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THE EFFECTS OF CONFINEMENT AND STRAIN HARDENING ON THE 
PERFORMANCE AND DESIGN OF SHORT CIRCULAR COLUMNS    

 
 
 
 
 
 
 
 
ABSTRACT 
 
In limit design of reinforced concrete structures, the design bending moment distribution is related to 
the ductility at plastic hinges. The past research has shown that the ductility and energy dissipation 
capacity of a reinforced concrete member can be improved significantly by confining the concrete by 
circular spirals. The ultimate curvatures of reinforced concrete sections cannot be calculated 
accurately by neglecting strain hardening (if strain hardening is formed) in steel. In such a case, the 
reliability of the limit design and seismic design may  be affected unfavourably. In this context, based 
upon an appropriate steel behaviour model including strain hardening, an algorithm can be 
developed for confined circular column sections.  
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1.INTRODUCTION 
 
The analysis and design of circular short columns subjected to flexural bending with axial 
load have been examined in this paper. Confined circular short columns, with 
compression and tension which have the effect of strain hardening or not, can be 
analyzed in an accurate way. In the limit design, the curvature ductilities of reinforced 
concrete cross-sections, and the rotation capacities of the plastic hinges can be 
increased significantly by confining the sections. In other words, the capacities of 
potential plastic hinge rotation which are functions of these curvatures are estimated 
greater than the real values because of the negligence of the strain hardening effect [9]. 
  
Bearing all these facts in mind, idealized stress-strain behaviour models are proposed to 
use in the design for unconfined and confined concrete, considering the effect of strain 
hardening of the steel. Depending on the afore mentioned models, algorithms for the 
analysis and design of reinforced concrete columns subjected to flexural bending with 
axial load have been proposed. By using these algorithms, the confined and strain 
hardening circular short columns which will reach the ultimate state by compression or 
tension failure, with steel arrayed in a circle, can be analyzed and designed. Also a 
numerical example related with the study is given.  
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2. BEHAVIOUR MODELS FOR CONCRETE AND STEEL 
 
2.1. Behaviour Model for Concrete 
On the basis of the existing experimental evidence, stress-strain behaviour models have 
been proposed for concrete unconfined and confined by circular spirals [3,5,6,11,13,15]. 
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Figure 1.  Idealized stress-strain behaviour model for concrete confined by circular 
spirals 

 
 
As indicated in Fig.1, characteristic compressive cylinder strength of the concrete 
confined with circular spirals is given by [8] 

ckywkhckcck Kff.ff =ρ+= 052 ;              (1) cdccdckcck f/ff/fK ==

K can also be expressed as function of ;  hρ

)f/f(.K ckywkhρ+= 0521  for C< C50                (2a) 
or 

)f/f(.K ckywkhρ+= 537511  for C  C50             (2b) ≥

where K is the confinement coefficient, is the characteristic compressive cylinder 

strength of the unconfined concrete, is the characteristic yield strength of the spiral 

bar, and  are the design compressive strength of the concrete unconfined and 
confined, respectively. 

ckf

ywkf

cdf ccdf

 
The ratio of volume of spiral bar to volume of concrete core measured to center lines of 
spirals is  

)sR/(A4 h
'
hshh =ρ                (3) 

where 
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hh
'
h DRR −=                (4) 

R85.0Rh =                (5) 
2
hsh D25.0A π=                (6) 

where  is the area of the spiral bar, is the diameter of circular column section, 

is the diameter of circle through centre of reinforcement , is the the diameter of spiral, 

is pitch of the spiral,  is the the diameter of circle through outside of reinforcement. 
The characteristics of the suggested curve in Figure 1 are as follows [14]:  

shA R '
hR  

hD

hs hR

 
For region AB ( :  )ccc 0ε≤ε

[ ]2
002 /()/(Kf cccccccdc εε−εε=σ )

]0

           (7a) 
 
For region BC ( < ε0ccε c ≤ ε20uc): 

[ )/(Kf cccccdc εεψ−=σ             (7b) 
 
For region AB' (εc ≤ ): 0cε

[ ]2
003 2 /()/(fk cccccdc εε−εε=σ )

]

           (7c) 
 
For region B'C' ( < ε0cε c ≤ ε20u): 

[ )/(fk cccdc 03 1 εεψ−=σ                (7d) 
 
The parameters of the stress-strain behaviour model (Figure 1) are defined below : 

)/.(K ccccu 020 ε+ψ=ε               (8) 

)K/().K(f/tan chucdcc 0505050 ε−ε+ε−=θ=ψ            (9) 

)/(.f/tan cucd 05050 ε−ε=θ=ψ            (10) 
where 

)fk/()fk.( cdcdu 10001452903 3350 −+=ε           (11) 

)s/R(. hhhh ρ=ε 75050             (12) 

The strain at the maximum stress  is approximately 0.002 or 0.0022 [3, 7], coε mcγ  is the 
material coefficient (safety factor) for concrete, k3 is the ratio  of concrete maximum 
strength to cylinder strength of the concrete, εccu is the concrete strain at the extreme 
compression fiber of confined concrete, εcu is the concrete strain at the extreme 
compression fiber of unconfined cover concrete [1,2,13, 14]. 
 
For any given strain εcm in the extreme compression fiber, and a given concrete stress-
strain curve, the compressive stress block parameters k1c, k2c, k1, k2 can be determined 
for unconfined and confined concrete, respectively  [7]. 
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2.2. Behaviour Model for Steel  
 
Stress-strain behaviour models are shown for steel including the strain hardening effect 
for analysis and design in figure 3 [9]. 
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Figure 2.  Idealized stress-strain behaviour model for steel, including the effect of strain 

hardening 
 
 
It is assumed trilinear approximate, considering the upper yield strength and the increase 
in strain due to strain hardening (Fig.2). The slope of the ascending linear region 
described as plastic behaviour is,  
 

)/()ff(E shsuyksup ε−ε−=                                        (13) 
 
where Ep= modulus of plasticity of steel, fsu=the failure strength for steel,  fyk=the 
characteristic yield strength for steel, ε su = the ultimate strain for steel, ε sh = the initial 
value of strain hardening  for  steel. 
 
The ultimate strain for steel is, 

shpydsudsud E/)ff( ε+−=ε             (14) 

For (shds ε>ε ε shd = ε sh) in figure 2, the design value of  the upper yield strength is,  
 

sudpshsydyhd fE)(ff ≤ε−ε+=                                                                                           (15) 
 

         σpfyd

       
εs
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where  31./ff susud =
 
3. DESIGN FOR CIRCULAR SHORT COLUMNS 
 
In multi-storey buildings, the end moments of the column can change in sign due to 
different loadings. If the column is bent in double curvature, the same face of the column 
can be subjected to compression or tension. When the end moments change sign, 
compressive and tension effects reverse. For this reason, the columns are designed with 
symmetrical reinforcement. In this part, design algorithms are suggested for eccentrically 
short circular columns with steel arrayed in a circle [4,10].   
 
In this paper,  the equilibrium equations which define the mechanical behaviour of the 
confined concrete for short circular columns are given as a function of the unknown 
parameter Dv, for certain configuration of the longitudinal reinforcement (for example 

)as shown in figure 3. The algorithms suggested are also convenient for different 
reinforced sections. 

10=n

 
The input data of the problem are the design axial load capacity Nd, design bending 
moment capacity Md  and the geometric parameters, , , n.  The output data are 

area of longitudinal reinforcement and  the ultimate curvature respectively. 
hD hs

svA ucφ
 
3.1. Algorithm  
 
Geometric parameters are shown in figure 3.  
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Figure 3. Geometric parameter 

 
 of the circular spirals for n=10, α can be calculated from the geometry shown in 
e 3. In this study,  and are computed. o18=α ss r).(z 95102=

 neutral axis for the cover concrete ( ) can be written as,  uc

ccuuccu /c εε              (16) 

re  shows that the depth of the neutral axis for the confined core concrete. ucc

6



                (b1) Cross-section                                   (b2) Strain       (b3) Stress distribution 
                                                                                       distribution        and internal forces 
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Figure 4. The analysis of short columns 
 
 
 
The cross-section, strain and stress distribution and internal forces are shown in figure 4. 
The angles  and  for the unconfined and confied concrete respectively can be 
expressed as [12];  

θ cθ

 
For ; huc R.c 50≤
 

[ ])R./()ccR.(cos huuch 50501 +−=θ −              (17a)
             

[ )R./()cR.(cos huchc 50501 −=θ − ]

]

         (17b) 
 
For ; huc R.c 50>
 

[ ])R./()ccR.(cos huuch 50501 +−−π=θ −              (18a)      
   

[ )R./()R.c(cos hhuc 50501 −−π=θ −          (18b) 
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The stresses  can be expressed according to strain ,  and have positive 
signs if the longitudinal reinforcement is located in compression zone. There are three 
states which may be represented by the following equations: 

siσ siε siσ siε

 
ssisiydsi Eε=σ⇒ε<ε           (19a) 

ydsishsiyd f=σ⇒ε<ε<ε           (19b) 

[ ]pshsiydsisudsish E)(f ε−ε+=σ⇒ε<ε<ε         (19c) 
 
Otherwise,  and have negative signs if the longitudinal reinforcement is located in 
tension. Similarly, the stresses are as follows: 

siσ siε

 

ssisiydsi Eε=σ⇒ε<ε           (20a) 

ydsishsiyd f−=σ⇒ε<ε<ε          (20b) 

[ pshsiydsisudsish E)(f ε+ε+−=σ⇒ε<ε<ε ]        (20c) 
 
In this study, compression zone in cover concrete is assumed to be sector of a circular 
section. Therefore, the area of circular section can be written as, 
 

π
θ−θ−

π
=

2
1))(RR(

4
2A c

2
h

2
shell             (21) 

 
Eq.21 simplifies to 
 

))(RR(25.0A c
2
h

2
shell θ−θ−=             (22) 

 
The compression force in cover concrete is   
 

))(RR(kfk25.0F c
2
h

2
1cd3shell θ−θ−=           (23) 

 
The compression force in core concrete is  then 
 

)cossin(RkKf25.0F ccc
2
hc1cdcore θθ−θ=            (24) 

 
Thus the ultimate load of column may be written as 
 

sshellcoreu FFFN ++=             (25) 
 
where Fs is the summation of the tension forces. The equilibrium equation obtained from 
the sum of the internal forces is 
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Nu = [0.25 K fcd k1c Rh
2 ( θc – sin θc cos θc )] + [0.25 k3 fcd k1 ( R2 – Rh

2 ) ( θc - θ )]  

         + σ∑
=

n

1i
si Asi                           (26) 

and the expression obtained from taking moments about the tension steel is 
 

[ ]ucc2shccc
2
hc1cdu ck)zR(5.0)cossin(RkKf25.0M −+θθ−θ= + 

        [ ])ck(cc)zR(5.0))(RR(kfk25.0 u2uucshc
2
h

2
1cd3 −+−+θ−θ− +          (27) ∑ σ

=

n

1i
isisi xA

where  is the moment of resistance uM
 
The moment equilibrium equation given by Eq.27 may be also written as 
 

='
ueN [ ]ucc2shccc

2
hc1cdsu ck)zR(5.0)cossin(RkKf25.0)z5.0e(N −+θθ−θ=+  

                         + [ ])ck(cc)zR(5.0))(RR(kfk25.0 u2uucshc
2
h

2
1cd3 −+−+θ−θ−  

                         +                     (28) ∑ σ
=

n

1i
isisi xA

where is the eccentricity of ultimate load from the centroid of the tension steel. 'e uN
 
Substituting the value of obtained from Eq.26 into Eq.28, is calculated. Until 

values of and are equal, the depth of the neutral axis is changed. If the values of 

and are equal,  is the diameter of the longitudinal steel. Thus, total area of 
longitudinal steel in the section is  

2
1vD uN

uN dN

uN dN 1vD

 
sisv nAA =               (29) 

 
The ultimate curvature is given by 
 

ucccuuc c/ε=φ              (30) 
 
3.2 Balanced Eccentricity  
A “balanced failure” occurs when the tension steel reaches the yield strength and the 

extreme fiber concrete compressive strain reaches the ultimate strain at the same time. In 

the general case when e or the section is different from , the type of failure that ocurs 

will depend on whether e is less than or greater than . If  (or ), 

compression failure occures. Tensile failure occures if e > e

be

be bee < h/eh/e b<

b (or e/h>eb/h).  The subscript 

“b” has been added to all parameters concerned with balanced failure. For balanced 

failure,  and . Balanced eccentricity  is derived from similiar triangles yds ε=ε yds f=σ be
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of the strain diagram, force and moment equilibrium equations  (Figure 4). For a balanced 

failure, the neutral axis depths  and  is given by the following relationships.  bc bcc

 
cb = [ εcu / ( εcu + εyd ) ] 0.5 ( R + zs )                        (31a) 

 

cbc = [ εccu / ( εccu + εyd ) ] 0.5 ( Rh + zs )                                                                         (31b) 

 

Subsituting ,  and  into Eq.28, the following equation is obtained: bcuc cc = bu cc = bee =
 

[ ]bcc2shbcbcbc
2
hc1cdsbb ck)zR(5.0)cossin(RkKf25.0)z5.0e(N −+θθ−θ=+  

                           + [ ])ck(cc)zR(.))(RR(kfk. bbbcshbbchcd 2
22

13 50250 −+−+θ−θ−  

                           +    (32) ∑ σ
=

n

1i
isisi xA

Solving for , balanced eccentricity becomes be

 
[{ [ ]bccshbcbcbchccdb ck)zR(.)cossin(RkKf.e 2

2
1 50250 −+θθ−θ=  

         + [ ])ck(cc)zR(.))(RR(kfk. bbbcshbbchcd 2
22

13 50250 −+−+θ−θ− + / ]∑σ
=

n

i
isisi xA

1
         [ ])cossin(RkKf25.0 bcbcbc

2
hc1cd θθ−θ [ ]))(RR(kfk25.0 bbc

2
h

2
1cd3 θ−θ−+  

          +     (33) ] } s
n

i
sisi z.A 50

1
−∑ σ

= 
4.NUMERICAL EXAMPLE  
 
ı) Calculate  and  for circular column confined by  circular spirals. svA ucφ

kNNd 1200= ,  mm

m

400R,kNm115Md ==

10=n , , , , , 

, , 

MPafck 25= MPafyk 220= MPafywk 220= mmDh 10= mmsh 100=

51.c =γ 151.s =γ

MPaEs
5102 ⋅= , , , ,  , ,  

 ,    

MPaEp 750= 1140.sud =ε 020.sh =ε 00220.co =ε 00350.cu =ε

44307540 21 .k,.k == 13 =k , mmd' 50=

MPa./ff cckcd 6716=γ= MPa./ff sykyd 3191=γ= , , 

 

00095650.E/f sydyd ==ε

mmN/Me dd 96==

mm*.R.Rh 340400850850 ==⋅= , mm, , 

, , 

, , 

, 

 

330=−= hh
'
h DRR 22 5478250 m.D.A hsh =π=

mm*.dR.r '
s 150504005050 =−=−= 0095204 .)sR/(A h

'
hshh =⋅=ρ

0131660750 21
50 .)s/R(. /

hhhh =ρ=ε 1710521 .)f/f.(K ckykh =ρ+=

005528010001452903 3350 .)fk/()fk.( cdcdu =−+=ε

564150 5050 .)K/().K( cohuc =ε−ε+ε−=Ψ
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0082020 .)/.(K cocccu =ε+Ψ=ε , ,  82701 .k c = 46902 .k c =
 
Solution 
 
For n=10 bars, 

322852 .cosrz ss =α= mm 

Assume that mm 99231.cuc =

0299./cc ccuuccuu =εε= mm 

mmR.mm.c huc 1705099231 =<=                       
[ ] 790150501 .)R./()ccR.(cos huuch =+−−π=θ − rad 

[ ] 944150501 .)R./()R.c(cos hhucc =−−π=θ − rad 

The values  may be determined from the strain diagram:  siσ

[ ] 00723.0c/)zR(5.0c ucccushuc1s =ε−−=ε  

3.191f,,0 yd1ssh1syd1s ==σε<ε<ε>ε N/mm2

[ ] 005308.0c/r588.0R5.0c ucccushuc2s =ε+−=ε   

3.191f,,0 yd2ssh2syd2s ==σε<ε<ε>ε  N/mm2

[ ] 00219.0c/R5.0c ucccuhuc3s =ε−=ε  

3.191f,,0 yd3ssh3syd3s ==σε<ε<ε>ε  N/mm2

[ ] ,.c/r.R.c ucccushucs 00092605880504 −=ε−−=ε

2.18510*2*000926.0E,,0 5
s4s4syd4s4s −=−=ε=σε<ε<ε N/mm2

[ ] ,.c/)zR(.c ucccushucs 0028510505 −=ε+−=ε  

31910 555 .f,, ydsshsyds −=−=σε<ε<ε<ε N/mm2

 
And from Eq.26 we write 
 

[ ]/))(RR(kfk.)cossin(RkKf.ND chcdccchccddv θ−θ−−θθ−θ−= 22
13

2
1

2
1 2502502  

[ ])( sssss 54321 σ+σ+σ+σ+σπ + 85367.=  
 
From Eq.28 we have 
 

211202.Nu = kN . Because of   du NN ≅
 
Total area of longitudinal steel in the section is 

0928898536725010250 2
1 ..**.*D.nnAA vsivs =π=π== mm2 (10 )20φ  

 
 
 
The ultimate curvature is  

0353501029923100820 5 .**./.x/ ucccuuc ==ε=φ  rad/m 
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Balanced Eccentricity  
[ ] 1126950 .)zR(.)/(c sydcucub =+ε+εε=  mm 

[ ] 28050 =+ε+εε= )zR(.)/(c shydccuccubc  mm 

mmR.mm.c hb 1705011269 =>=                       

mm170R5.0mm280c hbc =>=  

[ ] 781.2)R5.0/()ccR5.0(cos huuch
1

b =+−−π=θ − rad 
[ ] 275250501 .)R./()R.c(cos hhucbc =−−π=θ − rad 

[ ] 007399.0c/)zR(5.0c bcccushbc1sb =ε−−=ε N/mm2

3.191f,,0 yd1ssh1syd1s ==σε<ε<ε>ε  N/mm2

[ ] 005804.0c/r588.0R5.0c bcccushbc2sb =ε+−=ε   

3.191f,,0 yd2ssh2syd2s ==σε<ε<ε>ε  N/mm2

[ ] 003221.0c/R5.0c bcccuhbc3sb =ε−=ε  

3.191f,,0 yd3ssh3syd3s ==σε<ε<ε>ε  N/mm2

[ ] ,.c/r.R.c bcccushucs 000638405880504 =ε−−=ε

68127102000638400 5
4444 .**.E,, sssydss ==ε=σε<ε>ε  N/mm2

[ ] ,.c/)zR(.c bcccushbcs 00095650505 −=ε+−=ε  

31910 555 .f,, ydsshsyds −=−=σε<ε<ε<ε N/mm2

16.314400**25.0Asi =π= mm2

Substituting the values calculated into Eq.33 gives  
1255.eb = mm  

96=e  mm > mm  1255.eb =
Therefore, a tension failure occurs. 
 
ıı) Calculate  and  for unconfined circular column.  svA uφ

The total area is mm021533.Asv = 2 ( )1410φ  and the ultimate curvature is  

0132.0uc =φ rad/m . 
 
 
 
 5. CONCLUSIONS 
 
The bending moment distribution is related to the ductility at plastic hinges of reinforced 
conrete structures. Also, structures subjected to seismic action must be ductile enough to 
absorb and dissipate energy. Past research has shown that the ductility enough to absorb 
and dissipation capacity of a reinforced concrete member can be improved significantly 
by confining the concrete by circular spirals. In this context, the confined circular short 
columns can be accurately designed, including consideration of the strain hardening in 
steel. Besides, the capacities of potential plastic hinge rotation are estimated greater than 
the real values because of the negligence of the strain hardening effect. 
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Figure 4. The analysis of short columns 
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