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Summary

trol problems. The suboptimal schemes which can handle a variety of confrol situations also appear to be good from the
point of view of feasibility of synthesis and ease of implementation on-line. It is felt that the suboptimal feedback struc-
ture proposed will be useful for many practical systems that are otherwise difficult to be optimally controlled ina
feedback fashion.

1. INTRODUCTION

Modern control system studies and applications essentially demand ‘best’ system performance on the basis of a
chosen objective function and the implementation of an optimal control policy to achieve the same. The optimization
is carried out in the time domain by the state variable approach extremising a desired performance criterion function.
Calculus of variations, Pontriagin’s Maximum-Principle and Bellman’s Dynamic Programming give the necessary mathe-
matical background for the dynamic optimization problem. It may be true that the implementation of the optimal con-
trol is seldom feasible practically, but still, the knowledge of the same is desirable at least for comparison of the actual
performance with the Sdeal’ one,

initial conditions, and may be obtained by solving the matrix riccati equations. Although these results are elegant and
appealing, the on-line implementation of the optimal control ean still be difficult, especially for higher order systems.
Possibly then, one may have to go in for something less than optimal —a suboptimal_control law.

For non-linear systems and/or nonquadratic costs, the explicit realization of the optimal control as a closed loop
policy is itself extremely difficult, if not almost impossible. This is because, Pontriagin’s Minimum Pn'nciple_yields
essentially an open loop control function and the Dynamic Programming approach leads to the Hamilton Jacobi-Bellman

(i) Constraints are imposed on the control structure from the point of view of feasibility
of synthesis and ease of implementation.

(i) The truly optimal control may be solved for, in terms of an approximate or feasible
policy. . .

(ili) The original system dynamicsmay be simplified before an optimal solution is obtained,
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All these controls are referred to as suboptimal controls in the literature. When the control is dependent on the present
state directly or indirectly and when it can be synthesized in‘a feedback fashion, the suboptimal control may be called
asuboptimal policy or control law.

one of parameter optimisation. Suitable control configurations, essentially of a feedback nature, are proposed and the
unknown time-invariant parameters are selected optimally to minimize the given cost. The significant contribution is
the introduction of integral state feedback and its application to treat a variety of control situations amenable to such
an approach. A class of suboptimal feedback policies for linear and nonlinear systems with and without incorporating
integral state feedback is stuided in [3]. A proportional plus proportional-integral suboptimal  cantrol scheme suitable
for nonlinear systems and non-quadratic costs has been given in [4]. In the present Paper, necessary conditions aro ob-
tained for a general suboptimal control scheme incorporating integral state feedback and time-invariant feedback gains
for dynamic optimisation problems. The results are then applied to linear and non linear termirial control problems,

2. SUBOPTIMAL CONTROL SCHEMES
Consider the dynamic system modelled by the nonlinear vector differential equation:

T = flz,u,t); =z (to) =z, (2-1)

. n m

where x is the state vector in Euclidean n space E , & is the control vector in E , t is the scalar representing time and a
dot over a symbol denotes differentiation with respect to time. The instants t, and . are fixed and known and f()isa
given vector function of x, u and ¢. The initial state vector x o Is available determinis ically and, without loss of, general-

ity, x (tf) is assumed free «

The ideal goal is to minimize the scalar performance index:

tf )
g = G(x(th)'+J o (z,u, t)dt

t, | (2-2)

with respect to the control u, which is unconstrained except for that it must be continuous in time. § (-) and ¢ (.) are
scalar functions of their respective arguments.

A sufficiently general and useful suboptimal control format incorporating integral feedback, arbitrary time func-
tions and time-invariant gains may be conveniently specified as:

M : v g &
wt) =0 ] L.t)Aa* lz(t) + [y Bt JJ x(t) & (2-3)

J
1 J=1

(A

t
o

where A, i = 1,...,Mand B, j=1 » - - ., N are mxn constant matrices; Ll-(t) and Bj(t} are scalar functions of time to
one’s choice; and M and N are integers. The scalar functions, although arbitrary, should be chosen judiciously so that
they are simple and easily implementable on-line. It may also be noted that the control scheme (2-3) is of a propor-
tional plus integral configuration, Now, the necessary conditions to be satisfied by the optimal A* and B/ are obtained
using the variational approach.

For convenience, let Al and B/ be partitioned into n columns each:
4% = 7 7 B 7
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i 1 Z ] 1 J .
Here, Azs Tos -uvy a  and bi], bg_, cen g bn are all m-vectors. The

requirements that the elements of 4 zand BJ are constants imply that :

= - = = s = .o o 2-4
a, 0; d, 0, ... . a 0; z=1, s, M (2-4a)
-j = .j = ’ .’;: ;s g = 2-4b
bl 0, b2 @5 s g4 bn 05 =1, ..., N .‘( )

:

Define the relation,
t
f x(t)dt = y(t) (2-5)
to

This means that :

y=x; y (g) =0 ' (2-6)

Thus y (¢) is also a vector in E* like the state x(£). Now, the
augmented performance index after suppressing the arguments may

be written as :

t
f )
% =6(:r(?‘;f))+f' LO+M(F -2 )+ E(z-j)
to
I3 PoY
-1 2 ~J 12
- . n at - YY1 de
i=1 k=1, k k g=1 1=7 Lt (2-7)

where A , £ , n;’,i=l, cee o M, k=1, ... ,nandy'%,j=1, cen
bk, 1=1, ... , n are appropriate vector lagrange multipliers to account
for the constraints (2-1), (2-6), (2~4a) and (2-4b) respectively. The

Hamiltonian as usual, is :

H= ¢ + Af+ £ (2-8)
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6%; the first variation of Jp, can be easily shown to be :

t
o = (WECL) apy- soip - E°(tp) 6 y
. J
M n. . : .
) (nt (t,) e (0017 6 2
i=1 k=1
. a‘ ! 1
Né % [Y:(Eo)*nuf)J d'by + ]t
j’-l L:I
. M n
(a E .t ) 8y + ) Lo g}i
3 Y ' i=1 k=1 =~ Y
k
N n 5 ]
) Y [’(+Y=Z7)’6b'7fdt
&1 1=1  3pY z
54@ is a zero when :
t
Q" _ 5 _ 08(x("F))
sz - A A(th - a_x(tf)
oH  _ . _
g = —E g(th 0
H -1 _ L
a—‘lf —-T]k_,' 'L—.Z_, _,M.sk'_l:
e
ny (¢, ) = nk'(tf),- e, ... Wk
o H _r i, _ . _
abj ==Y Z-' J 1: 3 N: Z 1.:
A
yJ )=y ()i G=1, .., W1

Conditions (2-12) and (2-13) are respectively equivalent to :
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(2-10)

(2-11)
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(2-12b)
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i
j 2)}[{Ldl':=0,' =1, ie, Ms k=1, ccc., (2-m)
to aak
t
d 3 H . (2.-15)
—’_jdt—o_s 'l;=‘1_, cee IV_,'Z=1, cee g N B
%o abZ

Thus the necessary conditions of optimality may be consolidated and

given as
. . N .
z =f/ax, I(If Lgt) AD @+ (] By(t) Byl, t ¢ 5 (¢ )=z, (2-16)
=1 j=1
y. =z ;3 y () =0 (2-17)
&
C___0H _ 28 (z(*F) b18
£ Ny ° gl f')
by
8 H & -—0; i=1, ..., M (2-20)
Y
tO
£
¥
oH s
"_j dl‘,':o_, J—l_, cee o N (2—21)
to aB

Basic results being the same, a number of different suboptimal control schemes may be formulated with and without
integral feedback as particular cases of the general suboptimal control structure. In the following sections, a few illus-
trative control schemes are considered for comparison and discussion to solve linear and non-linear terminal control
problems.

3. FINAL VALUE CONTROL PROBLEMS

Terminal control problems or final value control problems are optimal problems which have to satisfy exactly all or
some of the terminal conditions which are specified [7]. Formulating steering laws for missile systems or designing
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loop gain tending to become infinite as the terminal time is approached [5], [6], even though the control remaing
finite. Feedback of the states alone cannot possibly meet the terminal constraints and suitable modifications of the basic
result may be required to treat such Final Value Problems [71.

In this context, the following two general suboptimal control schemes are suggested to treat final value control
problems,

- Z ) i 3=
u (t) =, i ; LAt ATy mt) + jg] Bitt) b (3-1)
M N t
ult) = [_Z L.(t) A%1z(t) + [.Z B (t) BY f x(t)dt (3-2)
=1 2:1 g .
o

where L,(t) and Bi() are known scalar time functions; A', &/, B/ represent appropriate constant gain parameters to e
selected optimally and M and N are integers. Note that (3-2) is the same as (2-3) introduced in Section 2 for which the
necessary conditions are obtained, whereas, (3-1) is its reduced form without incorporating integral state feedback. The
control structures are chosen such that they may be synthesized in a feedback fashion from the present state, present
time and integral of the state and combinations thereof with- time-invariant gains from the point of view of easy imple-

mentation. Simple and illustrative versions of the above control schemes are applied to scalar examples of final value
control problems.

The necessary conditions for optimal parameter selection in respect of each of the above suboptimal control
schemes are obvious from the discussions in Section 2. Note that for a terminal control problem, the dynamic system
(2-1) has not only initial state vector specified but also terminal conditions) x( tf) =X to be satisfied exactly at the
specified terminal time ¢ Obviously, the terminal state penalty function 6 (x(t) ) is absent in the performance measure
(2-2). Consequently, the terminal conditions on the corresponding costate in (2-18) are absent but replaced by the
state terminal constraints x(tg) = xe In fact, neither initial nor final conditions can be imposed on the costate ) (z),
since the state vector is speciged both at the initial and final time t, and tf respectively.

4. COMPUTATIONAL ASPECTS

From the necessary conditions (2-16) through (2-21) it is clear that for an nth order dynamic system with r design
parameters of the suboptimal controller, a suboptimal solution is obtained when 4n first ordered differential equations
with split boundary conditions are solved simultaneously satisfying r integral conditions over the control interval, Thus,
any computational algorithm has the following aspects:

(i)  Solution of the differential equations for known (assumed) values of the parameters.
(ii) An iterative procedure leading to the optimal choice of the parameters which satisfy the integral conditions,

Although the differential equations have split boundary conditions, the solution of the two-point boundary value
problem is not difficult since the state equations are uncoupled with the costate variables. Hence, the state equations
may be integrated in the forward time direction with known initial conditions to obtain the values at the terminal time.
With these terminal conditions, and the known (assumed) terminal conditions of the costate variables, all the equations
are integrated backward in time, simultaneously evalvating the integral expressions corresponding to each parameter
value, which should vanish independently for the solution sought. Fourth-order Runge-Kutta integration procedure
with an appropriate, step size, and evaluation of the definite integral by Simpson’s Rule are normally satisfactory. A

the initial guess is reasonably good. When the number of unknown quantities is large, especially with poor initial values,
it is suggested that a minimisation procedure such as Powell’s may be advantageously employed to satisfy the integral
conditions, although this may take more computer time.

In the case of final value problems, as the state vector is specified at either boundaries, the computational procedure
requires modification since neither the initial nor the final value of the corresponding costate is known. The iterative
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are now worked out for numerical resulfs.

5. EXAMPLES
5.1. Example
Consider the scalar linear quadratic final value problem:
x = -x + u; t&l0,1]
x(0) = 1; (1) = xf
J = g]z (@ + ul)a
o

The optimal closed loop control, in this case can be shown to be:

u* _[ 2 2 _ lc _
exp (ﬁ(l—t)) - exp (-4 2(1-t)) e f

(V2 + 1exp (VE(1-2)) + (rz‘-z)upwz‘(z-t))J 2(t)
exp (V2(1-t)) - exp (- V2(1-t))

Tr _ ozt)
7 -t

The singularity structure of the truly optimal closed loop control at the final time is clear from the above result. In this
context, the following simple suboptimal controls are considered for illustration and comparison.

As ¢ 1, ut >

(i) u(t) = ax(t) + b

(ii)  wu(t) = ax(t) + bt

(iii) wu(t) = ax(t) + b f: &(t)dt

(1) is obtained with M = § = 1. L,(t) = BJ&): 1 in (3-1)
(i1)  is obtained with M = § = 1; L. [(t) = 1;B(t)= t in (3-1)

Il

(iii) is obtained with M = § = 1; Li(t) %{t) =17 in (3-2)
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TABLEI

NUMERICAL RESULTS FOR EXAMPLE 5.1

xf= (1] . ch=0.2

_ CONTROL | .
: a b J | a b J

Scheme (i) 0.1257 -0.6257  0.296971 |-0.3267 -0.1221 0.201687

Scheme (i) | -0.5533  -0.6673  0.296231 [-0.4413 -0.1121 0.201625
Scheme (jii) | -0.4433  -1.3108  0.298893 |-04262 -0.1996 0.201679
Optimal :

Control ~ — 0295944 ~— — 0201616

On the basis of these results, it is seen that the suboptimal control schemes considered here compare quite favourably
with the truly optimal case. The corresponding performance index values also lie within one percent compared to the
optimal one. Suboptimal control incorporating integral state feedback has been shown to handle non-linear optimal
problems with terminal state constraints in the next example.

5.2 Example

Consider the first order nonlinear final value problem:

x=-x%+u; x(o =1, x(1)'=0, t €[0,1]

A quadratic performance index to be minimised is:
1
J = 2 f (x2 + u?) &
’ o

Assume a proportional plus integral -guboptimal control of the form:

u(t) = ax(t) + b J x(t)d

where a and b are Scalar constant gains to be chosen in an optimal fashion. The following necessary conditions which
are to be satisfied may be easily written down. '

x =-x% +ax + by ; x(o =1.0

= X5 y(o =0.0

C((f41) = + aby - 3AxE + ar+ E); (1) =0.0

"E = -(abx + b2y + b AJ; £(1) =0.0
1 _
S x (ax + by +\) dt =0
0
1
X y (ax + by + X\) dt =0
- .
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One may note that neither the initial nor the final value of Ais known since x is specified at both ends. Thus the itera-
tive procedure should, in fact, select not only e and b but also the particular value of ) . The solution on a digital com-
puter gives the siboptimal contro] as:

t
u (t) = -0.6419 x(t) - 1.69% [ x (t) de
g

The performance index value 0.461726 as against the truly optimal open loop value of 0.461560. Figure 5.4 gives the
. controls and the suboptimal state trajectory. ‘

It is seen that the optimal state trajectory is very close to the suboptimal one and hence it is not shown in Figure 4.
The performance degradation is <0.04%. The suboptimal scheme has the added advantage of easy implementation on
account of the desirable feature of an essentially feedback configuration.

6. CONCLUSION
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Fig. 1: Controls against time for Example 5.1 Xe= 0.0
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Fig. 2: Controls against time for Example 5.1, Xe= 0.2
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Fig. 3: State trajectories for Example 5.1
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Fig, 4: Control & state trajectories for Example 5.2
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