Energy Consumption, CO₂ Emissions and Economic Development in the Caribbean: Are There Causal Links?

> R. DEONANAN AND B. RAMKISSOON DEPARTMENT OF ECONOMICS THE U.W.I., ST. AUGUSTINE COTE – 12 OCT, 2016

Motivation

▶ High cost to energy consumption in the Caribbean.

- ▶ More than 90% of energy consumption comes from imported fossil fuels (UNEP 2014).
- ▶ Fuel imports account for up to 20% of annual GDP (Walker-Leigh, 2012).
- ▶ More than 30% of foreign exchange earnings is spent on fuel imports (UNEP 2014).

Motivation

High dependence on imported fuels comes with risk.

- Many Caribbean islands involved in the PetroCaribe agreement.
- Disruptions to this agreement have implications for regional energy security.
- High energy consumption may be associated with negative environmental impacts.
 - Current policy focus Renewable energy
 - Limited financing, low technological capacity and political constraints (UNEP 2014).

Conservation measures in the region?

Energy Consumption & CO₂ Emissions Across SIDS

Source: World Development Indicators & U.S. Energy Information Administration

Metric tons per capita (Emissions)

CO₂ Emissions Over Time for SIDS

Source: World Development Indicators

Motivation – Main Questions

Can conservation measures be implemented in the CARICOM member countries without harming development?

If so, can conservation measures alone mitigate emissions?

Previous Work

Studies specific to the Caribbean are sparse and span only a few countries.

- Ramcharran (1990): Jamaica. Conservation not conducive to growth.
- Francis et al. (2007): Haiti, Jamaica, Trinidad & Tobago. Conservation possible in long run for Haiti & Jamaica but not T&T.
- ▶ Lorde et al. (2010): Barbados. Conservation not conducive to growth.

Previous studies focus on first question – little attention to the role of environmental emissions

- Omitted variable bias
- Cannot address second question Can conservation measures alone mitigate emissions?

Innovations of this Paper

- We address omitted variable bias by including environmental emissions as an endogenous variable. Emissions can affect the energy-development link.
- we include fourteen Caribbean islands to make results more generalizable to the SIDS group.
- ▶ We use a country-specific approach to allow for heterogeneity.
- Use the TY (1995) Granger non-causality approach
 - Accommodates different integration and cointegration properties of the data more flexible
 - Does not require testing for cointegration prior to causality testing avoids pre-test bias
 - Variables enter model in levels no loss of long-run information from differencing

Economic Model

Energy-Development Link (Energy dependence literature)

Hypothesis	Relationship	Implication
Growth	Energy \rightarrow Development	Conservation may reduce growth.
Feedback	Energy \leftrightarrow Development	Conservation may reduce growth.
Conservation	Development \rightarrow Energy	Growth unaffected by conservation.
Neutrality	Energy -/-> Development	Growth unaffected by conservation.

Emissions-Development-Energy Links (EKC Hypothesis)

Hypothesis	Relationship	Environmental Implication
Energy consumption raises emissions	Energy → Emissions	Conservation likely to have a positive impact.
Development increases emissions	Development \rightarrow Emissions	Form of development associated with higher emissions

Estimation and Testing

- Step I Construct VAR in levels and determine optimal lag length, k, using SBC; diagnostic tests to ensure VAR(k) well-specified.
- Step II Determine maximum order of integration, m, from stationarity properties of data for each country.
- Step III Augment optimal VAR(k) with d additional lags. Estimate VAR(k+d):
 - $ED_{t} = \alpha_{0} + \sum_{i=1}^{k} \alpha_{1i} ED_{t-i} + \sum_{i=1}^{k} \alpha_{2i} EC_{t-i} + \sum_{i=1}^{k} \alpha_{3i} EE_{t-i} + \sum_{i=k+1}^{k+d} \alpha_{4i} ED_{t-i} + \sum_{i=k+1}^{k+d} \alpha_{5i} EC_{t-i} + \sum_{i=k+1}^{k+d} \alpha_{6i} EE_{t-i} + \varepsilon_{1t} + \varepsilon_{1t}$
 - $EC_{t} = \beta_{0} + \sum_{i=1}^{k} \beta_{1i} ED_{t-i} + \sum_{i=1}^{k} \beta_{2i} EC_{t-i} + \sum_{i=1}^{k} \beta_{3i} EE_{t-i} + \sum_{i=k+1}^{k+d} \beta_{4i} ED_{t-i} + \sum_{i=k+1}^{k+d} \beta_{5i} EC_{t-i} + \sum_{i=k+1}^{k+d} \beta_{6i} EE_{t-i} + \varepsilon_{2t}$

 $EE_{t} = \gamma_{0} + \sum_{i=1}^{k} \gamma_{1i} ED_{t-i} + \sum_{i=1}^{k} \gamma_{2i} EC_{t-i} + \sum_{i=1}^{k} \gamma_{3i} EE_{t-i} + \sum_{i=k+1}^{k+d} \gamma_{4i} ED_{t-i} + \sum_{i=k+1}^{k+d} \gamma_{5i} EC_{t-i} + \sum_{i=k+1}^{k+d} \gamma_{6i} EE_{t-i} + \varepsilon_{3t}$ (3)

ED – real GDP (WDI); EC – energy consumption (US Energy Info Admin); EE - CO₂ emissions (WDI); ε - N(0,1) error terms.

(1)

(2)

Estimation and Testing

To assess Granger causality - block exogenous Wald test.

- In determining causality from energy consumption to development:
 - $H_0: \alpha_{21} = \alpha_{22} = \ldots = \alpha_{2k} = 0$
- ▶ In determining causality from energy consumption to emissions:
 - $H_0: \gamma_{11} = \gamma_{12} = \dots = \gamma_{1k} = 0$

• Modified Wald Statistic – asymptotic χ^2 distribution with k degrees of freedom (TY, 1995).

Results

Country	Energy-Development Link	Hypothesis	Energy \rightarrow Emissions	Development \rightarrow Emissions
Antigua & Barbuda	Energy \rightarrow Development	Growth	No	No
Haiti	Energy \rightarrow Development	Growth	Yes	No
Trinidad & Tobago	Energy \leftrightarrow Development	Feedback	No	Yes
St. Kitts & Nevis	Development \rightarrow Energy	Conservation	No	No
Bahamas	Energy -/-> Development	Neutrality	No	No
Belize	Energy -/-> Development	Neutrality	No	Yes
Barbados	Energy -/-> Development	Neutrality	No	Yes
Dominica	Energy -/-> Development	Neutrality	Yes	No
Grenada	Energy -/-> Development	Neutrality	No	No
Guyana	Energy -/-> Development	Neutrality	No	No
Jamaica	Energy -/-> Development	Neutrality	Yes	No
St. Lucia	Energy -/-> Development	Neutrality	No	Yes
St. Vincent & the Grenadines	Energy -/-> Development	Neutrality	No	No
Suriname	Energy -/-> Development	Neutrality	No	No

Policy Recommendations

- Energy policies aimed at reducing energy consumption in the 3 energy dependent countries are likely to negatively impact economic growth (Ant & Bar, Haiti, T&T).
 - More focus on energy intensity policies.
- Such policies may be possible to implement in the 11 non-energy dependent countries without harming economic development
 - Conservation measures may reduce energy costs
- However, among the non-energy dependent countries, conservation measures may mitigate emissions in 2 countries (Dom, Jam).
- Among 11 non-energy dependent countries, ED main driver of emissions in 3 countries (Bel, Bar, St. Luc).
- Other factors likely driving emissions in remaining 6 non-energy dependent countries need for further research.

Policy Recommendations

T&T - Feedback hypothesis holds

Conservation measures may negatively affect economic development

- Not advisable in reducing energy costs
- More focus on energy intensity policies.
- But EC not main driver of emissions ED is!
 - More attention to linking ED and environmental policies
- Perhaps role for private sector, in conjunction with gov't policies
 - Providing solutions to facilitate energy conservation and lower energy intensity

Final Thought – Energy Intensity Over Time

15

Source: World Development Indicators

Country	Development	Energy Consumption	Emissions
Antigua & Barbuda	l(1)/l(1)	I(O)/I(O)	I(0)/I(0)
Bahamas	I(1)/I(1)	I(1)/I(1)	I(O)/I(O)
Belize	I(2)/I(2)	I(1)/I(1)	I(1)/I(1)
Barbados	I(1)/I(O)	I(0)/I(0)	I(1)/I(1)
Dominica	I(1)/I(1)	I(0)/I(0)	I(O)/I(O)
Grenada	I(1)/I(1)	I(1)/I(1)	I(1)/I(1)
Guyana	I(1)/I(O)	I(1)/I(1)	I(1)/I(1)
Haiti	I(1)/I(1)	I(1)/I(1)	I(1)/I(1)
Jamaica	I(1)/I(1)	I(1)/I(1)	l(1)/l(1)
St. Kitts & Nevis	I(1)/I(1)	I(1)/I(1)	I(1)/I(1)
St. Lucia	l(1)/l(1)	I(0)/I(0)	I(1)/I(1)
St. Vincent & the Grenadines	I(1)/I(1)	I(1)/I(1)	I(1)/I(1)
Suriname	l(1)/l(1)	I(1)/I(1)	I(0)/I(0)
Trinidad & Tobago	1(2)/1(2)	I(1)/I(1)	I(1)/I(1)