

DEPARTMENT OF CHEMICAL ENGINEERING

PETROLEUM GEOSCIENCE THIN SECTION LABORATORY

The Petrographic Thin Section laboratory uses research-leading precision rock cutting, grinding, lapping, and polishing machines in order to achieve the best possible representation of rock microstructure with rapid turnaround time.

1. Impregnating rock samples with resin.

- a) Vacuum embedding unit. b) Resin infiltrating the pore spaces of the sample.
- 2. The bonding jig is used to glue the squared rock face to the glass.

3. Slicing sample to approximately 800 μm thick.

a) Diamond blade saw. b) Sample, glued on glass, is held in holder to be precisely cut.

4. Lapping samples to reduce their thickness to the recommended 30 µm.

- a) Automated Lapping machine.
- b) Thin section and chip lapping jig.
- c) Thin section holder.

5. Simultaneous flawless polishing of up to 4 thin sections using the automated polishing machine.

6. An optical microscope with highquality color digital images capabilities is used to analyze the thin sections

Sample of Results

Samples from Montserrat's geothermal reservoir (a, b, c and d). Samples from Trinidad's source rock (e, f, g, and h).

