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Abstract 

 

 This paper analyzes the dynamics of Asian stock index returns through a 

Regime-Switching Asymmetric Power GARCH model (RS-APGARCH). The model 

confirms some stylized facts already discussed in former studies but also highlights 

interesting new characteristics of stock market returns and volatilites. Mainly, it 

improves the traditional regime-switching GARCH models by including an 

asymmetric response to news and, above all, by allowing the power transformations 

of the heteroskedasticity equations to be estimated directly from the data. Several 

mixture models are compared where a first-order Markov process governs the 

switching between regimes. 
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I. Introduction 

 

Since the availability of high frequency financial data, a growing body of 

empirical studies, starting with Fama and French (1989), has investigated the 

predictability of mean and volatility of asset returns. Volatility of financial returns is 

indeed a central parameter for many financial decisions including the pricing and 

hedging of derivative products and risk management. Most of the volatility models 

presented in the empirical literature are based on the observation that volatility is 

time-varying and that periods of high volatility tend to cluster. The autoregressive 

conditional heteroskedasticity (ARCH) models, as introduced by Engle (1982) and 

extended to Generalized ARCH (GARCH) in Bollerslev (1986) have proven to be a 

useful means for empirically capturing these stylised facts.  

Although such approaches provide an improvement in fit compared with 

constant variance models, recent evidence from financial market data seems to 

suggest that persistence in variance, as measured by GARCH models is so 

substantial that it sometimes implies an explosive conditional variance. To account 

for this apparent empirical regularity, Engle and Bollerslev (1986) introduce the 

Integrated-GARCH (I-GARCH) process, in which shocks to the variance do not 

decay over time.  However, Lamoureux and Lastrapes (1990) show that one potential 

source of misspecification of ARCH/GARCH models is that the structural form of 

conditional means and variances is relatively inflexible and is held fixed throughout 

the entire sample period. As explained in Timmermann (2000) if the variance is high 

but constant for some time and low but constant otherwise, the persistence of such 

high- and low- volatility homoskedastic periods already results in volatility 

persistence. GARCH models, that cannot capture the persistence of such periods, put 

all the volatility persistence in the persistence of individual shocks, biasing thus 

upward our assessment of the degree to which conditional variance is persistent. 
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Although the ad hoc introduction of deterministic shifts into the variance 

process represents one possibility to allow for periods with different unconditional 

variances, the most promising approach to modelling these nonlinearities is by 

endogenizing changes in the data generating process through a Markov regime- 

switching model as introduced in Hamilton (1989). The model relies on different 

coefficients for each regime to account for the possibility that the economic 

mechanism generating the asset returns may undergo a finite number of changes 

over the sample period. In order not to rule out within-regime heteroskedasticity, 

Gray (1996) extends Hamilton’s (1989) model to accommodate within-regime 

GARCH effects with a so-called Regime-Switching GARCH model (RS-GARCH). RS-

GARCH models have the attractive feature of incorporating significant 

nonlinearities, while remaining tractable and easy to estimate. Although they 

represent a suitable framework to investigate how the volatility dynamics is affected 

by the states of the economy, surprisingly few improvements of the single-regime 

ARCH/GARCH literature have been adapted and tested in their regime-switching 

counterparts. 

In particular, under classical GARCH models, shocks to the variance persist 

according to an autoregressive moving average (ARMA) structure of the squared 

residuals of the process. However, it is not necessary to impose a squared power 

term in the second moment equation as in Bollerslev (1986). Taylor’s (1986) and 

Schwert’s (1989) class of GARCH models, for instance, relate the conditional 

standard deviation of a series to lagged absolute residuals and past standard 

deviations. More recently, Ding, Granger and Engle (1993) suggest an extension of 

the GARCH family models that analyses a wider class of power transformations than 

simply taking the absolute value or squaring the data as in the traditional 

heteroskedastic models. Known as the Power GARCH (PGARCH) models, this 

addition to the GARCH family has been shown to be superior in fit to its less 

sophisticated counterparts (see Brooks, Faff, McKenzie, and Mitchell (2000) for an 

empirical investigation in a single-regime framework). Nesting the major two classes 
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of GARCH models (namely, Bollerslev’s and Taylor-Schwert’s) the PGARCH 

specification also provides an encompassing framework which facilitates 

comparison. 

An important contribution of the current paper is to highlight whether and to 

what extent these more flexible models improve both the fit and our understanding 

of asset returns dynamics when the assumption of a single regime is relaxed in favor 

of a regime-switching model. To this end, we introduce a new Regime-Switching 

Asymmetric Power GARCH (RS-APGARCH) model to analyze empirically Asian 

stock index returns. Our findings shed light on several interesting stylized facts 

about the relationships between both the dynamics of the conditional mean and 

variance and the state of the economy. It is shown that the RS-APGARCH model 

proposed in this paper is able to match some empirical regularities of stock index 

returns that could not be captured with the traditional regime-switching models 

already introduced in the literature, let alone using a single-regime GARCH model.  

Another important novelty of our approach compared to the classical 

literature on regime-switching processes regards the choice of the underlying 

conditional distributions. Indeed, a regime-switching model relies on a mixture of 

conditional distributions where the parameters are either held constant - Hamilton 

(1989) - or rendered time-varying - Gray (1996) -.  Following the traditional literature 

on mixture of distributions (see Kon (1984) or Ané and Labidi (2001)) most Markov 

regime-switching models adopt conditional Gaussian mixtures. Since our analysis 

focuses on recent years where stock markets have undergone important shocks (both 

economical and political), financial assets have experienced periods of extreme 

volatility. In order to capture a higher degree of kurtosis in asset returns, we follow 

Perez-Quiroz and Timmermann (2001) and introduce in our RS-APGARCH model a 

mixture of a Gaussian distribution and a Student-t density. In such a mixture, 

outliers or extreme returns will be modeled as drawn from a fat-tailed t-distribution 

with few degrees of freedom whereas the moderate returns will be generated by the 

conditional Gaussian density. With this additional characteristic our model enables 
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us to differentiate the effect of the states of the economy on the dynamics of asset 

returns far beyond the mere difference of parameter values and/or conditional mean 

and variance structure: it allows for higher order conditional differences through 

conditional densities that exhibit very different probabilistic structures. We then test 

the necessity of introducing two leptokurtic densities in the model. 

Finally, another contribution of this paper arises from the APGARCH 

structure used on the volatility of each regime. Ding and Granger (1996) show that 

the power term transformation of this model can be related the long run temporal 

dependency in the volatility also called the long memory property of the volatility. 

Using APGARCH models in a regime-switching framework we are thus able to 

investigate whether the degree of temporal dependency changes with the states of 

the economy. 

The remainder of the paper is organized as follows. Section 2 describes the 

new Regime-Switching Asymmetric Power GARCH model introduced in this paper. 

The data and a preliminary empirical investigation motivating the use of our model 

are presented in Section 3. Section 4 contains the main empirical findings and the 

goodness-of-fit tests while Section 5 concludes. 

 

II. The RS-APGARCH Model 

 

 One purpose of this paper is to investigate the impact of a general variance 

equation specification in a regime-switching context. Hence, without implying that 

the mean equation has no interest, we follow a classical approach and simply assume 

an autoregressive structure for the mean, that is: 

∑
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where  is the stock market index return,  is the conditional mean 

and 

tR ∑
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tε  is the error term in period . We use the t-statistics associated with the  in 

a single-regime version of the model to determine the optimal number of lags  to 

include in its regime-switching counterparts. Ljung-Box statistics were also used on 

the final specification to ensure that no significant higher order serial correlation is 

found in the series. 
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 The error term in the mean equation ( 1 ) may be decomposed as 

      ttt eσε = ,     ( 2 ) 

where . The standardized error term e  is usually assumed to be normally 

distributed: 
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However, to capture conditional kurtosis in the error term, a Student-t density with 

few degrees of freedom ν  is sometimes introduced: 
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 where Γ  is the gamma function. ).(

Studies on the predictability of asset returns also allow for nonlinear effects by 

explicitly modeling time dependence in the second conditional moment: 

    { } { } ),(
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where Ψ  is some time-invariant function. ).(

 Although such models allow for a wide range of nonlinear dynamics, they still 

assume a single structure for the conditional mean and variance and leave no room 

for the economic mechanism generating prices to undergo substantial changes 

 7



according to the states of the economy. Recent economic theories, however, provide 

evidence of strong asymmetries in stock returns with regard to the underlying 

economic state. Following the popular Markov-switching approach introduced by 

Hamilton (1989), we use a latent regime indicator  to allow the mean and variance 

of a stationary series to take different structures according to the states of the 

economy. The mixture model presented in this paper follows the usual practice and 

assumes two states. The mean and variance equations now become state-dependent 

as outlined below: 

ts
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The regime indicator  is then parameterized as a first order Markov process where ts

    .    ( 7 ) 











−===
===

−===
===

−−

−−

−−

−−

QFssP
QFssP
PFssP

PFssP

ttt

ttt

ttt

ttt

1),2/1(
),2/2(

1),1/2(
),1/1(

11

11

11

11
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information , the unconditional returns  follow a mixture of distributions: 
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given the information at time 1−t  and ),( 21 θθθ =  is the set of parameters. The 
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probability  is called ‘ex ante regime probability’ because it is based solely on 

information already available at time 

tp1

1−t  and it forecasts the prevailing regime in 

the next period. These conditional state probabilities can be obtained recursively 

using the total probability theorem: 
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Finally, using Bayes’ theorem, the conditional state probability  can be written as: tp1
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The model in equation ( 8 ) thus implies that the density );/( 1 θφ −tt FR  of the asset 

return  conditional on information  is obtained by summing the density 

functions conditional on the state, 

tR 1−

(R );,/ 1 jttt Fjs θ−= , using the respective 

probabilities as weights: 

);,2/()1(,1/();( 21111 θηηθφ −− =−+== ttttttttt FsRpFsRpR .  ( 11 ) 

The parameters of this model can be obtained by maximizing the following log-

likelihood function: 

[ −− ttTT FRRRRL 111 );/(ln);,...,,( θφθ .   ( 12 ) ]

Although mixtures of normal distributions can approximate a very broad set 

of density families, we introduce Student-t distributions to better capture the excess 

kurtosis observed on any sample of asset returns that contains outliers or extreme 
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values. We first follow Perez-Quiros and Timmermann (2001) and model the two 

density functions conditional on state 1 and state  of the economy respectively 

according to equations ( 3 ) and ( 4 ). We then investigate whether a mixture of two 

conditional Student-t densities improves the fit. 

2

To fully parameterize the model and make the estimation possible one still 

needs to specify the form of the second moment in equation ( 5 ) where  will 

now be a function of the regime . The first specification follows Gray (1996) to 

accommodate within regime heteroskedasticity using a classical GARCH(1,1) process 

in each regime: 
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The problem of recovering a first-order Markov structure in a regime-switching 

model that includes such GARCH terms is solved using the method introduced in 

Gray (1996), namely by averaging the error term and conditional variance at each 

time: 
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 Although the ARCH family of models has been extended well beyond the 

simple specification of the initial ARCH model of Engle (1982) and GARCH model of 

Bollerslev (1986), most of the popular additions to the family have attempted to 

refine both the mean and variance equations while still relating the second moment 
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to lagged squared residuals and past variances. The only noticeable alternative was 

presented by Taylor (1986) and Schwert (1989) who specified a power term of unity 

in that he related the conditional standard deviation of a series to lagged absolute 

residuals and past standard deviations. 

 In fact, it is possible to specify any positive value as the power term in the 

second moment equation and the asset return will still exhibit volatility clustering. 

The preference given to squared terms or even a power of unity is inherited from the 

Gaussian framework traditionally invoked regarding the data. As is well known, if a 

data series is normally distributed then it can be fully characterized by its first two 

moments. In this context squared or absolute residuals (returns) can be used to proxy 

the volatility process. However, if we accept that the data are very likely to have a 

non-normal error distribution, then one must use higher order moments to 

adequately describe the series. In this instance, the superiority of the squared or 

absolute term is lost and other power transformations may be appropriate. Indeed, 

for non-normal data, by squaring the returns or taking their absolute value, one 

effectively imposes a structure which may potentially furnish sub-optimal modeling 

and forecasting performance relative to other power terms. Recognizing the 

possibility that such power terms may not necessarily be optimal, Ding, Granger and 

Engle (1993) proposed a class of models which allows an optimal power 

transformation term to be estimated directly on the data. The model, known as the 

Asymmetric Power GARCH (APGARCH) model, relies on the following dynamics: 
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where the si 'γ  enable to introduce an asymmetric response to past shocks and δ  

corresponds to the optimal power transformation directly estimated on the data. 

In this paper we investigate the relevance of this general asymmetric power 

transformation model in a regime-switching context by specifying another structure 

for the function  of equation ( 5 ). More specifically, we assume that the 

volatility in each regime is driven by the following APGARCH(1,1) dynamics: 
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The resulting model will be called the Regime-Switching APGARCH (RS-

APGARCH) model. An important feature of the APGARCH dynamics is that the 

power term δ  can be related to the long memory property of the process (see Ding 

and Granger (1996)). Hence, our RS-APGARCH model provides a convenient 

framework to study the long memory property of asset returns as a function of the 

current state of the economy. The empirical findings should thus highlight whether 

the different regimes characterizing the states of the economy exhibit different levels 

of long run dependency. In particular, can we identify a regime characterized by long 

memory and another one only exhibiting short memory? 
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III. Data and Preliminary Study 

 

The empirical study focuses on the Pacific Basin area that has undergone 

important shocks over the past decades and may thus represent an excellent region 

to test the usefulness of a regime-switching model. In order to investigate the 

potential differences between developed and emerging markets, we select indices 

corresponding to a wide range of stock market sizes. More specifically, we examine 

four Asian stock market indices: the NIKKEI 225 Index (NKY) for Japan, the Hang 

Seng Index (HIS) for Hong Kong, the Singapore SES-ALL Index (SESALL) for 

Singapore and the Kuala Lumpur Composite Index (KLCI) for Malaysia. The daily 

percentage returns over the period March 1984 to September 2003 are measured as 

.  The usual descriptive statistics of the four series are displayed 

in Table 1. 

)/ln(100 1−×= ttt PPR

 

Insert somewhere here Table 1 

 

We first observe that the indices present similar statistical characteristics. They 

all exhibit a significant negative skewness and a kurtosis larger than 3. Not 

surprisingly, all series fail to pass the Jarque-Bera normality test. The degrees of 

asymmetry and leptokurtosicity, however, vary a lot from one market to another, 

implying possible important distributional differences that should be reflected by 

discrepancies in the RS-APGARCH dynamics. It can also be noted that the 
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percentage mean is close to zero in all cases and plots of the return series (not shown 

here) indicate that the return process of each stock market index is quite stable 

around its mean. This justifies, in some ways, that no extra care is brought to the 

definition of the conditional mean equations in this paper. 

 

Insert somewhere here Figure 1 and Table 2 

  

To understand the motivations behind the model introduced in this paper, we 

first study the correlation of the transformed returns. Figure 1 gives the 

autocorrelograms obtained for the returns, squared returns and absolute returns of 

each stock market index. Consistent with the efficient market theory, we find that the 

stock market returns themselves contain little serial correlation. Indeed, in agreement 

with Fama (1976) and Taylor (1986) we observe a significant autocorrelation at the 

first lag that indicates the presence of short memory in stock index returns. This 

dependence, however, dies away very fast and virtually all other lags show no 

significant autocorrelation at the usual confidence level. Although the 

autocorrelation of squared returns seems to persist a little longer, we observe that the 

squared transformation does not necessarily exhibit a long run dependence. On the 

contrary, in agreement with Ding and Granger (1996), we then find that the absolute 

returns all exhibit long memory. In three out of four cases the autocorrelation of 

absolute returns remains above the 95  confidence interval even for lags as long as 

. Table 2 provides the sample autocorrelations of ,  and 

%

200 tR
2
tR tR  for lags 1 to 5  

and 10 , , , 100 , 150  and . It enables to clearly assess differences in the rate 20 50 200
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of decay of the autocorrelation as the lag τ  increases. Overall, the plots in Figure 1 

and the numerical values of Table 2 clearly highlight the importance of the power 

transformation used to investigate and/or capture the existence of long memory in 

stock market returns. 

  

Insert somewhere here Figure 2 and Table 3 

  

 The seminal papers of Fama (1965) and Mandelbrot (1967) have shown that 

large absolute (squared) returns are more likely than small absolute (squared) 

returns to be followed by a large absolute (squared) return. The existence of such a 

clustering effect together with the classical assumption of normality of asset returns 

suggest that the classical GARCH models provide a suitable time-varying structure 

to capture changes in volatility. The disparities between the long-run behavior of the 

correlograms for absolute and squared returns, however, suggest that no excessive 

trust should be put in the usual power transformations (squared power or power of 

unity) when trying to model volatility of stock market returns. Other power 

transformations may indeed convey more information about the volatility process 

outside the Gaussian world. To gauge the influence of the power transformation 

d
tR  on the autocorrelation decay, Table 3 presents the values 

),()( d
t

d
t RRcorrd ττρ −=  for different lags τ  and power transformations . For all 

indices, it is found that the autocorrelation is positive at least up to order , proving 

the existence of the documented long memory in stock markets. It is also confirmed 

that the decay of this autocorrelation strongly depends on the power transformation 

d

50
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d . We then fix the lag τ  and study how the autocorrelation )(dτρ  evolves as a 

function of the power transformation d . Figure 2 gives the plots of the calculated 

)(dτρ  for 1=τ  and 10=τ . The obtained graphs are similar in shape to those 

presented by Ding, Granger and Engle (1993) for the S&P 500 Index: for all indices, 

there exists a power transformation  for which the long memory is the strongest. 

Our results differ, however, from their empirical findings in that the power 

transformation yielding the maximum autocorrelation is index-specific and also 

sensitive to the number of lags. 

d

 Combining all these empirical facts, one easily understands why the use of an 

arbitrary power transformation in a GARCH equation may be misleading. The 

motivations to the introduction of Power GARCH models then become very clear: 

allowing the power δ  of the heteroskedasticity equation to be estimated from the 

data, this general class of models is more likely to capture the stylized features of 

volatility. Coupling the flexibility of Power GARCH models with that of regime-

switching models, one should obtain a general framework rich enough to accurately 

describe the specificity of the different stock markets. 

 

IV. Empirical Findings 

 

 We now turn to the estimation of the different models underlying our 

discussion. They are all estimated using the GAUSS CML module. The standard 

errors are computed from the diagonal of the heteroskedastic-consistent covariance 
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matrix - see White (1980) -. Due to the presence of strong nonlinearities in the regime-

switching models, good starting values are important to obtain the convergence. 

Following a classical approach, we started by estimating the model with constant 

parameters for the means and variances and then augmented it by steps using 

simpler versions to determine the best starting values. Robustness to the starting 

values has, of course, been tested. Since the simplest versions are nested in the final 

model, such approach can also be used to assess the relevance of each additional  

parameter through a likelihood ratio test. To save space, the intermediate results are 

not reported in this paper. However, the final model corresponds to the best fit 

according to the likelihood ratio test. Ljung-Box statistics are also used to investigate 

any remaining autocorrelation in power transformations of the standardized 

residuals. 

 

Single-Regime GARCH and APGARCH models 

 

 We begin by considering whether a single-regime model is sufficient to 

account for the conditional heteroskedasticity in the stock index returns. Beyond the 

now classical GARCH(1,1) model, an APGARCH(1,1) version is also estimated on 

each return series. The maximum likelihood estimates of both models are reported in 

Table 4.  Virtually all the t-statistics on the coefficients are largely significant at the 

 level. Although not the center of our investigation, we tried several 

autoregressive specifications for the conditional means and found that a first-order 

%5
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autoregressive process best represents the conditional mean of each series. 

Regardless of the stock market and the selected model, the coefficient   for the first-

order lag is positive and significant. The presence of first-order autocorrelation in 

index returns has largely been documented in the literature and may be explained by 

an asynchronous response to news of the stocks composing the index. 

1a

 

Insert somewhere here Table 4 

 

 The APGARCH model introduces two additional parameters relative to the 

GARCH model presented in this section. First of all it includes an asymmetric term 

through the parameter 1γ . We observe that this parameter is negative and very 

significant for each market. Although the magnitude of the asymmetric response to 

past shocks seems to vary from one market to another, the inclusion of this term 

proves useful in all cases. Then, the novelty of this family of models is to endogenize 

the computation of the optimal power transformation δ  to capture volatility 

clustering. The power term estimated for the APGARCH(1,1) model fitted to each of 

the four national indices are also presented in Table 4. The maximum power term is 

 for Singapore and the minimum is 1  for Japan. As argued in the 

introduction, the invalid imposition of a particular value for the power term may 

lead to sub-optimal modeling and forecasting performance. We use the likelihood 

ratio test (LRT) to assess whether the APGARGH structure really represents an 

improvement over the classical GARCH. The obtained LRT are respectively 172  

4054.2 5544.

11.
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for the NIKKEI 225 Index, 113  for the Hang Seng Index,  for the Singapore 

SES-ALL Index and 42  for the Kuala Lumpur Composite Index, all values are far 

beyond the usual 5  significance level. The flexibility brought by an endogenous 

power transformation is thus useful for each stock market return series. 

12.

1

07.73

29.

%

β

 In this single-regime framework, any conditional heteroskedasticity can only 

be driven by the ARCH ( ) and GARCH ( 2β ) terms of the underlying model. Not 

surprisingly, the persistence of volatility, as measured by the sum 21 ββ +

.0

, is  

on average for the GARCH(1,1) model, indicating a very strong level of volatility 

persistence. Despite the additional flexibility brought by the estimation of the 

optimal power transformation from the data, it can be observed that the obtained 

level of volatility persistence is very high with the APGARH(1,1) model - - and 

comparable to the level obtained with the classical GARCH(1,1) specification.  

9744.0

9643

 The existence of such a high persistence level, as explained by Lamoureux and 

Lastrapes (1990), may be the result of structural breaks in the dynamics representing 

each stock index return and should be better captured through a model whose 

structure is flexible enough to switch form according to the states of the economy. 

The interest of a regime-switching framework is particularly clear for the Singapore 

SES-ALL Index. Indeed, the Ljung-Box statistics show that neither the GARCH nor 

the APGARCH single-regime models are rich enough to suppress all tracks of 

heteroskedasticity in high-order transformations of the standardized residuals. 

Moreover, although not provided here, an analysis of the standardized residuals 

distribution reveals that the conditional normality assumed for the log-likelihood 
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estimation of the parameters is violated for all indices, indicating misspecifications in 

the models. We thus move to the estimation of regime-switching versions of these 

models. 

 

Regime-Switching GARCH and APGARCH models 

 

 We begin by considering whether the classical regime-switching GARCH 

model introduced by Gray (1996) is sufficient to account for the conditional 

heteroskedasticity in stock index returns. The parameter estimates for this model 

appear in Table 5. In many respects, the results are similar to past work. There is 

persistence of both regimes with P  and Q  both exceeding 0  and the regimes tend 

to be separated by different variances. Although the conditional mean parameters are 

not all significantly different from zero, they provide the interesting economic result 

that one regime corresponds to market decreases while the other regime models 

positive conditional returns. The regime corresponding to the negative conditional 

mean also corresponds to the period of high volatility with an unconditional variance 

several times bigger than the unconditional variance of the regime representing the 

“good state” of the economy. 

9.

 Unlike the single-regime models, heteroskedasticity can now be driven by 

switches between regimes as well as within-regime volatility persistence. There are 

thus really two sources of volatility persistence. If one regime has low average 

variance and one has high average variance, and if the regimes are persistent, 
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volatility will be persistent. The parameter estimates for P  and Q  suggest that 

regime persistence is an important source of volatility persistence. Additionally, if 

the effect of an individual shock takes a long time to die out, there is within-regime 

persistence. The reported parameter estimates indicate that within each regime, the 

GARCH processes are much less persistent than in a single-regime GARCH model. 

This is consistent with the findings of Lamoureux and Lastrapes (1990): the explosive 

variance often obtained with GARCH models may be caused by trying to use a 

single-regime model to capture a multi-regime process. 

 The Ljung-Box statistics relating to power transformations of the residuals, 

however, have not been reduced sufficiently in the case of the Hang Seng Index to 

accept the null hypothesis of no serial correlation in the residuals. In addition, the 

absence of strongly significant ARCH and GARCH parameters in most cases, casts 

doubt on the goodness-of-fit provided by this classical regime-switching GARCH 

model. 

 As argued in Section 2, there is no obvious reason why one should assume the 

conditional variance is a linear function of lagged squared residuals as in Bollerslev’s 

GARCH, or the conditional standard deviation a linear function of lagged absolute 

residuals as in the Taylor-Schwert model. We have shown in the previous sub-

section that the Asymmetric Power GARCH class of models provides a noticeable 

improvement in fit over GARCH processes when used in the single-regime context. 

We will thus investigate whether a regime-switching model may benefit from such 
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an APGARCH structure and extend Gray’s model to the RS-APGARCH model 

presented in Section 2. 

 The model was first estimated using conditional Gaussian densities. Following 

Perez-Quiros and Timmermann (2001), it is then re-estimated using their mixture of a 

Student-t and a Gaussian densities to incorporate a possible difference of 

leptokurtosicity between normal market conditions and periods of extreme 

fluctuations. Eventually, we test whether fat-tailedness is present regardless of the 

state of the economy using a mixture of two Student-t distributions. An LRT test was 

conducted to select the best model. To conserve space, Table 6 only presents details 

of the best specification, namely an RS-APGARCH(1,1) model relying on two 

conditional Student-t distributions. 

 As seen in the table, the values obtained for the degrees of freedom are quite 

small and indicate a strong level of within-regime leptokurtosicity. It is worth 

mentioning that the biggest two stock markets (namely, Japan and Hong Kong), 

exhibit more differential leptokurtosicity across regimes. Although we do not obtain, 

like Perez-Quiros and Timmermann (2001), that one regime is best described by a 

leptokurtic distribution while the other regime could be proxied by a Gaussian 

conditional density, it seems that the departure from normality (as measured by the 

degree of freedom of the Student-t density) is much weaker for the regime 

corresponding to the low average variance. The situation of smaller or emerging 

markets appears quite different however. Indeed, Singapore and Malaysia reveal less 

difference in across regime leptokurtosicity. Not surprisingly, the two parameters 
ts

ν  
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are the closest in the case of Malaysia. Although both states of the economy can also 

be interpreted as bull and bear market situations, overall, the market always evolves 

with great fluctuations in the case of an emerging country. 

 Since Black (1976), the so-called leverage effect of stock market returns has 

been largely documented in the finance literature. It is known that stock returns are 

negatively correlated with changes in return volatility. That is, volatility tends to rise 

in response to “bad news” - i.e., excess returns lower than expected -  and to fall in 

response to “good news” – i.e., excess returns higher than expected -. Since Nelson 

(1991), empirical studies have shown that it is crucial to include an asymmetric 

response of volatility to positive and negative shocks. Our RS-APGARCH model 

provides such an asymmetric term through the parameter 1ts
γ  which is allowed to 

vary from one regime to another. It is found that a highly significant asymmetric 

effect is present in both regimes for each stock index. The level of asymmetry, 

however, differs according to the regime. In all cases, the regime presenting the 

highest level of leptokurtosicity also corresponds to the state of the economy where 

the asymmetric response to news is the smallest. Market participants thus seem to 

differentiate less between good and bad news when they are in an extremely volatile 

period. This could imply that the perception of risk differs during periods of large 

fluctuations and moments of apparent tranquility. In the latter situation, market 

participants have more time to refine their definition of risk by incorporating higher 

order moments (in particular a third order term for asymmetry). 
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 In order not to impose a sub-optimal structure on the volatility process of each 

regime, our RS-APGARCH model also relies on a direct estimation of the optimal 

power transformation parameter 
ts

δ  for each regime. We first observe that when the 

power transformation is endogenized, the volatility persistence becomes much 

stronger than what is observed using a traditional regime-switching GARCH model. 

In Table 5, the level of within regime persistence was dramatically reduced and 

parameter estimates were often insignificant. On the contrary, we find that in the RS-

APGARCH model, the persistence of previous shocks represents an important source 

of volatility persistence that comes in addition to the high persistence of both regimes 

(large values of P  and ). This means that the existence of such persistence cannot 

entirely be explained by structural changes in the parameter values as proposed in 

Lamoureux and Lastrapes (1990). There exists a strong within-regime clustering 

effect regardless of the state of the economy. However, in order to adequately 

capture this effect no arbitrary parameterization of the conditional variance or 

standard deviation should be used. Rather, the power transformation of the 

standardized residuals that best captures GARCH effects should be obtained 

endogenously from the data. 

Q

We also observe that with the regime-switching power GARCH model, 

virtually all coefficients produce highly significant t-statistics, first sign of a better 

model specification. To test more formally the significance of the power GARCH 

parameters 
ts

δ  as well as the asymmetry parameters 1ts
γ , an LRT was constructed to 
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compare Gray’s regime-switching GARCH model with our RS-APGARCH model 

using Student-t conditional densities. The LRT statistic, which is distributed  

under the null, is respectively  for the NIKKEI Index,  for the Hang Seng 

Index,  for the Singapore SES-ALL Composite Index and 350  for the Kuala 

Lumpur Composite Index. All values are significant at any usual confidence level 

indicating that i) leptokurtic conditional densities are required on each regime, ii) 

each regime responds asymmetrically to positive and negative shocks and iii) the 

flexibility brought by a direct estimation of the power GARCH term improves the fit. 

2
6χ

78.389 64.57

80.322 88.

ts
δ

One last important characteristic of our model is the relationship that exists 

between the power transformation δ  and the existence of long memory in the 

underlying process (see Ding, Granger and Engle (1993)). The significant values 

obtained for the power terms  for both regimes when modeling the dynamics of 

the four Asian index returns proves that the long memory property of stock returns 

is not simply due to structural breaks as was often argued (see Gourieroux and Jasiak 

(2001) or Granger and Hyung (1999)) but that there exists a long-run dependence 

within each regime. 

 

V. Conclusion 

 

 This paper develops a new general class of regime-switching models called 

Regime-Switching Asymmetric Power GARCH model. It allows a free power term 
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for the GARCH specification of each regime rather than assuming an absolute or 

squared term like most of the classical models. Since this type of APGARCH model 

has not yet been considered in a regime switching context, an important contribution 

of the current paper is to augment our understanding of whether and to what extent 

these types of more flexible models are statistically superior to their less 

sophisticated counterparts.  

 The empirical investigation uses four Asian stock market indices 

corresponding to various market situations and provides interesting conclusions 

about how to understand time variations in stock index returns. Most obviously, it 

seems that commonly used single-state specifications for stock index returns that 

adopt the same model for recessions and expansions are misspecified and can be 

strongly rejected against a two-state model. We also find that the APGARCH 

structure provides a considerable improvement over the classical GARCH structure 

in both regimes. The empirical results do indicate that all generalizations brought by 

our model are statistically and economically significant. More specifically, a variety 

of new stylized facts about the dynamics of stock index returns has emerged from 

this RS-APGARCH model. 

We first recover, but with a higher level of significance however, a now 

classical result of the regime-switching literature: one regime could be regarded as 

modeling expansion periods while the second regime is clearly identified to 

recessions. Expansions are characterized by a positive conditional mean and a low-
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volatility regime while recessions exhibit a negative conditional mean and are always 

synonym of a much higher volatility level. 

 Even if a basic regime-switching model with constant parameters would result 

in a leptokurtic process, we tried several conditional distributions for each regime to 

investigate the within-regime level of leptokurtosicity. The classical conditional 

Gaussian densities are shown not to be sufficient, even in a two-state framework, to 

incorporate all the kurtosis of the underlying series. We find that, whatever the 

investigated stock market index, both regimes are best modeled with a conditional 

Student-t distribution. However, we do recover, to some extent, the interesting result 

obtained by Perez-Quiros and Timmermann (2001) on U.S. stock returns using a 

mixture of Gaussian and Student-t densities. Indeed, it seems that for developed 

markets, the estimated degree of freedom of one Student-t distribution is large 

enough to  statistically accept the convergence to conditional normality in this 

regime. The second regime, however, exhibits a strong leptokurtosicity and captures 

all extreme returns. 

 Presenting both developed and emerging markets in this study, we are able to 

refine the result. Indeed, the “convergence” of one regime to normality is not 

obtained for emerging markets where the level of leptokurtosicity remains very 

strong and even comparable for recession and expansion cycles. This result should of 

course be tested on a larger sample of stock market indices. If it were confirmed, this 

would indicate that the degree of leptokurtosicity of the regime representing the 
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good market condition (expansions) could be used to assess the level of development 

of a financial market. 

 The RS-APGARCH model also introduces the possibility of within-regime 

asymmetric response to news. It is found that the introduction of such parameters is 

strongly significant and that asymmetries are important in both states of the 

economy. Although the classical leverage effect of stock market returns is obtained 

for both regimes, the asymmetric response to news is consistently stronger in the 

low-volatility regime. Market participants thus seem to differentiate less between 

good and bad news during extremely volatile periods. The unusually high level of 

volatility in the latter periods could bias the market participants perception of news 

and reduce their ability of differentiating between good and bad news. When 

markets evolve more smoothly, however, the information process may be less noisy 

and market participants may recover their ability to assess the content of new 

information and to react accordingly. If confirmed by other empirical studies, this 

result should open a challenging avenue of research for microstructure models of 

agent behavior and price formation in financial markets. 

 Moreover, the improvements of the RS-APGARCH model are mainly due to 

the endogenous determination of the power transformation term used in the GARCH 

structure of each regime. Using Gray’s RS-GARCH model, we find that the within-

regime volatility persistence is consequently reduced relative to the single-state 

GARCH model. Such result gives credit to Lamoureux and Lastrapes (1990) thesis 

that structural breaks account for most of the volatility persistence observed with a 

 28



single-state model through the regime persistence (very high P   and ). When the 

power GARCH term is introduced, however, we observe that not only the ARCH 

and GARCH parameters become statistically much more significant, but also that the 

within-regime heteroskedasticity increases strongly compared to the RS-GARCH 

level. This seems to indicate that the squared terms arbitrarily used in the traditional 

RS-GARCH models are sub-optimal and do not allow to fully capture the within-

regime clustering effects. 

Q

 Lastly, as explained in Ding and Granger (1996) the APGARCH class of model 

we use on both regimes has no memory in return themselves, but long memory in 

absolute returns and their power transformations. The estimated power terms 
ts

δ  are 

significant and different in both regimes, implying the existence of long memory in 

both states of the economy. Again, this shows that the existing long memory in stock 

returns does not only result from structural breaks as it has often been argued in the 

single-state literature: we do find the existence of within-regime long memory. 

Nevertheless, the values of 
ts

δ  obtained for all stock indices are too close from one 

regime to the other to conclude that one regime predominantly captures short-run 

dependencies while the other regime exhibits long memory.  
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Figure 1 

Autocorrelograms for the Returns, Squared Returns and Absolute Returns. 

 

We plot the autocorrelograms of ,  and tR
2
tR tR  for lag 1 to lag . The straight 

lines correspond to 

200

T/96.1± , the  confidence interval for the estimated sample 

autocorrelations. For all indices, in agreement with Fama (1976) or Taylor (1986), we 

find a significant first order autocorrelation for , indicating the presence of short 

memory in stock index returns. However, this dependence dies out very fast and for 

virtually all other lags, the autocorrelation of stock index returns is not significant at the 

usual confidence level. Although the autocorrelation of squared returns seems to persist a 

little longer, we observe that the squared transformation does not necessarily exhibit a 

long run dependence. However, in agreement with Ding, Granger and Engle (1993), we 

find that the absolute returns all exhibit a very long memory. In three out of four indices, 

the autocorrelation of absolute returns remains above the  confidence interval for 

lags as long as . The Hang Seng stands out, however, with its faster long run 

dependence decay even for a power transformation of unity. 

%95

tR

%95

200
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Autocorrelograms for the HSI Returns, Squared Returns and Absolute Returns
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Autocorrelograms for the KLCI Returns, Squared Returns and Absolute Returns
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Figure 2 

Autocorrelations of d
tR  at lag 1 and 10  as a function of . d

 

Figure 2 studies the level of autocorrelation ),()( d
t

d
t RRcorrd ττρ −=  at lags 1 

and 10  as a function of the power transformation d . For all indices, there exists a 

power transformation  for which long memory is the strongest. These graphs are 

similar in shape to those presented for the S&P 500 Index in Ding, Granger and Engle 

(1993). Nevertheless, it seems that the optimal autocorrelation for a particular index is i) 

first sensitive to the index analyzed and ii) also sensitive to the number of lags. 

d
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Table 1 

Descriptive Statistics. 

 

Table 1 summarizes the descriptive statistics for the four stock market indices used in 

this study, namely, the NIKKEI 225 Index (NKY) for Japan, the Hang Seng Index (HIS) 

for Hong Kong, the Singapore SES-ALL Index (SESALL) for Singapore and the Kuala 

Lumpur Composite Index (KLCI) for Malaysia. Daily percentage return series over the 

period March 1984 to September 2003 are measured as )/ln(100 1−×= ttt PPR .  The usual 

first and second order statistics are reported together with the number of observations 

T  for each series. A  confidence interval for a test of index returns normality is given by %95

T/6*96.1±  for the sample skewness and T/24*96.1±3  for the sample kurtosis. All the 

series presented in this study exhibit both significant skewness and kurtosis. The Jarque-Bera 

statistic also presented in this Table 1 rejects the unconditional normality for all series. 

We use bold characters to indicate significance at the 5  percent level.  

NKY HSI SESALL KLCI

 Mean -0.0009 0.0507 0.0059 0.0118

Variance 1.9393 3.2054 1.6049 2.7501

Minimum -16.1354 -40.5422 -24.9202 -24.1534

Maximum 12.4303 17.2471 12.9743 20.8174

Number of Values 4829 4834 4891 4806

 Skewness -0.1134 -3.0882 -2.0180 -0.2124
 p -value [<.001] [<.001] [<.001] [<.001]

 Kurtosis 10.6913 70.8124 45.4443 34.5296
 p -value [<.001] [<.001] [<.001] [<.001]

 JB 11908.24 933517.38 370303.06 199024.77
 p -value [<.001] [<.001] [<.001] [<.001]

Descriptive Statistics for the Daily Stock Index Returns
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Table 2 

Autocorrelations for the Returns, Squared Returns and Absolute Returns of All Indices. 

 

Table 2 gives the sample autocorrelations of ,  and tR
2
tR tR  for lags  to  and , , , ,  and  computed for the 

four Asian stock market indices presented in this study. It shows that although the autocorrelation of  decreases very fast as the 

lag 

1 5 10 20 50 100 150

R

200

t

τ  increases, the decay is much less pronounced for the autocorrelation of .  It also highlights that such decay is generally not 

obtained when absolute returns 

2
tR

tR  are used, confirming the importance of the power transformation of returns selected to 

compute autocorrelations when trying to capture long memory. 

Lag 1 2 3 4 5 10 20 50 100 150 200

NKY Returns -0.0043 -0.0730 0.0156 0.0072 -0.0118 0.0223 -0.0282 -0.0246 0.0347 0.0503 0.0051

NKY Squared Returns 0.2001 0.1041 0.1307 0.1146 0.0914 0.0499 0.0392 0.0593 0.0222 0.0020 0.0028

NKY Absolute Returns 0.2223 0.2267 0.2241 0.1988 0.2062 0.1681 0.1352 0.0978 0.0663 0.0456 0.0371

Lag 1 2 3 4 5 10 20 50 100 150 200

HSI Returns 0.0392 -0.0167 0.0843 -0.0165 -0.0222 0.0174 0.0220 -0.0244 -0.0187 0.0193 0.0032

HSI Squared Returns 0.1221 0.0218 0.0490 0.0322 0.0176 0.0314 0.0069 0.0122 -0.0020 0.0009 -0.0013

HSI Absolute Returns 0.2613 0.1827 0.2082 0.1740 0.1612 0.1371 0.0918 0.1007 0.0137 0.0237 0.0095

Lag 1 2 3 4 5 10 20 50 100 150 200

SESALL Returns 0.1526 -0.0080 0.0189 0.0393 0.0147 0.0062 0.0041 0.0315 0.0102 0.0028 -0.0341

SESALL Squared Returns 0.2852 0.2223 0.2693 0.1097 0.0268 0.0182 0.0102 0.0075 0.0019 0.0020 0.0127

SESALL Absolute Returns 0.3240 0.2596 0.2672 0.1986 0.1461 0.1304 0.0905 0.0801 0.0364 0.0271 0.0665

Lag 1 2 3 4 5 10 20 50 100 150 200

KLCI Returns 0.0772 0.0427 0.0221 -0.0622 0.0562 0.0238 0.0249 0.0066 -0.0133 -0.0198 0.0032

KLCI Squared Returns 0.5006 0.2965 0.2166 0.2121 0.1969 0.0768 0.0245 0.0165 0.0068 0.0596 0.0104

KLCI Absolute Returns 0.4383 0.3726 0.3323 0.2800 0.2717 0.1929 0.1310 0.1021 0.0662 0.0827 0.0496
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Table 3 

Influence of the Power Transformation d
tR  on the Autocorrelations. 

 

 To gauge the influence of the power transformation d
tR  on the autocorrelation decay, Table 3 presents the values 

),()( d
t

d
t RRcorrd ττρ −=  for different lags τ  and power transformations . For all indices, it is found that the autocorrelation is 

positive at least up to order  confirming the existence of the documented long memory in stock markets. It is also confirmed that 

the decay of this autocorrelation strongly depends on the power transformation . However, the power return transformations 

exhibiting the highest level of long run dependency does not seem to be identical for each index (unlike previous findings). 

d

50

d

Lag d = 0.125 d = 0.25 d = 0.5 d = 0.75 d = 1 d = 1.25 d = 1.5 d = 1.75 d = 2 d= 2.25 d = 2.5 d = 2.75 d = 3

1 0.1443 0.1651 0.1952 0.2134 0.2223 0.2241 0.2204 0.2122 0.2001 0.1850 0.1684 0.1515 0.1350
2 0.1756 0.1970 0.2227 0.2319 0.2267 0.2083 0.1788 0.1419 0.1041 0.0712 0.0462 0.0289 0.0177
5 0.1546 0.1744 0.1991 0.2095 0.2062 0.1898 0.1620 0.1270 0.0914 0.0611 0.0385 0.0234 0.0138
10 0.1548 0.1699 0.1842 0.1826 0.1681 0.1432 0.1117 0.0788 0.0499 0.0284 0.0146 0.0068 0.0026
50 0.0734 0.0852 0.0980 0.1013 0.0978 0.0901 0.0802 0.0696 0.0593 0.0497 0.0411 0.0336 0.0271

Lag d = 0.125 d = 0.25 d = 0.5 d = 0.75 d = 1 d = 1.25 d = 1.5 d = 1.75 d = 2 d= 2.25 d = 2.5 d = 2.75 d = 3

1 0.1219 0.1433 0.1892 0.2326 0.2613 0.2576 0.2196 0.1682 0.1221 0.0869 0.0615 0.0436 0.0310
2 0.1137 0.1354 0.1704 0.1907 0.1827 0.1419 0.0882 0.0462 0.0218 0.0096 0.0040 0.0015 0.0005
5 0.0953 0.1183 0.1526 0.1705 0.1612 0.1228 0.0747 0.0383 0.0176 0.0076 0.0030 0.0011 0.0002
10 0.0910 0.1075 0.1301 0.1418 0.1371 0.1135 0.0804 0.0513 0.0314 0.0191 0.0117 0.0072 0.0044
50 0.1021 0.1123 0.1198 0.1166 0.1007 0.0737 0.0451 0.0242 0.0122 0.0059 0.0028 0.0012 0.0005

Lag d = 0.125 d = 0.25 d = 0.5 d = 0.75 d = 1 d = 1.25 d = 1.5 d = 1.75 d = 2 d= 2.25 d = 2.5 d = 2.75 d = 3

1 0.1532 0.2003 0.2571 0.2961 0.3240 0.3385 0.3354 0.3155 0.2852 0.2512 0.2178 0.1871 0.1597
2 0.1016 0.1554 0.2075 0.2397 0.2596 0.2664 0.2601 0.2439 0.2223 0.1987 0.1753 0.1532 0.1328
5 0.0776 0.1132 0.1466 0.1572 0.1461 0.1163 0.0793 0.0479 0.0268 0.0143 0.0075 0.0038 0.0019
10 0.0671 0.0974 0.1309 0.1419 0.1304 0.1006 0.0650 0.0363 0.0182 0.0085 0.0037 0.0014 0.0004
50 0.0511 0.0728 0.0900 0.0921 0.0801 0.0580 0.0347 0.0174 0.0075 0.0027 0.0006 -0.0002 -0.0005

Lag d = 0.125 d = 0.25 d = 0.5 d = 0.75 d = 1 d = 1.25 d = 1.5 d = 1.75 d = 2 d= 2.25 d = 2.5 d = 2.75 d = 3

1 0.2318 0.2726 0.3370 0.3916 0.4383 0.4739 0.4953 0.5031 0.5006 0.4914 0.4783 0.4633 0.4475
2 0.2049 0.2412 0.3021 0.3474 0.3726 0.3751 0.3582 0.3296 0.2965 0.2636 0.2331 0.2058 0.1817
5 0.1761 0.2067 0.2462 0.2678 0.2717 0.2606 0.2409 0.2185 0.1969 0.1770 0.1592 0.1431 0.1286
10 0.1399 0.1636 0.1922 0.2021 0.1929 0.1682 0.1359 0.1039 0.0768 0.0557 0.0399 0.0284 0.0201
50 0.0962 0.1123 0.1260 0.1214 0.1021 0.0754 0.0497 0.0298 0.0165 0.0084 0.0037 0.0011 -0.0002
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Table 4 

Parameter Estimates for  Single-Regime GARCH and APGARCH Models. 

 

 Table 4 presents the parameter estimates for single-regime GARCH and APGARCH 

models. T-statistics based on heteroskedastic-consistent standard errors are 

presented in parenthesis. In addition, we provide for each index and each estimated 

model the Ljung-Box statistics for serial correlation up to  lags of different power 

transformations of the residuals.  denotes for 

20

4,3,)20(iLB 2=i  the Ljung-Box statistic 

for the corresponding power of the residuals. 

Mean Parameters: Mean Parameters:

Constant: a0 0.0716 (4.1387)* 0.0304 (2.1560)* Constant: a0 0.1086 (5.5126)* 0.0597 (3.1587)*

Lag Return of Order 1: a1 0.0425 (2.4285)* 0.0432 (2.1818)* Lag Return of Order 1: a1 0.1163 (6.4254)* 0.1241 (6.9329)*

Variance Parameters: Variance Parameters:

Constant: β0 0.0314 (1.9382)** 0.0306 (3.6867)* Constant: β0 0.0972 (3.4105)* 0.1152 (3.7894)*

ARCH Term: β1 0.1402 (3.1155)* 0.1289 (4.0662)* ARCH Term: β1 0.1545 (5.2730)* 0.1315 (7.6900)*

Asymmetric ARCH Term: γ1 -0.4161 (-5.4392)* Asymmetric ARCH Term: γ1 -0.3885 (-5.1051)*

GARCH Term: β2 0.8508 (18.9066)* 0.8671 (24.0861)* GARCH Term: β2 0.8208 (29.7391)* 0.8215 (32.8600)*

Power Transformation: δ 1.5744 (4.0153)* Power Transformation: δ 1.8148 (6.1414)*

Log-Likelihood: -7774.80 -7688.74 Log-Likelihood: -8696.75 -8640.18

Ljung-Box Statistics Ljung-Box Statistics

LB 2  (20) 13.28 12.79 LB 2  (20) 129.91 67.99

LB 3  (20) 2.42 3.21 LB 3  (20) 254.82 137.83

LB 4  (20) 0.17 0.24 LB 4  (20) 270.12 119.68

Mean Parameters: Mean Parameters:

Constant: a0 0.0209 (1.2666) -0.0023 (-0.1654) Constant: a0 0.0311 (1.2196) 0.0059 (0.2744)

Lag Return of Order 1: a1 0.1710 (8.9528)* 0.1817 (9.3659)* Lag Return of Order 1: a1 0.2042 (10.9197)* 0.2063 (10.9153)*

Variance Parameters: Variance Parameters:

Constant: β0 0.0657 (2.7489)* 0.0735 (1.8467)** Constant: β0 0.0937 (2.7478)* 0.0929 (2.3881)*

ARCH Term: β1 0.1455 (4.1690)* 0.1309 (4.5609)* ARCH Term: β1 0.1829 (5.6978)* 0.1851 (6.0097)*

Asymmetric ARCH Term: γ1 -0.2058 (-4.2085)* Asymmetric ARCH Term: γ1 -0.1609 (-2.4159)*

GARCH Term: β2 0.8170 (21.2207)* 0.7993 (10.3940)* GARCH Term: β2 0.7859 (22.7138)* 0.7929 (21.7829)*

Power Transformation: δ 2.4054 (3.2753)* Power Transformation: δ 1.6918 (4.0973)*

Log-Likelihood: -7191.87 -7155.32 Log-Likelihood: -7866.74 -7845.61

Ljung-Box Statistics Ljung-Box Statistics

LB 2  (20) 11.04 6.23 LB 2  (20) 4.86 4.33

LB 3  (20) 0.73 0.19 LB 3  (20) 0.07 0.07

LB 4  (20) 0.10 0.04 LB 4  (20) 0.03 0.02

* denotes significance at the 5% confidence level while ** denotes significance at the 10% confidence level

GARCH( 1,1 ) Model APGARCH( 1,1 ) Model

GARCH( 1,1 ) Model APGARCH( 1,1 ) Model
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Table 5 

Parameter Estimates for the Regime-Switching GARCH Model. 

 

 The parameter estimates obtained for the Regime-Switching GARCH model are 

summarized in Table 5 together with the corresponding t-statistics based on 

heteroskedastic-consistent standard errors. The Ljung-Box statistics for serial 

correlation up to  lags of different power transformations of the residuals are also 

supplied. 

20

 

Mean Parameters: Mean Parameters:

Constant: a st 0 -0.2202 (-0.3339) 0.1009 (1.6118) Constant: a st 0 0.0096 (0.0671) 0.1037 (5.2639)*

Lag Return of Order 1: a st 1 0.0305 (0.4552) 0.0142 (0.2958) Lag Return of Order 1: a st 1 0.1024 (3.0658)* 0.0657 (3.9107)*

Variance Parameters: Variance Parameters:

Constant: β st 0 1.4908 (0.4744) 0.0508 (0.1318) Constant: β st 0 0.8351 (0.9458) 0.2276 (3.4695)*

ARCH Term: β st 1 0.1502 (1.1117) 0.0646 (1.6479) ARCH Term: β st 1 0.1176 (4.0975)* 0.0765 (3.9230)

GARCH Term: β st 2 0.5299 (0.9325) 0.6476 (0.8008) GARCH Term: β st 2 0.7897 (6.9271)* 0.6953 (10.7631)*

Transition Probabilities: Transition Probabilities:

P( st = i / st-1 = i, Ft-1 ) 0.9541 (4.8928)* 0.9744 (131.6756)* P( st = i / st-1 = i, Ft-1 ) 0.9947 (207.2291)* 0.9975 (906.8181)*
(i.e, P  and Q ) (i.e, P and Q )

Log-Likelihood: -7680.10 Log-Likelihood: -8429.94

Ljung-Box Statistics Ljung-Box Statistics

LB 2  (20) 10.31 LB 2  (20) 238.02

LB 3  (20) 3.86 LB 3  (20) 349.29

LB 4  (20) 0.38 LB 4  (20) 393.35

Mean Parameters: Mean Parameters:

Constant: a st 0 -0.0914 (-0.6551) 0.0152 (1.1603) Constant: a st 0 -0.1227 (-1.0407) 0.0248 (1.6870)**

Lag Return of Order 1: a st 1 0.1905 (2.3460)* 0.1901 (6.6006)* Lag Return of Order 1: a st 1 0.1491 (3.2203)* 0.2367 (11.6600)*

Variance Parameters: Variance Parameters:

Constant: β st 0 3.5639 (1.6967)** 0.2413 (0.9925) Constant: β st 0 4.1922 (2.3269)* 0.4047 (7.1000)*

ARCH Term: β st 1 0.1984 (3.1392)* 0.1426 (5.2619)* ARCH Term: β st 1 0.193 (4.2984)* 0.1918 (6.5238)*

GARCH Term: β st 2 0.1236 (0.8698) 0.31 (1.0930) GARCH Term: β st 2 0.4604 (2.5062)* 0.1736 (2.5491)*

Transition Probabilities: Transition Probabilities:

P( st = i / st-1 = i, Ft-1 ) 0.8852 (4.1676)* 0.9744 (40.2644)* P( st = i / st-1 = i, Ft-1 ) 0.9127 (32.3652)* 0.9757 (112.1494)*
(i.e, P  and Q ) (i.e, P  and Q )

Log-Likelihood: -6910.58 Log-Likelihood: -7611.20

Ljung-Box Statistics Ljung-Box Statistics

LB 2  (20) 4.23 LB 2  (20) 7.11

LB 3  (20) 0.15 LB 3  (20) 0.15

LB 4  (20) 0.05 LB 4  (20) 0.04

* denotes significance at the 5% confidence level while ** denotes significance at the 10% confidence level

State 1 State 2

State 1 State 2
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Table 6 

Parameter Estimates for the Regime-Switching APGARCH Model. 

 

Table 6 gives the parameter estimates for the new Regime-Switching APGARCH 

model introduced in this paper. The conditional distributions of the error-terms are 

found to be best represented by Student-t densities for all indices and both states of 

the Markov-switching process. Again, t-statistics based on heteroskedastic-consistent 

standard errors and Ljung-Box statistics for serial correlation up to  lags of 

different power transformations of the residuals are provided. 

20

 

Mean Parameters: Mean Parameters:

Constant: a st 0 -0,0561 (-2.4497)* 0,0939 (4.5582)* Constant: a st 0 0,0928 (3.3623)* 0,0269 (0.4769)

Lag Return of Order 1: a st 1 -0,0238 (-1.5973) 0,1038 (3.6293)* Lag Return of Order 1: a st 1 0,115 (4.7325)* 0,0628 (2.8675)*

Variance Parameters: Variance Parameters:

Constant: β st 0 0,03 (3.6144)* 0,0499 (2.9702)* Constant: β st 0 0,2981 (3.0294)* 0,1817 (1.9923)*

ARCH Term: β st 1 0,0738 (6.4736)* 0,1447 (3.6175)* ARCH Term: β st 1 0,0999 (2.5615)* 0,0492 (2.2062)*

Asymmetric ARCH Term: γ st 1 -0,5957 (-4.6905)* -0,321 (-2.9102)* Asymmetric ARCH Term: γ st 1 -0,4648 (-2.5580)* -0,5314 (-1.9925)*

GARCH Term: β st 2 0,9218 (75.5573)* 0,7847 (15.5079)* GARCH Term: β st 2 0,6486 (6.4027)* 0,8788 (44.8367)*

Power Transformation: δ st 1,1977 (4.7641)* 1,832 (6.5710)* Power Transformation: δ st 2,1621 (4.4052)* 2,3176 (7.3364)*

Student-t Parameters: Student-t Parameters:

Degree of Freedom: ν st 8,3826 (7.1818)* 5,9497 (5.6357)* Degree of Freedom: ν st 5,5105 (7.2164)* 9,1159 (5.0430)*

Transition Probabilities: Transition Probabilities:

P( st = i / st-1 = i, Ft-1 ) 0,9998 (9998)* 0,9997 (1999.4)* P( st = i / st-1 = i, Ft-1 ) 0,9981 (712.9285)* 0,9979 (712.7857)*
(i.e, P  and Q ) (i.e, P and Q )

Log-Likelihood: -7485,21 Log-Likelihood: -8401,12

Ljung-Box Statistics Ljung-Box Statistics

LB 2  (20) 29,92 LB 2  (20) 28,65

LB 3  (20) 9,69 LB 3  (20) 30,68

LB 4  (20) 1,17 LB 4  (20) 9,21

NIKKEI 225 INDEX HANG SENG INDEX

State 1 State 2State 1 State 2

Mean Parameters: Mean Parameters:

Constant: a st 0 0,0235 (0.8103) -0,0113 (-0.7483) Constant: a st 0 -0,007 (-0.1369) 0,0095 (0.4611)

Lag Return of Order 1: a st 1 0,121 (4.0199)* 0,2207 (9.8088)* Lag Return of Order 1: a st 1 0,1663 (5.1327)* 0,2169 (9.8144)*

Variance Parameters: Variance Parameters:

Constant: β st 0 0,1511 (0.8011) 0,1137 (3.3052)* Constant: β st 0 0,1834 (1.5621) 0,204 (4.9275)*

ARCH Term: β st 1 0,1336 (1.9334)** 0,2063 (3.7853)* ARCH Term: β st 1 0,185 (5.6402)* 0,2159 (4.2500)*

Asymmetric ARCH Term: γ st 1 -0,2416 (-2.9391)* -0,1355 (-1.7217)** Asymmetric ARCH Term: γ st 1 -0,2044 (-2.9926)* -0,1789 (-2.6040)*

GARCH Term: β st 2 0,7898 (4.6295)* 0,6291 (5.9914)* GARCH Term: β st 2 0,7766 (15.2274)* 0,5456 (5.4342)*

Power Transformation: δ st 1,9501 (3.4502)* 2,1718 (3.3157)* Power Transformation: δ st 1,715 (5.9056)* 2,2523 (3.2254)*

Student-t Parameters: Student-t Parameters:

Degree of Freedom: ν st 5,8611 (4.3762)* 4,8692 (5.8502)* Degree of Freedom: ν st 5,2699 (6.9680)* 4,8182 (7.7313)*

Transition Probabilities: Transition Probabilities:

P( st = i / st-1 = i, Ft-1 ) 0,9991 (832.5833)* 0,9991 (1248.8750)* P( st = i / st-1 = i, Ft-1 ) 0,9982 (831.8333)* 0,9988 (1248.5)*
(i.e, P  and Q ) (i.e, P and Q )

Log-Likelihood: -6749,18 Log-Likelihood: -7435,76

Ljung-Box Statistics Ljung-Box Statistics

LB 2  (20) 3,11 LB 2  (20) 3,26

LB 3  (20) 0,10 LB 3  (20) 0,04

LB 4  (20) 0,03 LB 4  (20) 0,01

* denotes significance at the 5% confidence level while ** denotes significance at the 10% confidence level
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