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THE EFFECTS OF CONFINEMENT AND STRAIN HARDENING ON THE
PERFORMANCE AND DESIGN OF SHORT CIRCULAR COLUMNS

ABSTRACT

In limit design of reinforced concrete structures, the design bending moment distribution is related to
the ductility at plastic hinges. The past research has shown that the ductility and energy dissipation
capacity of a reinforced concrete member can be improved significantly by confining the concrete by
circular spirals. The ultimate curvatures of reinforced concrete sections cannot be calculated
accurately by neglecting strain hardening (if strain hardening is formed) in steel. In such a case, the
reliability of the limit design and seismic design may be affected unfavourably. In this context, based
upon an appropriate steel behaviour model including strain hardening, an algorithm can be
developed for confined circular column sections.
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1.INTRODUCTION

The analysis and design of circular short columns subjected to flexural bending with axial
load have been examined in this paper. Confined circular short columns, with
compression and tension which have the effect of strain hardening or not, can be
analyzed in an accurate way. In the limit design, the curvature ductilities of reinforced
concrete cross-sections, and the rotation capacities of the plastic hinges can be
increased significantly by confining the sections. In other words, the capacities of
potential plastic hinge rotation which are functions of these curvatures are estimated
greater than the real values because of the negligence of the strain hardening effect [9].

Bearing all these facts in mind, idealized stress-strain behaviour models are proposed to
use in the design for unconfined and confined concrete, considering the effect of strain
hardening of the steel. Depending on the afore mentioned models, algorithms for the
analysis and design of reinforced concrete columns subjected to flexural bending with
axial load have been proposed. By using these algorithms, the confined and strain
hardening circular short columns which will reach the ultimate state by compression or
tension failure, with steel arrayed in a circle, can be analyzed and designed. Also a
numerical example related with the study is given.



2. BEHAVIOUR MODELS FOR CONCRETE AND STEEL

2.1. Behaviour Model for Concrete
On the basis of the existing experimental evidence, stress-strain behaviour models have
been proposed for concrete unconfined and confined by circular spirals [3,5,6,11,13,15].
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Figure 1. ldealized stress-strain behaviour model for concrete confined by circular
spirals

As indicated in Fig.1, characteristic compressive cylinder strength of the concrete
confined with circular spirals is given by [8]

fook = fox +2.05p 0 = Ko s K= Toge /o = Tooa / Toa (1)
K can also be expressed as function of py,;

K =1+2.05p;, (i / fe) for C< C50 (2a)
or

K =1+1.5375py,(f,u /T ) for C = C50 (2b)

where K is the confinement coefficient, f, is the characteristic compressive cylinder
strength of the unconfined concrete, f,,, is the characteristic yield strength of the spiral

bar, f,,and f, are the design compressive strength of the concrete unconfined and
confined, respectively.

The ratio of volume of spiral bar to volume of concrete core measured to center lines of
spirals is

P = 4Agn H(Rysp) (3)
where



R, =R, -Dj (4)
R, = 0.85R ()
A, = 0.251D7 (6)
where A, is the area of the spiral bar, R is the diameter of circular column section, R;,
is the diameter of circle through centre of reinforcement, D, is the the diameter of spiral,

sy, is pitch of the spiral, R, is the the diameter of circle through outside of reinforcement.
The characteristics of the suggested curve in Figure 1 are as follows [14]:

For region AB (&, <g.y):
6o =Kfoul(280 /Ec00) — (8¢ / Eec0 )?] (7a)

For region BC (&4 < € < &20uc):
G¢ = Teq [K - \Vc(‘gc /Scco )] (7b)

For region AB' (e < &4 ):
0o =Ksfeal(2e, /200) ~ (6 /200 )?] (7c)

For region B'C' (e. < &c < £20u):

06 =Kafeg[1- wlee /£c0)] (7d)
The parameters of the stress-strain behaviour model (Figure 1) are defined below :

€cou = K(0-2/\|/c + Sco) (8)
Ve =tan0, /Ty = (K- 0.5)/(e50, + €50n — €60K) 9
v =tan0/f, =0.5/(e5q, — €¢g) (10)
where

€50y = (3 +0.29k,5f4)/(145k 44 — 1000) (11)

eson = 0.79pp4/(Ry /84) (12)

The strain at the maximum stress ¢, is approximately 0.002 or 0.0022 [3, 7], vy is the

material coefficient (safety factor) for concrete, ks is the ratio of concrete maximum
strength to cylinder strength of the concrete, .. is the concrete strain at the extreme
compression fiber of confined concrete, &, is the concrete strain at the extreme
compression fiber of unconfined cover concrete [1,2,13, 14].

For any given strain g.m in the extreme compression fiber, and a given concrete stress-
strain curve, the compressive stress block parameters kic, kac, k1, ko can be determined
for unconfined and confined concrete, respectively [7].



2.2. Behaviour Model for Steel

Stress-strain behaviour models are shown for steel including the strain hardening effect
for analysis and design in figure 3 [9].
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Figure 2. ldealized stress-strain behaviour model for steel, including the effect of strain
hardening

It is assumed trilinear approximate, considering the upper yield strength and the increase
in strain due to strain hardening (Fig.2). The slope of the ascending linear region
described as plastic behaviour is,

Ep :(fsu _fyk)/(ssu _Ssh) (13)

where E,= modulus of plasticity of steel, fs,=the failure strength for steel, fy=the
characteristic yield strength for steel, ¢s, = the ultimate strain for steel, &g, = the initial
value of strain hardening for steel.

The ultimate strain for steel is,
€sud = (fsud - fyd)/Ep +&gp (14)

For g4 > g44 (€shd= €sn) in figure 2, the design value of the upper yield strength is,

f

yhd = fyd + (Ss ~&sh )Ep < fsud (15)



where fy 4 =1, /1.3

3. DESIGN FOR CIRCULAR SHORT COLUMNS

In multi-storey buildings, the end moments of the column can change in sign due to
different loadings. If the column is bent in double curvature, the same face of the column
can be subjected to compression or tension. When the end moments change sign,
compressive and tension effects reverse. For this reason, the columns are designed with
symmetrical reinforcement. In this part, design algorithms are suggested for eccentrically
short circular columns with steel arrayed in a circle [4,10].

In this paper, the equilibrium equations which define the mechanical behaviour of the
confined concrete for short circular columns are given as a function of the unknown
parameter D,, for certain configuration of the longitudinal reinforcement (for example
n=10)as shown in figure 3. The algorithms suggested are also convenient for different
reinforced sections.

The input data of the problem are the design axial load capacity Ng, design bending
moment capacity Mg and the geometric parameters, D,, s, , n. The output data are

area of longitudinal reinforcement A, and the ultimate curvature ¢ respectively.
3.1. Algorithm
Geometric parameters are shown in figure 3.
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Figure 3. Geometric parameter

Area of the circular spirals for n=10, o can be calculated from the geometry shown in
figure 3. In this study, o =18° and z, = 2(0.951)r, are computed.

The neutral axis for the cover concrete (¢, ) can be written as,
c,.le

Cy =€cuCuc ! Eccu (16)

where ¢, shows that the depth of the neutral axis for the confined core concrete.
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Figure 4. The analysis of short columns

The cross-section, strain and stress distribution and internal forces are shown in figure 4.
The angles 6 and 6, for the unconfined and confied concrete respectively can be

expressed as [12];

For ¢, £0.5R;;
6 =cos"[(0.5R,, —c, +¢,)/(0.5R;,)]
0, =cos '[(0.5R, —c,.)/(0.5R,)]

For c,, >0.5R;;

6 =n—cos'[(0.5R, -, +¢,)/(0.5R,)]

6= n—cos~"[(c,, —0.5R;)/(0.5R,,)]

(17a)

(17b)

(18a)

(18b)



The stresses o can be expressed according to strain ¢g,o, and ¢ have positive

signs if the longitudinal reinforcement is located in compression zone. There are three
states which may be represented by the following equations:

€ < Eyq = Og = E4E; (19a)
€yqg < &5 < &gy = O = fyd (19b)
€sh < &g <8€gug = Osj = fyd + kgsi ~Egh )EpJ (19c)

Otherwise, o and ¢ have negative signs if the longitudinal reinforcement is located in
tension. Similarly, the stresses are as follows:

|8$i| <&y = Og = g4, (20a)
Eyq < |ssi| <gg = 0g =—f4 (20b)
€sh < |85i| <&gg = O = _fyd + [(gsi + &gy )Ep] (20c)

In this study, compression zone in cover concrete is assumed to be sector of a circular
section. Therefore, the area of circular section can be written as,

Aot =2 Z(R? ~RZ)(0, ~ 0) (21)
4 27

Eq.21 simplifies to

A ghen = 0.25(R? —RZ)(6,, —0) (22)

The compression force in cover concrete is

Fanen = 0.25k5foqk (R —=R2)(0, - 0) (23)
The compression force in core concrete is then

Foore = 0.25Kf 4k, RZ(0, —sinO, cos 0, ) (24)
Thus the ultimate load of column may be written as

Ny =Feore + Fenen +Fs (25)

where Fs is the summation of the tension forces. The equilibrium equation obtained from
the sum of the internal forces is



Ny = [0.25 K foq ke Rn? ( 0c — Sin 0 cos 0 )] + [0.25 ks fog k1 (RZ = Rn? ) (06 - 0)]

‘Mo

Il
N

+ Osi Asi (26)

and the expression obtained from taking moments about the tension steel is

M, = 0.25Kf 4k ,R2(6, —sinB, cos 6, )[0.5(Ry, + 25 ) —KyCue |+
n
0.25K,f ks (R? — RZ)(0, — 0)[0.5(Ry, + Z5) — Cy + Cy — (KoCy )] + 205AGX, (27)
1=

where M, is the moment of resistance
The moment equilibrium equation given by Eq.27 may be also written as

N,e = N,(e+0.5z,)=0.25Kf 4k, .R2(0, —sinB, cos 0, )[0.5(Rh +2¢)—KyCue
+0.25K 5ok (R* —R7 )0, — 0)[0.5(Ry +25)— €y +Cy — (K¢, )]

+304AX, (28)

SIM
i=1

where e is the eccentricity of ultimate load N, from the centroid of the tension steel.

Substituting the value of D2 obtained from Eq.26 into Eq.28, N,is calculated. Until
values of N,and Njare equal, the depth of the neutral axis is changed. If the values of

N, and Ngyare equal, D, is the diameter of the longitudinal steel. Thus, total area of
longitudinal steel in the section is

A, =nA, (29)

sV

The ultimate curvature is given by
¢uc =€ccu /Cuc (30)

3.2 Balanced Eccentricity

A “balanced failure” occurs when the tension steel reaches the yield strength and the
extreme fiber concrete compressive strain reaches the ultimate strain at the same time. In
the general case when e or the section is different from e, , the type of failure that ocurs
will depend on whether e is less than or greater than e,. If e<e, (or e/h<e,/h),
compression failure occures. Tensile failure occures if e > ey, (or e/h>ep/h). The subscript
“b” has been added to all parameters concerned with balanced failure. For balanced

failure, e, =¢,4 and o, =f. Balanced eccentricity e, is derived from similiar triangles



of the strain diagram, force and moment equilibrium equations (Figure 4). For a balanced
failure, the neutral axis depths ¢, and c,. is given by the following relationships.

Co=[ e/ (€cu+ea)]0.5(R+2z) (31a)

Cbc=[Sccu/(gccu+5yd)]0-5(Rh+zs) (31b)

Subsituting ¢, =c¢,., ¢, =¢, and e =g, into Eq.28, the following equation is obtained:

Ny (€, +0.52, ) = 0.25Kf, K ;R2(B,, —Sin By, COS B, )[0.5(Ry, + 25 ) —KocCio |
+0.25k5 gk (R? = RZ)(0p, — eb)[O'S(Rh +2Z5) = Cpe +Cp — (KaCp )]

+304AX, (32)

Solving for e, , balanced eccentricity becomes

ey = {0.25Kf 4k o R2(0,, — Sin0y, oS0, )J0.5(R, + Z) — KpsCoo
n
+0.25K5fogky (RZ =R2)(0pc — 0,)[0.5(Ry, + Z) — G +Cp, — (KCp )]+ 2 0AGX )/

[0.25KF k1 R2(By, — S B, 08 By )| + 025K,k (RZ ~RZ)(By — O, )]
n
+ Z%GsiAsi }_ 0'525 (33)

4 NUMERICAL EXAMPLE

1) Calculate Ay, and ¢, for circular column confined by circular spirals.

Ny =1200kN, My =115kNm, R =400mm

n=10, fy =25MPa,f, =220MPa, f,, = 220MPa D, =10mm, s, =100mm,

Y. =15, v, =115,

E;=2-10°MPa, E, =750MPa, ¢,,4=0.114, ¢, =0.02, &, =0.0022, ¢, =0.0035,
k,=0.754,k, =0.443 , k; =1, d =50 mm

foa =fo /7o =16.67MPa f 4 =1, /y; =191.3MPa, &, =f4/E; =0.0009565,

e =My /Ny =96mm

R, =0.85-R =0.85*400 = 340mm, R, =R, - D, =330 mm, A, =0.257D2 = 78.54mm?,
r, =0.5R-d =0.5*400-50=150mm, p, =4A, /(R; -s,)=0.00952,

eson = 0.75p (R, /8,)"2 =0.013166, K =1+(2.05p,f, /) =1.17,

€500 = (3+0.29%f 4)/(145k,f 4 —1000) = 0.005528 ,

¥, =(K-0.5)/(e50, + €500 — €coK) = 41.56

10



Eeou =K(0.2/ W, +£4,)=0.0082, ky, =0.827, ky, =0.469
Solution

For n=10 bars,

Zg = 2rgcoso =285.32mm

Assume that ¢, =231.99mm

Cy =€¢uCuc / €cey =99.02mm

Cuc =231.99mm < 0.5R;, =170mm

6 =n—cos '[(0.5R, —c,, +¢,)/(0.5R,)]=1.790 rad

0, = t—cos~"[(c,. —0.5R;)/(0.5R,,)|=1.944 rad

The values oy may be determined from the strain diagram:
€1 = [Cue = 0.5(Ry, — Z5 )cey / Cue = 0.00723

£g1 > 0,8,4 < €41 < gy Ogy = f,q = 191.3 N/mm?

£y = [Cye —0.5R,, +0.588r, |, / C,c = 0.005308

862 > 0,6,4 < £6p < Egn, Ogp = f,q = 191.3 N/mm’

£s3 = [Cuo — 0.5Ry ey / Cue = 0.00219

g3 >0, £,4<&g <Eg Ogy =f,q =191.3 NImm®

€es = [Cye —0.5R}, —0.588r Jeey / Cye = —0.000926,

8ea <0, [egs| < &yq. Ogq = &4 =—0.000926 *2*10° = -185.2 N/mm’
€5 = [Cue — 0.5(Rp, + Z5) ey / Cue = —0.002851,

€5 <0, &y <[gs|<Egn . g5 = —F,q =—191.3 N/mm?
And from Eq.26 we write

D2, = 2N, - 0.25Kf 4k ,.R2(0, — sin, cos, ) — 0.25k,f .k,(R2 — R2)(0, — 0) ]/

[n(031 +Ggy + Ogz, + gy + Ogs5) ] =367.85
From Eq.28 we have
N, =1202.21kN . Because of N, =N,

Total area of longitudinal steel in the section is
Ag, =nAg = n0.25nD2, =10*0.25* = * 367.85 = 2889.09 mm? (10 $20)

The ultimate curvature is
Gue = Ecou ! Xye = 0.0082/231.99*2*10% =0.03535 rad/m

11



Balanced Eccentricity

Co = [Beu /(Ecy + £,a)D-5(R +2,) = 269.11 mm

Coo = [oou ((Eecu + £ya)D-5(Ry +25) =280 mm

Cp =269.11mm > 0.5R; =170mm

Cpe =280 mm >0.5R,, =170mm

0, = —cos '[(0.5R, — ¢, +¢,)/(0.5R;)]=2.781rad
By = © —cos'[(c . — 0.5R,,)/(0.5R;,)]= 2.275 rad

£ep1 = [Coe —0.5(Ry, — 25 ) Ecey / Coe = 0.007399 N/mm?
861 >0, £y <Eg <Eq Oy =f,g=191.3 NImm’
€ep2 = [Coo — 0.5Ry, +0.588r, ey / Cpe = 0.005804

£ >0, &4 <Egp <, Ogp =Tyg =191.3 N/mm?
£ep3 = [Coo — 0-5Ry ey / Co = 0.003221

g3 >0, 4 <&g <Eg Og =f,q =191.3 NImm®

yd
€4 = [Cue — 0.5R;, — 0.588r, e oe / Cp = 0.0006384,

8sa >0, £g4 <Eyq, 054 = Ee4E = 0.0006384*2*10° =127.68 N/mm’
€5 = [Coe — 0.5(Ry, + Z5)|ceu / Ce = —0.0009565,

€5 <0, &y <[gs|<Egn . g5 = —F,q =—191.3 N/mm?

A, =0.25* 1*400 = 314.16 mm?

Substituting the values calculated into Eq.33 gives

e, =55.12mm

e=96 mm> e, =55.12mm

Therefore, a tension failure occurs.

i) Calculate A, and ¢, for unconfined circular column.
The total areais A, =1533.02 mm? (10¢14) and the ultimate curvature is
dyc =0.0132 rad/m .

5. CONCLUSIONS

The bending moment distribution is related to the ductility at plastic hinges of reinforced
conrete structures. Also, structures subjected to seismic action must be ductile enough to
absorb and dissipate energy. Past research has shown that the ductility enough to absorb
and dissipation capacity of a reinforced concrete member can be improved significantly
by confining the concrete by circular spirals. In this context, the confined circular short
columns can be accurately designed, including consideration of the strain hardening in
steel. Besides, the capacities of potential plastic hinge rotation are estimated greater than
the real values because of the negligence of the strain hardening effect.

12
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Figure 1. ldealized stress-strain behaviour model for concrete confined by circular
spirals

14



fsu
fix E,

fsud

/ A O

fa P

q\

Es fyha
Y >
0 Syd 8yk Esh™ Eshd Esud Esu SS

Figure 2. ldealized stress-strain behaviour model for steel, including the effect of strain
hardening

15



re =0.5R-d'
zg = 2r, cosa

Figure 3. Geometric parameter

16



(b1) Cross-section (b2) Strain (b3) Stress distribution
distribution and internal forces
N,
—
R
’ Kfea
c 8(‘,(‘.“
% P o s M 2
% Cu 7 e
Cu Gs2 o
dc Zs e Os3
/ £ T
/ &si O,

Og1 = 0.25Kf 4k ,R2(0, —sind, cosO,)
Oo2 = 0.25k5 4k (R? —R7)(0, - 6)

Figure 4. The analysis of short columns

17



	Ph.D. Assistant Professor of Civil Engineering, Faculty of C
	e.mail:noyan@yildiz.edu.tr.
	Ph.D. Lect.Dr. of Civil Engineering, Faculty of Civil Engine
	e.mail:doran@yildiz.edu.tr.
	For region B'C' (< (c ( (20u):


