identify all of the possibilities and limitations and evaluate efficiency
- Technical, ergonomical, economical
- ~25% of surveys done more efficiently
- Overall efficiency is improved up to 30% based on skill of surveyor
INTERNATIONAL EXPERIENCES

NETHERLANDS

- Ergonomic benefits
- Positive feeling - working with modern technology
- Provided flexibility in choice of instrumentation for surveyors and management – most suitable instrument leads to efficiency improvements
- Cost (2002) only slightly more expensive than Total Station
INTERNATIONAL EXPERIENCES

MALAYSIA

- Cadastral survey practice regulated by legislation that required traceable calibration for distance measurement technique
- ‘Legal Traceability’ – (i) calibration and (ii) procedures
- Zero Baseline and EDM baseline calibration tests gave maximum discrepancies of 1.4 and 10mm respectively
- GPS network solutions computed baseline distances of approx 30km within standard allowable misclosures
INTERNATIONAL EXPERIENCES

MALAYSIA

- Using Rapid Static technique with 10 min observation times, the coordinates of 6 lots were measured in an area less than 1ha
- Measuring the same points from two different GPS base stations gave RMS errors of 3mm in both easting and northing
- Total difference in GPS computed area and national certified plans was 1m²
- Effective tool to work alongside existing techniques
INTERNATIONAL EXPERIENCES

ALBANIA

- Two field tests carried out. In 1 agricultural village, 29 parcels were surveyed in 4 hours and 35 mins (excluding 40 mins set up time). Average agricultural parcel is 0.25ha
- In second village, 17 parcels in 1 hour and 15 mins covering 7.58 ha (average parcel size 0.4ha)
- Topographic detail – 20 houses and 153 planimetric features surveyed in 3 urban areas in just under 8 ½ hours of field observation
INTERNATIONAL EXPERIENCES

- ALBANIA

- Productivity estimates GPS methods were 8 times faster in the field and almost 10 times faster w.r.t. office processing/presentation
INTERNATIONAL EXPERIENCES

- Australia
- Belize
- Nepal
- Austria
- China
- Kenya
- United States of America
POTENTIAL BENEFITS

- Speed
- Accuracy
- Efficiency
- General user wellbeing
- Framework for DCDB
- National SDI
CONCLUSION

- GNSS can be an effective tool in cadastral surveying
- Several potential benefits
- Will not replace existing survey techniques, but can work alongside
- ‘Best practice’ and calibration guidelines
THANK YOU

Dr. Dexter Davis
Department of Geomatics Engineering & Land Management
Faculty of Engineering
University of the West Indies
dexter.davis@sta.uwi.edu
APPLYING GNSS & CORS TECHNOLOGY TO LAND DEVELOPMENT: A CADASTRAL PERSPECTIVE

Dr. Dexter Davis
Department of Geomatics Engineering & Land Management, UWI