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Abstract 

The flow of a conducting liquid between two parallel periodically heated oscillating plates 

has been studied. The space between the plates has been divided into two regions (i) clear 

fluid region and (ii) porous medium region.  It is assumed that in region (i) the flow is 

governed by Navier-Stokes equations while in the region (ii) by Brinkman equations. At the 

interface the velocity, temperature and skin-friction are assumed to be continuous. A 

transverse uniform magnetic field is applied normal to the plane. Method of separating of 

variables is used to solve the resulting equations. The expressions for velocities and 

temperature fields are obtained. The effects of permeability and magnetic field on the flow 

characteristic have been studied through several graphs. 

Key words:  Magnetohydrodynamics, Porous medium, Oscillating plates, Periodic heating, 

Heat transfer. 

1. Introduction 

Flows of fluids through porous media are of principal interest because these are quite 

prevalent in nature. Such flows have attracted the attention of a number of scholar due to 

their applications in many branches of science and technology, viz. in the fields of agriculture 

engineering to study the underground water resources, seepage of water in river beds, in 

petroleum technology to study the movement of natural gas, oil, and water through the oil 

reservoirs, in chemical engineering for filtration and purification processes.  Schlichting [1] 

discussed well-known Stokes second problem in classical hydrodynamics. Rudraiah [2] 

discussed this problem in magnetohydrodynamics. Tokis [3] further studied this oscillatory 

plate problem subjected to uniform suction or injection in the presence of a uniform magnetic 

field. The Stokes first and second problem in porous medium has been investigated by 

Murthy [4]. Chauhan and Vyas [5] discussed the Stokes second problem in porous medium in 

the presence of a magnetic field. Viscous flow formation in Couette motion has been 

discussed in the book by Schlichting [1]. Mishra and Mishra [6] considered the flow of a 

viscous elastic liquid due to a plate, which suddenly starts oscillating in the presence of 

another parallel stationary plate. The aim of this paper is to consider the flow in a region 



 

 

2
partially filled with porous medium of finite thickness bounded by two parallel plates in the 

presence of a magnetic field. The flow is due to the oscillations of the plates. The plates are 

kept with oscillating wall temperatures. The problem already defined here is a particular case 

of MHD that has attracted the attention of many investigators because of its applications to 

astrophysics, geophysics and engineering (Crammer and Pai [7] ). 

2. Mathematical analysis 

The viscous incompressible electrically conducting flow in a region that is half filled with 

porous medium is considered. This region is bounded by two parallel plates, which are 

oscillating with constant amplitude U0 and frequency ω*. This region is divided into two 

regions, (i) clear fluid region (0  ≤ y* ≤ h) and (ii) porous medium region (- h ≤  y* ≤ 0). The 

x*-axis is taken along the interface and y*-axis is normal to it. The pressure is constant 

through out the flow field. The temperature of both the plates are  and  respectively. A 

uniform magnetic field B

*
1T *

2T

0 is applied in the direction normal to flow (along y*-axis). We 

assume that all fluid properties are constant, magnetic dissipation effects are neglected in the 

energy equation, the magnetic Reynolds number is small so that the induced magnetic field 

can be neglected. 

In the clear fluid region ( 0 ≤  y* ≤ h ) the flow is governed by the following equations of 

motion and energy 
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The boundary conditions at the plate are 
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In the porous region (- h ≤  y* ≤ 0) the flow is governed by the following Brinkman equations 

[8] and the equation of energy  
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The boundary conditions at this plate are 
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At the interface of the porous medium and clear fluid y* = 0, we assume the velocity 

components, the temperature and the shearing stresses are continuous. The boundary 

conditions at the interface of porous medium and clear fluid have been investigated and 

discussed by Kim and Russel [9]. These assumptions in our notation can be written as 
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Various physical variables are defined in the appendix. We introduce the following non-

dimensional quantities as 
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The dimensionless form of the equations of motion and energy are  
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The boundary conditions (2), (4) and (5) reduce to  
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In order to solve the equations (6) and (7), we assume the solutions of the following form 
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Substituting (9) in equation (6) and (7) and solving under the corresponding boundary 

conditions (8), we get the solutions as 
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Now after knowing the temperature fields, we can calculate the rate of heat transfer in 

dimensionless form as 
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Constants involved in the solutions are not given due to sake of brevity. 

3. Discussion 

The flow of an incompressible conducting viscous fluid in a region bounded by two parallel 

periodically heated oscillating plates has been studied. The region is half filled with porous 

material. The velocity field, temperature distribution and rate of heat transfer have been 

obtained and shown in figures for various values of parameters. The following conclusions 

have been drawn. An examination of Fig.1 shows that the velocity decreases exponentially as 

the fluid moves towards the interface, in both the regions. By increasing the strength of the 

magnetic field the decay is greater, over all for the same values of k. At any instance the 

particle velocities attain a maximum either on the plate or somewhere within the fluid in both 

the regions. Furthermore the maximum velocities are located mostly on the oscillating plates 

(i.e. they are the velocities of the plates itself). When ωt = π/2, the maximum velocities are in 

the fluid not far from the plates. The Fig.2, gives the temperature distribution which is evenly 

distributed in both the regions. It is found that it increases near the plates and decreases away 

from the plates. When ωt = π/2 the temperature increases near the plates and decreases as the 

distance from the surface increases. The temperature in the case of water (Pr = 7) is less than 

that of air (Pr = 0.71) in both the situations (ωt = 0 and ωt = π/2). There is a temperature 

wave, which is rapidly fading away with increasing depth inside the region for Pr = 7. Like 

velocity distribution, the temperature attains its maximum values either on the plates or 

somewhere within the fluid in both the regions. When  ωt = 0, the maximum temperature 

occurs on the oscillating plates, or they are the temperature of the plates. However, for ωt = 

π/2 the temperature is maximum in the fluid not far from the plates. Figures 3 and 4 give the 

rate of heat transfer against M for various values of parameters at the interface. Fig.3, (ωt = 

0) shows that the heat transfer is greater in clear fluid region than that in porous region for 

water (Pr = 7), while the reverse effect is observed in the case of air (Pr = 0.71). However, 

over all the heat transfer remains constant with large values of M and it is greater in water 

than air. If we take ωt = π/2, here we found that in the case of air, the heat transfer is greater 

in clear fluid region than that of porous matrix, which is a reverse phenomena caused when 

ωt = 0, again reverse effect is observed for Pr = 7 (water). For increasing M the heat transfer 

almost remains constant, but when M < 2 it decreases slightly in water. It is observed that 
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periodicity in the boundary temperature does not affect rate of heat transfer, however, the 

thermal characteristics are altered. 

4. Conclusions 

The above studies on the flow of a conducting liquid between two parallel periodically heated 

oscillating plates in the presence of magnetic field lead to the following conclusions. 

1) The velocity decreases with the increase in strength of magnetic field in both the 

situations (ωt = 0 and ωt = π /2 ). 

2) When ωt = 0, the maximum velocity and temperature occur at the oscillating plates. 

For ωt = π/2, the maximum velocity and temperature occur between the plates. 

3) The temperature increases near the plates and decreases away from the plates. 

4) In both the situations (ωt = 0 and ωt = π /2 ) the temperature in the case of water ( Pr 

=7 ) is less than that of air ( Pr = 0.71 ). 

5) When ωt = 0, the rate of heat transfer is greater in clear fluid region than that of 

porous medium for water ( Pr = 7 ). 

6) The rate of heat transfer almost remains constant with increasing strength of magnetic 

field. 
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Captions of the figures 

Figure .1 : Velocity profiles for ω = 8, k = 0.5 and φ1 = 0.4 

Figure .2 : Temperature profiles for ω = 8, M = 5, φ1 = 0.4, φ2 = 0.6 and Ec = 0.01 

Figure .3 : The rate of heat transfer for ω = 8, ωt = 0, Ec = 0.01, φ1 = 0.4, φ2 = 0.6  

   and k = 0.5 

Figure .4 : The rate of heat transfer for ω = 8, ωt = π / 2, Ec = 0.01, φ1 = 0.4,  

φ2 = 0.6 and k = 0.5 

Appendix- Nomenclature 

B0 = magnetic field, 

Cp = specific heat at constant pressure, 

h = distance between the interface and the 

plate, 

k* = permeability parameter, 

k = dimensionless permeability parameter, 

M = Hartmann number, 

Pr = Prandtl number, 

t* = time, 

t = dimensionless time, 

T0 = mean temperature, 
*

1T  = temperature of upper plate, 
*
2T  = temperature of lower plate, 

u* = velocity in clear fluid region, 

u = dimensionless velocity in clear fluid 

region, 

U* = velocity in porous region, 

U= dimensionless velocity in porous 

region, 

U0 = mean velocity, 

x* = direction along the plate, 

x = dimensionless direction along the 

plate, 

y* = direction perpendicular to the plate, 

y = dimensionless direction perpendicular 

to the plate, 

Greek symbols 

α = thermal diffusivity, 

1φ  = ratio of kinematic viscosity, 

2φ = = ratio of thermal conductivity, 

κ= thermal conductivity, 

κp =   thermal conductivity of porous 

medium, 

µ =   viscosity, 

µp =  viscosity of the porous medium, 

ν =   kinematics viscosity, 

νp  =  kinematics viscosity in the porous 

medium, 

1θ  = dimensionless temperature of upper 

plate, 

2θ  = dimensionless temperature of lower 

plate, 

ρ  =  density, 

σ = electrical conductivity of the fluid, 

ω = frequency of the flow variables, 

ω* = dimensionless frequency of the flow 

variables. 


