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Summary

A numerical method is presented for the evaluation of the displacement field generated in an infinite elastic medium
as a result of time-harmonic tractions applied to the surface of an embedded infinite cylindrical cavity whose cross-
section has an arbitrary shape. Mapping is used to condense the physical problem domain. Transformed field equations
are expressed in finite-difference forms and solved in a rectangular region.

1. INTRODUCTION

Most of the practical problems which arise in Engineering exhibit certain essentail features which preclude exact
analytical solutions. Some of these features are awkward boundary shapes and non-linear boundary conditions at known
or in some cases unknown boundaries. Thus, it is often necessary to resort to approximations, numerical solutions or
combinations of both.

The advent of fast and large digital computers, has led to recent advances in the development of a variety of
numerical methods of solution to these problems. However, well known numerical methods such as the Finite Difference
method, Finite Element method and the method of Least Squares, pose serious and often insurmountable difficulties
when they are implemented for the solution of problems with domains having awkward boundaries or when the prob-
lem domain is of an infinite extent.

—~ The purpose of this paper is to present a numerical method which can be applied advantageously to boundary-
value problems in the theory of time-harmonic elastic vibrations involving infinite domains and complex boundary
shapes. In particular, the numerical evaluation of the displacement field generated in an infinite elastic medium, as a
result of time-harmonic tractions applied to the surface of an embedded infinite cylindrical cavity whose cross-section
has an arbitrary shape is described. The numerical procedure is a blend of the Conformal Mapping technique and the
Finite Difference method; with the mapping being used primarily to condense the physical problem domain. Numerical
results are presented and compared with exact analytical solutions for an illustrative problem.

2. FORMULATION

Let X;;1 = 1,3 denote the coordinates of a point in a rectangular Cartesian coordinate system. Consider a vector
displacement ﬁel,g i} (Xl, X2)e"’3t in an infinite elastic medium which is also assumed to be isotropic, homogenous
and unlayered. U represents a train of waves propagating through the medium as a result of the application of time-
harmenic tractions to the surface of an infinite cylindrical cavity embedded in the elastic medium. The infinite length
of the cylinder runs along the Xg-axis, while its cross-section which is assumed to be of an arbitrary shape lies in the X
Xg-plane.

In the X, coordinate system, the equations of motion for the elastic medium are
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where the physical components of displacements, Ui’ are denoted by Ul = U. and U2 =V, ¢y is the propagation velocity
of dilatational waves, and Cgy the propagation velocity of distortional waves given as

ci = Q +28)/p
cg = O +20/

in which )\ and G are Lamé constants and pis the masg density of the medium.

In an orthogonal coordinate system equations (1) and (2) may be written as
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where y; the covariant components of the displacement vector on the reciprocal reference base vector é\ i of the X
orthogonal curvilinear coordinates are denoted by uy =uand Ug = v, while

&m (835(/ axm) (33%(/ an)

are the components of the metric tensor associated with the X; coordinate system defined by

o= XOgex) 1= o1 (6)

In twe dimensions, orthogonal coordinates with specified coordinate lines are conveniently found through conformal
mapping. Consider a conformal mapping which carries the arbitrary cross-section of the cylindrical cavity in the physical
coordinates X1 into the unit eircle in the X; coordinates and the region exterior to the cross-section of the cylinder into
the region exterior to the unit circle. In teims of complex variable notation, this may be expressed as
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For cases in which the cross-section of the cylindrical cavity is symmetric about the X1 and X2 axes, n may be only
even and d;, = 0. The transformation equation (7) then becomes

N »
Z = I an23 2n ao)

n=1

For (10) the Cauchy-Riemann equation imply that g49 = 0, and therefore that x; is an orthogonal coordinate system.
It also follows that ’

_ 2
8y = X817 “ auv

An effective numerical method for the computation of the coefficients a, occurring in the mapping function (10)
is given in [1] and may be described as follows: Equating real and imaginary parts of (10) and noting that on the unit
circlez = e’x2, gives

le = § a, cos(3—2n)x2j ' (12)
n=1
N .
. = a sin(3-2n)x,.
XZ] niln in (. ) 23 (13)

where X;: and Xo; are the coordinates of some point on the boundary of the cross-section of the cylindrical cavity in
the physical Z-plane, and Xo; is the coordinate of the corresponding point on the unit circle in the mapping z-plane. Let
j=1M. If N = M in (12) and (13) then there would be 2M equations in the 2M unknowns a, and Xoj It is found,
values of a_ so determined give a poor fit in intervals between data points. Over-determination of the system of equa-
tions (12) and (13), by letting N <M, and utilizing a least-squares fit leads to a smooth approximation. Equations (12)
and (13) may be rewritten in the least-squares sense as

N
X_Lj = nElan cos[(3—2n)x2j] 3 Pj aw)
- ¥ a sin[(3-2n)x,.] +H 15
ij = nzlan sin] X2j] 5

where Fj and Hj are error terms. The total error E is given by
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Minimization of E requires that
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The Lewis forms provide.an estimate of a;,1=1,3;see [1]. Assuming that 2;,=0,i=4N. A corresponding set of values
of Xgo: Which minimizes E may be found by utilizing these values. This was accomplished through a search method. By
utilizing this set of values for Xg;» @ new set of values for a_ may be computed from equation (19). An iterative pro-
cedure is followed in which the (n*1) approximation is found from the (n) approximation by letting a..1=0, a,,9 =0,
..... , and a, for n <n+1, be the coefficient of the best n term approximation. Fig. 1 is an example of the approxima
tion of the cross-section of a circular cylindrical cavity by the mapping function retaining one term in (10). Fig 2 shows
the mapping of the interior of the cross-section of a non-circular cylindrical cavity composed of vertical line segments
which are tangents to semi-circular arcs. Five terms were retained for the approximation of this geometry. The mapping
of the interior of the unit circle onto the interior of the cross-section of a hexagonal cylindrical cavity is shovm in Fig. 3.
Twenty teims were retained in the series. Application of the technique to geometries of greater complexity than the
foregoing will generally require that more terms are retained in the mapping function (10).

3. FINITE MATHEMATICAL DOMAIN

To map the infinite domain exterior to unit circle in the z-plane, defined byxq >1,-1 < Xg <+ T, onto the finite
mathematical domain 0<y <1, -1 < X9 <+ T,asshown in Fig. 4(a) and Fig. 4 (b), let

¥, =1y (20)
Equations (3) and (4) can then be expressed in terms of y and X g by using (11) and (20) to give :
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Let us now introduce the scalar wave equation
V2¢ % Bid, = 0 (23)

where Bl = w/eq. A solution to equations (21) and (22), in terms of two scalar wave function ¢ and v, which is valid
for orthogonal cylindrical curvilinear coordinates, is given by

oW 239
u = y?;% Y 5y (2y)
_ .0 9¢
¥ = ygg;—' + sz (25)

where ¢ satisfies the scalar wave equation (23) and ) satisfy (23) with B1 replaced by Bg= w/cg, see [2,3].

The problemn of solving equations (1) and (2) in the infinite physical domain, has been transformed into the prob-
lem of solving two scalar wave equations in the finite mathematical domain 0 <y <1,-m< Xg <+,

4. FINITE-DIFFERENCE ANALYSIS .
The finite - difference approximate solution for the infinite elastic medium must satisfy a radiation condition at
infinity. For the wave equation this requirement is the Sommerfeld radiation condition. See [3]

To assure an outgoing wave, let

o = £ /Y (26)

v =n ey (27)

where 0p =iay B, 0y =1ia; B, f(y,x2) and h(y,xz) =0 fory =0 and ay is the first term in (10). See [4]. Equations
(26) and (27) may be used to eliminate ¢and ¢ from (23-25). Then equation (23) becomes

2
3°F , -1 ~2,0f , . -3 . 2 -4 )
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The function h(y,x5) associated with 1 also satisfy equation (28) with identical coefficients except that Q.7 and B4 are
replaced with 09 and 82. Similarly the dependent variable ¢ and yin (24) and (25) may also be replaced with f and h

to give
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For the finite-difference approximate solution, the rectangular finite domain 0 <y- <1, -7 < <xg X, of Fig. 4
(b) may be subdivided into a grid with N subdivisions in the y direction and M subdividisions in the Xg dlrectlon The
spacings along the y and Xq directions are then given respectively by

§ /N (31)

1

S 2 /M (32)

2

The derivatives of equation (28) may be replaced by the central- dxfference expansions with errors of order 6 and § 22.
At a general nodal point, y =y, and Xg = X9, , the finite-difference form of (28) is

Ql'fi+l’k + QZ'fi’k ¥ QS'fi—l’k + Qu f"k+1
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Finite difference forms of (29) and (30) may be readily derived by replacing first derivatives with a central-difference
approximation.

5. BOUNDARY CONDITIONS

For specified time-harmonic tractions applied to the surface of the embedded cylindrical cavity, the stress boundary
conditions on the internal boundary of the infinite physical domain will be given over disjoint set of points in terms of
the physical components, T of the stress vector, and, Nl of the exterior unit normal vector associated with the rectan-
gular Cartesian coordinate }g In terms of the coordinates of the mathematical finite region, the components of the unit
normal vector are

n, = .y2 (axj[ay)Nj andng = (BXjI8x2)Nj; while the components of the stress vector are £ = —y2 (3le By)Tj and
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In the X; corodinate system

- J
t; ( }‘gij g ¥ 2ueij n (3y4)

at points where the stress boundary condition js satisfied and 8;; may be expressed as a function of u;, it foilows that
(34) provides two equations relating £ and h on stress boundaries.”

where e = (uj; + W:3)/2, 1,j = 1,2 and a semicoion represents covariant partial differentiation. Since t; and n, are given

6. NUMERICAL STUDEIS .

The numerical technique was applied to the problem of a homogeneous, isotropic unlayered elastic medium of
infinite extent containing a single infinite cylindrical cavity of radius a(m), which is subjected to time-harmonic tractions
applied to the entire surface of the cavity, so that an axially. symmetric elastic dilatational pulse is propagated outwaris
into the elastic medium. The pulsatance is at () radians per second.

For simplicity we assume here that the uniform normal loading resulting in an axially symmetric dilatational pulse
may be considered as that due to an attached mass M per unit length, and a reduced forcing furiction Fo acting on the
mass. For points in the elastic medium, it is easily shown that the exact displacements are

I

)
u (I-’O/ A) Hl (lel)

v = 0 (35)

where 4 = (1420)(8,/2) [Hél)(Bl) - HZ(l)(Bl)] # (A—Muz)Hl(l)(B ),

Xy is the radial distance from the cenire of the cavity, and Hn @) (z),n =0, 1, 2 are Hankel functions of the first
kind.

Because the problem is axi-symmetric, a one-dimensional solution along any radius is sufficient. Nevertheless, a
two-dimiensional solution was implemented to illustrate the method of solution in two-dimensions. For the geometry
under consideration, the coefficients occuring in the expansion of the mapping function (1%) area; =10, a, =0.0 for
n > 1. All caleulations were performed using the following material constants: p= 7850 Kg/m , v=03,G="796 GN/m2
and E = 207 GN/m*“, which correspond to a mild steel medium. The other parameters are F0 = 1.0, w=500.0,

Gl=0.01, §2=n/lO,M: 1, -1r_<_x2i'rr, Oiy_<_1.0anda=l.O.

The magnitude of the displacements and the phase angles along a radius, for the exact solutions and the numerical
approximations are illustrated in Fig. 5 and Fig. 6 respectively. The agreement between the exact solutions and those
obtained by the numerical technique outlined here-in is seen to be excellent. The maximum error is less than 0.01 per
cent,

7. CONCLUSIONS

cross-section has been given. Numerical solutions for circular cross-section are given as an example of this approach.
The agreement between the exact soiutions ang those obtained by the numericzal technique is seen to be excellent.

In addition to problems in steady elastic vibrations, this procadure appears feasible for the numerical computation
of surface deformation asscciated with voicanism, the investigation of shallow-cylindrical shells containing irregular

£

holes or boundaries, znd infinite systems occuring in soil dynamiecs, seisomology and acoustic generators.
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LIST OF SYMBOLS

E o =T
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Coefficients of the mapping function
Propagation velocity of dilatation waves.
Propagation velocity of distortional waves.
A function of y and Xo.

Components of the metric tensor.

Lamé’s elastic constant.

A function of y and Xg.

Imaginary unitF

Physical time.

Displacement components in the x; direction.
Displacement component in the }g direction.
Orthogonal curvilinear coordinates.
Rectangular Cartesian coordinates.

= 1/x1.

Scalar wave function.

Pulsalance in radians per second.

Lamé’s elastic constant.

Scalar wave function.
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Mapping of the interior of the unit circle onto
the cross-section of a circular cylindrical cavity
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Fig- 2: Mapping of the interior of the unit circle onto the
cross-section of a non-circular cylindrical cavity

WEST INDIANJOURNAL OF ENGINEERING



18

2 A ——— EXACT

\%

o APPROXIMATE

Fig- 3: Mapping of the interior of the unit circle onto the
cross-section of a hexagonal cylindrical cavity
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Fig- 4: (2) The z-plane with co-ordinates Xy and xp

(b) The finite mathematical domain
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Fig- 5:

Comparison of the magnitude of the displacements obtained
from exact solution and from numerical method
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Fig- 6: Comparison of the dargument of the displacements obtained from
exact solution angd from numerical method
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