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This article extends the three models in Schwartz (1997) to describe the 
stochastic behavior of commodity prices in the presence of mean reversion 
and shadow costs of incomplete information. The implications of the models 
are studied with respect to the valuation of financial and real assets. We 
extend the analysis in Schwartz (1997) to account for the e.ects of shadow 
costs of incomplete information as defined in Merton (1987). 
The first one-factor model assumes that the logarithm of the spot commodity 
price follows a mean reverting process. The second model is a two-factor 
model in which the convenience yield is stochastic. The third model accounts 
for stochastic interest rates. The implications of the models are studied for 
capital budgeting decisions. 
We develop also a one-factor model for the stochastic behavior of commodity 
prices which preserves the main properties of more complex two-factor 
models. When applied for the valuation of long-term commodity projects, 
the model gives practically the same results as more complex models. 
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Introduction 
The stochastic behavior of commodity prices plays a crucial role in the pricing 
of commodity derivatives and in capital budgeting decisions. Earlier studies 
are based on constant interest rates and convenience yields in the pricing of 
financial and real commodity derivatives. This assumption implies that the 
distribution of future spot prices has a variance that increases without bound 
as the horizon increases. 
This article uses and compares three models of the stochastic behavior of 
commodity prices in the presence of shadow costs of incomplete information. 
In the first model, the logarithm of the spot commodity price is assumed 
to follow a mean reverting process of the Ornstein-Uhlenbeck type. In the 
second model, the convenience yield is also assumed to follow a mean reverting 
process. In the third model, the interest rate is assumed to follow mean 
reverting process. Closed-form solutions are derived in these three models 
for forward and futures contracts. 
The implications of the model are studied for the term structure of futures 
prices and for hedging contracts for future delivery. 
The real options methodology to investment under uncertainty and in particular, 
the determination of optimal investment rules depend on the stochastic 
process for the underlying commodity. The value and the investment rules 
are determined in the context of the three models by accounting for shadow 



costs of incomplete information. 
These costs are defined as in Merton (1987). For an introduction to the 
basic concepts for the pricing of derivative assets and real options under 
uncertainty 
and incomplete information, we can refer to Bellalah and Jacquillat 
(1995), Bellalah (1999, 20001). The application of option concepts to value 
real assets such as copper mines and oil deposits has been successful because 
of the existence of well-developed futures markets for these commodities. 
These markets allow the extraction of the essential information. 
The traditional approach for the valuation of investment projects is the net 
present value approach. An alternative approach is the certainty-equivalent 
approach which avoids the computation of a risk-adjusted discount factor, 
using instead the relevant risk-free rate of interest. 
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Brennan and Schwartz (1985) apply the option pricing theory to value 
investment projects in natural resources where the spot price of the commodity 
follows a geometric Brownian motion. The option pricing theory uses the 
information contained in futures prices since these prices are used in the 
estimation 
of the convenience yield. The approach is based on the use of the risk 
free rate rather than a risk-adjusted discount rate and allows for managerial 
flexibility in the form of options. 
Schwartz (1997) compared three models of the stochastic behavior of commodity 
prices : a one-factor model, a two-factor model and a three-factor 
model. 
Schwartz (1998) develops a one-factor model that preserves the main 
characteristics 
of two-factor models. We extend the analysis in these two papers to 
account for the e.ects of incomplete information as it appears in the models 
of Merton (1987) and Bellalah (2001). 
The paper is organized as follows. 
Section 1 presents the valuation models. 
Section 2 looks at the implications of the di.erent models for investment 
under uncertainty. 
Section 3 presents the valuation models and the long term model. An application 
is provided for the valuation of European options. 
Section 4 compares the simple model and the two-factor model with respect 
to their optimal exercise criteria. 
1. The Valuation Models for commodity futures under incomplete 
information 
This section presents three models of commodity prices and the formulas 
for futures contracts. The models allow for closed form solutions for futures 
prices. 
A. Model 1 
Schwartz (1997) assumed that the commodity spot price follows the stochastic 
process 



dS = ê(µ - ln S)Sdt + óSdz (1) 
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where dz is an increment to a standard Brownian motion and ê refers to the 
speed of adjustment. 
When X = lnS, applying Ito’s Lemma allows to characterize the log price 
by an Ornstein-Uhlenbeck stochastic process 
dX = ê(á - X)dt + ódz (2) 
with 
á = µ - 
ó2 

2ê 
(3) 
where ê measures the degree of mean reversion to the long run mean log 
price á. 
Under standard assumptions, Schwartz (1997) gives the following dynamics 
of the Ornstein-Uhlenbeck stochastic process under the equivalent 
martingale measure 
dX = ê(á. - X)dt + ódz. (4) 
where á. = á - ë where ë is the market price of risk. 
From equation (4), the conditional distribution of X at time T under the 
equivalent martingale measure is normal. The mean of X is 
E0[X(T)] = e-êTX(0) + (1 - e-êT )á. 

The variance of X is 
V ar0[X(T)] = 
ó2 

2ê 
(1 - e-2êT) (5) 
When the interest rate is constant, the futures or the forward price of 
the commodity corresponds to the expected price of the commodity for the 
maturity T. 
Using the properties of the log-normal distribution, the futures or the forward 
price is given by 
F(S, T) = E[S(T)] = exp(E0[X(T)] + 
1 2 
V ar0[X(T)]) (6) 
and 
F(S, T) = exp(e-êT ln S + (1 - e-êT )á. + 
ó2 

4ê 
(1 - e-2êT )) (7) 
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This equation can be written in a log form as 
ln F(S, T) = e-êT ln S + (1 - e-êT )á. + 
ó2 

4ê 
(1 - e-2êT) (8) 



Equation (7) is solution to the partial di.erential equation 
1 2 
ó2S2FSS + ê(µ - ë - ln S)SFS - FT = 0 (9) 
under the terminal boundary condition F(S, 0) = S. 
B. Model 2 
In this two-factor model, the first factor corresponds to the spot price of the 
commodity with the following dynamics 
dS = (µ - ä)Sdt + ó1Sdz1 10) 
where ä is the instantaneous convenience yield which can be seen as the flow 
of services accruing to the holder of the commodity rather than the buyer of 
the futures contract. 
The second factor corresponds to the convenience yield with the following 
dynamics 
dä = ê(á - ä)dt + ó2dz2 (11) 
where 
dz1dz2 = ñdt (12) 
. Hence, equation (10) allows for a stochastic convenience yield, which follows 
an Ornstein-Uhlenbeck stochastic process. 
When ä is a deterministic function of S, ä(S) = ê ln S, this model reduces to 
model 1. 
When ä is a constant, this model reduces to the Brennan and Schwartz (1985). 
When X = lnS, applying Ito’s Lemma allows to characterize the log 
price as 
dX = (µ - ä - 
1 2 
ó2 

1)dt + ó1dz1 (13) 
The commodity is viewed as an asset paying a stochastic dividend yield ä 
and the risk adjusted drift of the commodity is (r+ëS -ä) where ëS refers to 
5 
an information cost for the asset S. In fact, we can show as in Bellalah (2001) 
that under the equivalent martingale measure, the stochastic processes for 
the two factors can be written as 
dS = (r + ëS - ä)Sdt + ó1Sdz.1 (14) 
dä = [ê(á - ä) - ë]dt + ó2dz.2 (15) 
dz.1dz.1 = ñdt (16) 
where ë refers in this model to the market price of convenience yield risk. 
Using the same approach as in Bellalah (2001), Futures prices satisfy the 
following PDE 
1 2 
ó2 

1S2FSS+ 
1 
2 
ó2 

2Fää+ó1ó2ñSFSä+(r+ëS-ä)SFS+[ê(á-ä)-ë]Fä-FT = 0 (17) 



under the terminal boundary condition F(S, ä, 0) = S. 
As in Schwartz (1997), the solution given is given by 
F(S, ä, T) = S exp[-ä 
1 - e-êT 

ê 
+ A(T)] (18) 
This can be written in a log form as 
ln F(S, ä, T) = lnS - ä 
1 - e-êT 

ê 
+ A(T) (19) 
where 
A(T) = (r+ëS-ˆá+ 
1 2 
ó2 
2 
ê2 - 
ó1ó2ñ 
ê 
)T+ 
1 4 
ó2 
2 
1 - e-2êT 

ê3 +(ˆáê+ó1ó2ñ- 
ó2 

2 ê 
) 
1 - e-êT 

ê2 

and 
ˆá = á - 
ë ê 
(20) 
The main di.erence between this solution and that in Schwartz concerns 
the discount rate in A(T) which appears to be the interest rate plus the 
information 
cost on the asset S rather than the interest rate only. 
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C. Model 3 
In this three-factor model, the three factors are the spot price of the commodity, 
the instantaneous convenience yield, and the instantaneous interest 
rate. When the interest rate follows a mean reverting process as in Vasicek 
(1977), using equations (14) and (15), the joint stochastic process for the 
three factors under the equivalent martingale measure can be written as 
dS = (r + ëS - ä)Sdt + ó1Sdz.1 (21) 
dä = ê(ˆá - ä)dt + ó2dz.2 22) 



dr = a(m. - r)dt + ó3dz.3 (23) 
where dz.1dz.2 = ñ1dt, dz.2dz.3 = ñ2dt, 
dz.1dz.3 = ñ3dt (24) 
where a and m. refer respectively to the speed of adjustment coe.cient and 
the risk adjusted mean short rate of the interest rate process. 
In this context, futures prices must satisfy the following PDE 
1 2 
ó2 

1S2FSS + 
1 2 
ó2 

2Fää + 
1 2 
ó2 

3Frr + ó1ó2ñ1SFSä + ó2ó3ñ2Fär 

+ó1ó3ñ3SFSr +(r+ëS - ä)SFS +[ê(ˆá - ä)]Fä +a(m. - r)Fr -FT = 0 (25) 
under the terminal boundary condition F(S, ä, r, 0) = S. 
Following the analysis in Schwartz (1997), the solution is given by : 
F(S, ä, r, T) = S exp[-ä(1 - e-êT ) 
ê 
+ 
(r + ëS)(1 - e-aT ) 
a 
+ C(T)] (26) 
This can be written in a log form as 
ln F(S, ä, r, T) = lnS - 
ä(1 - e-êT ) 
ê 
+ 
(r + ëS)(1 - e-aT ) 
a 
+ C(T)] (27) 
where 
C(T) = 
(êˆá + ó1ó2ñ1)[(1 - e-êT ) - êT] 
ê2 - 
ó2 

2(4(1 - e-êT ) - (1 - e-2êT ) - 2êT) 
4ê3 
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- 
(am. + ó1ó3ñ3)[(1 - e-aT ) - aT] 
a2 - 
ó2 

3(4(1 - e-aT ) - (1 - e-2aT ) - 2aT) 
4a3 



+ó2ó3ñ2 

(1 - e-êT) + (1 - e-aT ) - (1 - e-(ê+a)T ) 
êa(ê + a) 
+ 
ê2(1 - e-aT) + a2(1 - e-êT ) - êa2T - aê2T) 
ê2a2(ê + a) 
(28) 
As it is well known, in the presence of stochastic interest rates, forward 
prices are di.erent from futures prices. The present value of a unit discount 
bond payable at time T is given in Vasicek (1977) as 
B(r, T) = exp[-r 
(1 - e-aT ) 
a 
+ 
m.((1 - e-aT ) - aT) 
a 
- 
ó2 

3(4(1 - e-aT ) - (1 - e-2aT ) - 2aT) 
4a3 ] (29) 
The present value of a forward commitment to deliver one unit of the 
commodity, P(S, ä, r, T) is solution to the PDE under boundary conditions 
identical to equation (25) except that in the right-hand side, rP replaces 
zero. The solution is 
P(S, ä, r, T) = S exp[-ä(1 - e-êT ) 
ê 
+ D(T)] (30) 
where 
D(T) = 
(êˆá + ó1ó2ñ1)[(1 - e-êT ) - êT] 
ê2 - 
ó2 

2(4(1 - e-êT ) - (1 - e-2êT ) - 2êT) 
4ê3 (31) 
Equation (30) gives the present value of a forward commitment. Equation 
(31) gives the present value of a unit discount bond. The forward price implied 
by model 3 is obtained by dividing P(S, ä, r, T) by B(r, T ). 
2. Investment Under Uncertainty and the value of the option 
to invest 
The dynamics of commodity prices present several implications for project 
valuation (like mines, oil deposits, etc.) and the search of the optimal investment 
rule. This rule refers to the commodity price above which it is optimal 
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to undertake the project immediately. 
Example 
Consider a copper mine that can produce one ounce of copper at the end of 



each year for 10 years. The initial investment K = 2 and the unit cost of 
production C = 0.40. Assume that once the investment is done, production 
will go ahead for the next 10 years. 
The first step determines the net present value of the project and the second 
step values the option to invest. 
The NPV once the investment has been decided is 
NPV = Ó10 

T=1P(r, T, .) - CÓ10 

T=1B(r, T ) - K (32) 
where 
P(r, T, .) : present value of the commodity to be received at time T when 
the interest rate is r, 
B(r, T) : present value of one dollar to be received at time T when the interest 
rate is constant, e-rT . 
Discounted Cash Flow Criteria 
The DCF approach needs the specification of the discount rate and the expected 
spot copper prices for the next ten years. In practice, spot prices are 
assumed constant. The project’s value is very sensitive to the discount rate 
used. 
Constant Convenience Yield : Model 0 
In the standard real option approach, instead of discounting at a risk-adjusted 
rate, certainty equivalent cash flows are discounted at the riskless rate. 
In a constant convenience yield model, Model 0, the spot commodity follows 
the process 
dS 
S 
= (r + ëS - c)dt + ódz. (33) 
where c is the constant convenience yield to distinguish it from ä used in the 
stochastic convenience yield models. 
The NPV (32) becomes 
NPV (S) = SÓ10 

T=1e-cT - CÓ10 

T=1e-rT - K = Sâ1 - â2 (34) 
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As in Bellalah (2001), we can show that the option to invest V (S) satisfies 
the ordinary di.erential equation 
1 2 
ó2S2VSS + (r + ëS - c)SVS - (r + ëV )V = 0 (35) 
under the boundary condition 
V (S) ¡Ý max[Sâ1 - â2, 0] (53) 
where ëV refers to an information cost on asset V . The solution to this 
equation is 
V (S) = (S.â1 - â2)( 
S 
S. 

)d 



where the commodity price above which it is optimal to invest in the project 
is given by 
S. = ( 
â2d 
â1(d - 1) 
) 
d = 
1 
2 - 
(r - c + ëV ) 
ó2 +  [ 
1 
2 - 
(r - c + ëV ) 
ó2 ]2 + 
2(r + ëS) 
ó2 (37) 
Mean Reverting Spot Price : Model 1 
The NPV in Model 1 is computed using equation (32) by discounting the 
prices given by equation (7). 
NPV = Ó10 

T=1P(r, T, .) - CÓ10 

T=1B(r, T ) - K (32) 
where 
P(r, T, .) : present value of the commodity to be received at time T when 
the interest rate is r, 
B(r, T) : present value of one dollar to be received at time T when the 
interest rate is constant, e-rT . 
with 
P(r, T, .) = e-(r+ëS)TF(S, T) 
and 
F(S, T) = exp(e-êT ln S + (1 - e-êT )á. + 
ó2 

4ê 
(1 - e-2êT )) 
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The value of the investment option, V (S) can be obtained by solving 
a PDE identical to equation (9) in which in the right-hand side we have 
(r + ëV )V instead of zero. 
The boundary condition is the maximum of the NPV in this case and zero. 
This can be written as 
1 2 
ó2S2VSS + ê(µ - ë - ln S)SVS - VT = (r + ëV )V 
under the terminal boundary condition 
V (S, 0) = Max[NPV, 0] 
Stochastic Convenience Yield : Model 2 



The NPV in Model 2 is computed using equation (32) which depends on 
the spot price, the convenience yield and the present value of one unit of 
commodity (which is obtained by discounting the future or forward price in 
equation (18). 
NPV = Ó10 

T=1P(r, T, .) - CÓ10 

T=1B(r, T ) - K (32) 
where 
P(r, T, .) : present value of the commodity to be received at time T when 
the interest rate is r, 
B(r, T) : present value of one dollar to be received at time T when the 
interest rate is constant, e-rT . 
with 
P(r, T, .) = e-(r+ëS)TF(S, ä, T) 
F(S, ä, T) = S exp[-ä 
1 - e-êT 

ê 
+ A(T)] (18) 
The value of the option to invest V (S, ä) satisfies a PDE identical to 
equation (17), except that the right-hand side is (r + ëV )V instead of zero. 
1 2 
ó2 

1S2VSS+ 
1 
2 
ó2 

2S2Vää+ó1ó2ñSVSä+(r+ëS-ä)SVS+[ê(á-ä)-ë]Vä-VT = (r+ëV )V 
under the terminal boundary condition 
V (S, ä, 0) = Max[NPV, 0] 
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Stochastic Convenience Yield and Interest rates : Model 3 
The NPV in Model 3 is computed using equation (32). It depends on the 
spot price of the commodity, the convenience yield and the interest rate. 
NPV = Ó10 

T=1P(r, T, .) - CÓ10 

T=1B(r, T ) - K (32) 
where 
P(r, T, .) : present value of the commodity to be received at time T when 
the interest rate is r, 
B(r, T) : present value of one dollar to be received at time T when the interest 
rate is constant, e-rT . 
The present value of a unit of the commodity is computed using equation 
(30) 
P(S, ä, r, T) = S exp[-ä(1 - e-êT ) 
ê 
+ D(T)] (30) 



where 
D(T) = 
[êˆá + ó1ó2ñ1)(1 - e-êT ) - êT] 
ê2 - 
ó2 

2(4(1 - e-êT ) - (1 - e-2êT ) - 2êT) 
4ê3 (31) 
The present value of a unit discount bond is computed using equation 
(29). 
B(r, T) = exp[-r 
(1 - e-aT ) 
a 
+ 
m.((1 - e-aT ) - aT) 
a 
- 
ó2 

3(4(1 - e-aT ) - (1 - e-2aT ) - 2aT) 
4a3 ] (29) 
The value of the option to invest V (S, ä, r) satisfies a PDE identical to 
(25) except that the right-hand side is (r + ëV )V instead of zero. 
1 2 
ó2 

1S2VSS + 
1 2 
ó2 

2Vää + 
1 2 
ó2 

3Vrr + ó1ó2ñ1SVSä + ó2ó3ñ2Vär 

+ó1ó3ñ3SVSr+(r+ëS -ä)SVS +[ê(ˆá -ä)]Vä+a(m. -r)Vr -VT = (r+ëV )V 
under the terminal boundary condition 
V (S, ä, r, 0) = Max[NPV, 0] 
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3. The Valuation Models, the long term model and European option 
pricing 
This section presents first the basic constant-convenience-yield model and 
the two-factor stochastic convenience-yield model. Then, the basic model is 
adjusted to account for the important features of the two-factor model. This 
model is referred to as the ”long-term model”. 
A. The basic Model 
Schwartz (1998) assumed that the commodity spot price under the equivalent 
martingale measure is given by 
dS 
S 
= (r + ëS - c)Sdt + ódz (38) 



where dz is an increment to a standard Brownian motion, r is the interest 
rate, ó is the volatility of the rate of return and c is a constant convenience 
yield. 
The futures price F with a maturity T for a spot asset S is given by 
F(S, T) = Se(r+ëS-c)T (39) 
Applying Ito’s Lemma to equation (39) shows that the volatility of the futures 
returns dS 

S is equal to ó. 
The value of a contingent claim V (S, T) must satisfy the following partial 
di.erential equation 
1 2 
ó2S2VSS + (r + ëS - c)SVS - VT - (r + ëV )V = 0 (40) 
under the appropriate boundary conditions. 
If the contingent claim represents a project, then the cash flows on the project 
CF(T) must be added to equation (40). 
B. The Two-Factor Model 
In this two-factor model, the first factor corresponds to the spot price of the 
commodity with the following dynamics 
dS = (r + ëS - ä)Sdt + ó1Sdz1 (41) 
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where ä is the instantaneous stochastic convenience yield. It can be seen as 
the flow of services accruing to the holder of the commodity rather than the 
buyer of the futures contract. 
The second factor corresponds to the stochastic convenience yield with 
the following dynamics 
dä = ê(ˆá - ä)Sdt + ó2dz2 (42) 
where 
dz1dz2 = ñdt (43) 
In this formulation, the magnitude of the speed of adjustment ê > 0 measures 
the degree of mean reversion to the long-run mean convenience yield 
á. 
Futures prices F(S, ä, T) are given by 
F(S, ä, T) = S exp[-ä 
1 - e-êT 

ê 
+ A(T)] (44) 
where 
A(T) = (r+ëS-ˆá+ 
1 2 
ó2 
2 
ê2 - 
ó1ó2ñ 
ê 
)T+ 
1 4 
ó2 



2 
1 - e-2êT 

ê3 +(ˆáê+ó1ó2ñ- 
ó2 

2 ê 
) 
1 - e-2êT 

ê3 

and where the risk-adjusted long-run mean of the convenience yield process 
is given by 
ˆá = á - 
ë ê 
(45) 
where ë stands for the market price of convenience yield risk. 
Applying Ito’s Lemma to equation (44), we can show that the variance 
of the futures returns depends only on the time to maturity of the futures 
contract 
ó2 

FT = ó2 

1 + ó2 
2 
(1 - e-êT ) 
ê - 2ñó1ó2 

(1 - e-êT ) 
ê 
(46) 
When the maturity of the futures contract tends to infinity, this variance 
converges to a fixed value 
ó2 

F (�‡) = ó2 

1 + 
ó2 
2 
ê - 
2ñó1ó2 

ê 
(47) 
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The value of any contingent claim must satisfy the following PDE 
1 2 
ó2 

1S2VSS+ 
1 
2 
ó2 

2Vää+ó1ó2ñSVSä+(r+ëS-ä)SVS+[ê(ˆá-ä)]Vä-VT -(r+ëV )V = 0 (48) 
under the appropriate terminal boundary conditions. 



C. The Long-Term Model 
Given equations (41) and (43), the risk-neutral distribution of spot prices 
is log-normal with mean equal to the forward price in equation (44). The 
variance can be obtained by integrating the variance in equation (46). 
The objective is to develop a model which matches the term structure of 
futures prices and volatilities implied by the two-factor model. 
When maturity increases in the two-factor model, the rate of change in 
the futures price converges to a fixed rate 
1 F 
�ÝF 
�ÝT 
(T �¨ �‡) = r + ëS - ˆá + 
ó2 
2 
2ê2 - 
ñó1ó2 

ê 
(49) 
In the basic model of equation (2), the rate of change in the futures price 
is 
1 F 
�ÝF 
�ÝT 
= r + ëS - c (50) 
If the constant convenience yield in the long-term model is defined as 
c = á - 
ó2 
2 
2ê2 + 
ñó1ó2 

ê (51) 
it will have the same rate of change in futures prices as the two-factor model. 
Besides, since the objective is to match the futures prices, we must begin with 
a spot price to give the futures prices in equation (44) when the convenience 
yield in equation (51) is used. This starting price is referred to in Schwartz 
(1998) as the shadow spot price Z given by 
Z(S, ä) = lim 
T�¨�‡ 
e-(r+ëS-c)TF(S, ä, T) (52) 
or 
Z(S, ä) = Se 
(c-ä) 
ê - 
ó2 
2 

4ê2 (53) 
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When the shadow spot price is used as a single state variable in a model 
with a constant convenience yield c from equation (51), the model will show 



futures prices F(Z, T) close to F(S, ä, T) for T greater than three years. 
The dynamics of the shadow spot price are given by 
dZ 
Z 
= (r + ëS - c)dt + óF (t)dz (54) 
where the volatility is given by equation (46). In this case, the futures price 
for the shadow spot price Z is 
F(Z, T) = Ze(r+ëS-c)T (55) 
Applying Ito’s Lemma allows to show that the volatility of futures returns 
is óF (T). The value of contingent claims in this model must satisfy the 
following PDE 
1 2 
ó2 

F (T)Z2VZZ + (r + ëS - c)ZVZ - VT - (r + ëV )V = 0 (56) 
under the terminal boundary conditions. 
Using a two-factor model to redefine a single state variable (the shadow 
spot price), the resulting one-factor model is very similar to the basic model. 
The main di.erence is volatility which is time dependent 
í(T) =   T 
0 
ó2 

F (t)dt (57) 
with a closed-form solution 
í(T) = (ó2 

1+ 
ó2 
2 
ê2 - 
2ñó1ó2 

ê 
)T + 
ó2 

2(1 - e-2êT ) 
2ê3 +2ó2(ó1ñ- 
ó2 

ê 
) 
(1 - e-êT ) 
ê2 (58) 
The risk-neutral distribution of the shadow spot price is log-normal. Its 
mean is given by equation (55). Its variance is given by equation (58). This 
variance is similar to that of the spot price in the two-factor model. 
D. Valuing European Options 
The one and two-factor models give very similar results for long-term options 
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because of the their nearly equal means and variances. 
The value of a European call for both models is given by 



C(., T) = e-(r+ëS)T c(F(., T), T) (59) 
where 
c(F, T) = FN[d] - KN[d - í(T)] (60) 
where d = [ln F 
K 

í(T) + 1 

2 í(T)] (61) 
í(T) = (ó2 

1+ 
ó2 
2 
ê2 - 
2ñó1ó2 

ê 
)T + 
ó2 

2(1 - e-2êT ) 
2ê3 +2ó2(ó1ñ- 
ó2 

ê 
) 
(1 - e-êT ) 
ê2 (58) 
The European call price and the futures price are functions of the spot 
commodity price and the convenience yield for the two factor model. 
The call price and the futures price are a function of the shadow spot price 
in the long-term model. The variance is given by equation (57). 
5. Implementation and optimal exercise criteria for American options 
Schwartz (1998) implemented the long-term model using the estimated 
parameters from the two-factor model in Schwartz (1997). The analysis in 
these papers can be extended without major di.culties to account for the 
e.ects of incomplete information. 
Table 1 provides the parameters for copper and oil. Publicly futures 
prices are used for copper for the period 1988-1995. Enron provided oil forward 
curves for the period 1993-1996. 
Table 1 : Parameter Values for Oil and Copper in the period 1988-1996 : 
results of the two-factor model estimated in Schwartz (1997) 
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Copper Oil 
Period 7/29/88-6/13/95 1/15/93-5/16/96 
Contracts F1,F3,F5,F7,F9 Enron-Data 
N - observ 347 163 
µ 0.326 (0.110) 0.082 (0.120) 
ê 1.156 (0.041) 1.187 (0.026) 
á 0.248 (0.098) 0.090 (0.086) 
ó1 0.274 (0.012) 0.212 (0.011) 
ó2 0.280 (0.017) 0.187 (0.012) 



ñ 0.818 (0.020) 0.845 (0.024) 
ë 0.256 (0.114) 0.093 (0.101) 
ñ 0.06 0.05 
Standard errors are in parenthesis. 
The terms F1, F2,.. correspond to futures contracts with di.erent maturities. 
It is possible to use Equation (44) in a double grid search routine to estimate 
the state variables S and ä, which minimize the squared deviation between 
model and market prices. The term structure of futures prices implied by the 
two-factor model can be constructed using equation (44) and the estimated 
state variables S and ä. 
Equation (53) is used to estimate the shadow spot price Z. 
Equation (55) allows the estimation of the term structure of futures prices 
implied by the long-term model. 
Copper and oil futures contracts reported in the Wall Street Journal for 
3/31/97 are used. 
The extracted information is used to value European copper calls from 
the two-factor model and the long-term model for a strike price of 1 dollar. 
The two models provide very similar results when the maturity if higher than 
three years. 
The main question is : How the simple long-term model and the twofactor 
model compare with respect to the optimal time to undertake a project 
i.e. the optimal exercise of American options. 
The critical spot price above which it is optimal to invest in the two-factor 
model depends on the current instantaneous convenience yield. The critical 
spot price in the long-term model is one critical shadow price. 
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Example 
Consider a copper mine that can produce one ounce of copper at the end of 
each year for 10 years. The initial investment K = 2 and the unit cost of 
production C = 0.40. Assume that investment is done for three years and 
production starts at the end of the fourth year. 
The first step determines the net present value of the project and the second 
step values the option to invest. 
The NPV once the investment has been made is 
NPV = Ó13 

T=4e-(r+ëS)TF(., T) - CÓ13 

T=4e-rT - K (59) 
The summation starts at time 4 as the production. 
The option to invest and the computation of the critical copper price can 
be determined by solving numerically the PDE (48) for the two-factor model 
1 2 
ó2 

1S2VSS+ 
1 2 
ó2 

2Vää+ó1ó2ñSVSä+(r+ëS-ä)SVS+[ê(ˆá-ä)]Vä-VT -(r+ëV )V = 0 



under the condition 
NPV = Ó13 

T=4e-(r+ëS)TF(., T) - CÓ13 

T=4e-rT - K (59) 
with 
F(S, ä, T) = S exp[-ä 
1 - e-êT 

ê 
+ A(T)] 
where 
A(T) = (r+ëS-ˆá+ 
1 2 
ó2 
2 
ê2 - 
ó1ó2ñ 
ê 
)T+ 
1 4 
ó2 
2 
1 - e-2êT 

ê3 +(ˆáê+ó1ó2ñ- 
ó2 

2 ê 
) 
1 - e-2êT 

ê3 

and where the risk-adjusted long-run mean of the convenience yield process 
is given by 
ˆá = á - 
ë ê 
where ë stands for the market price of convenience yield risk. 
Equation (56) is solved for the long-term model 
1 2 
ó2 

F (T)Z2VZZ + (r + ëS - c)ZVZ - VT - (r + ëV )V = 0 (56) 
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under the boundary condition : 
NPV = Ó13 

T=4e-(r+ëSTF(., T) - CÓ13 

T=4e-rT - K (59) 
with : 
F(Z, T) = Ze(r+ëS-c)T (55) 
Z(S, ä) = Se 
(c-ä) 
ê - 
ó2 
2 



4ê2 (53) 
The boundary condition (59) must be applied. 
The value of the mine in the two-factor model depends on the spot price and 
the convenience yield. 
The optimal shadow price (1.12) in the long-term model is similar to that obtained 
from the two factor model. Hence, when valuing projects where cash 
flows start a few years later, a simple one-factor model can give practically 
the same results as a two-factor model. A similar analysis can be applied in 
the presence of shadow costs of incomplete information. 
Summary 
The pricing and hedging of commodity derivatives and natural resource 
investments 
depend heavily on the dynamics of the underlying commodity. 
Schwartz (1997) proposed three models which account for the mean reverting 
nature of commodity prices. The analysis reveals the importance of mean 
reversion in evaluating projects using the real options approach. The standard 
DCF approach seems to induce investment too early when prices are 
low while the real options approach seems to induce investment too late when 
prices are too high. This result appears when mean reversion is neglected. 
This analysis is extended to account for the e.ects of incomplete information. 
Schwartz (1997) showed that a two-factor model for the stochastic behavior 
of commodity prices fitted quite well the term structure of futures prices 
and futures return volatility in the case of copper and gold. However, this 
model is di.cult to apply for the valuation of projects with multiple options. 
Schwartz (1998) proposed a simple one-factor model which gives nearly similar 
results as the two-factor model. The constant convenience yield in the 
simple model depends on the parameters of the two-factor model. The inputs 
to the model are the prices of all current futures contracts. The simple 
model can be applied to the valuation of complex projects. This analysis 
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is extended to account for the e.ects of incomplete information. We are 
actually estimating the parameters of the models and conducting some 
simulations. 
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