

OUTLINE

- Overview
- GNSS & CORS Evolution
- Cadastral Considerations & Challenges
- Cadastral Criteria
- International Experiences
- Potential Benefits
- Conclusion

OVERVIEWTECHNOLOGICAL ADVANCES

SOCIETAL IMPACT

- GPS/GNSS is a maturing technology
- Gone beyond traditional hindrances
 - Cost, confusion about capabilities, geodesy, best practices etc
- Accepted and embraced in engineering and topographic survey applications

- Global Positioning System (GPS)
 - * US DoD
- Real Time Kinematic (RTK)
 - Base & Rover, radio link
- Global Navigation Satellite Systems (GNSS)
 - GLONASS, Galileo

- > CORS
- Virtual Reference Station (VRS)

GNSS

RTK

GPS

CORS

- Where we are
 - √ GPS
 - **✓** RTK
 - ✓ GNSS
 - ✓ CORS
 - VRS

CADASTRAL CONSIDERATIONS

- Base Station Location
 - Security & Power
 - Clear skyview
 - Radio range/base distance
 - Multipath & interference free environment

- Vegetation
 - Working in forest/dense vegetation

CADASTRAL CONSIDERATIONS

- Establishing/Redefining boundaries
 - Observing 'Found' and setting out 'Put' irons
 - Final positions

- Topographic Mapping
 - Re-observing marks
 - Topographic details to appear on plan

CADASTRAL CONSIDERATIONS

- Atmospheric Conditions
 - Ionospheric influences
 - Troposhperic influences

- Other Accuracy Considerations
 - WGS84 transformations
 - Antenna Phase Centre Variations
 - Obstructions/Interferance factors
 - Mask Angles

CADASTRAL CHALLENGES

- Legislation
 - Use of hand-held GPS units
 - Accuracy

Professional Buy-In

CADASTRAL CRITERIA

- Speed
 - Outperform competing approaches
- Cost Effective
 - Reduce unit cost of survey
- Relevant to local survey community
 - Technology & Cost

CADASTRAL CRITERIA

- Accuracy
 - Matches legal specifications
- Simple field operation
 - Process must allow for operations under variable field conditions
- Digital Cadastral Database
 - Role towards the development of DCDB

- NETHERLANDS
 - 2000 RTK GPS introduced to measure cadastral boundaries – until then GPS used for control surveys
 - In 2002, in-depth study conducted to identify all of the possibilities and limitations and evaluate efficiency
 - Technical, ergonomical, economical
 - ~ 25% of surveys done more efficiently
 - Overall efficiency is improved up to 30% based on skill of surveyor

- > NETHERLANDS
 - Ergonomic benefits
 - Positive feeling working with modern technology
 - Provided flexibility in choice of instrumentation for surveyors and management – most suitable instrument leads to efficiency improvements
 - Cost (2002) only slightly more expensive than Total Station

- > MALAYSIA
 - Cadastral survey practice regulated by legislation that required traceable calibration for distance measurement technique
 - 'Legal Traceability' (i) calibration and (ii) procedures
 - Zero Baseline and EDM baseline calibration tests gave maximum discrepancies of 1.4 and 10mm respectively
 - GPS network solutions computed baseline distances of approx 30km within standard allowable misclosures

- MALAYSIA
 - Using Rapid Static technique with 10 min observation times, the coordinates of 6 lots were measures in an area less than 1ha
 - Measuring the same points from two different GPS base stations gave RMS errors of 3mm in both easting and northing
 - Total difference in GPS computed area and national certified plans was 1m²
 - Effective tool to work alongside existing techniques

- > ALBANIA
 - Two field tests carried out. In 1 agricultural village, 29 parcels were surveyed in 4 hours and 35 mins (excluding 40 mins set up time). Average agricultural parcel is 0.25ha
 - In second village, 17 parcels in 1 hour and 15 mins covering 7.58 ha (average parcel size 0.4ha)
 - ❖ Topographic detail 20 houses and 153 planimetric features surveyed in 3 urban areas in just under 8 ½ hours of field observation

- > ALBANIA
 - Productivity estimates GPS methods were 8 times faster in the field and almost 10 times faster w.r.t. office processing/presentation

- Australia
- > Belize
- Nepal
- > Austria
- > China
- Kenya
- United States of America

POTENTIAL BENEFITS

- Speed
- Accuracy
- > Efficiency
- General user wellbeing
- Framework for DCDB
- National SDI

CONCLUSION

- GNSS can be an effective tool in cadastral surveying
- Several potential benefits
- Will not replace existing survey techniques, but can work alongside
- 'Best practice' and calibration guidelines

THANK YOU

Dr. Dexter Davis

Department of Geomatics Engineering & Land Management
Faculty of Engineering
University of the West Indies
dexter.davis@sta.uwi.edu

