‘West Indian Journal of Engineering Vol. 29, No. 2, (Tanuary 2007) Technical Paper: (Mehrabian) 65~ 78

Steady-state and Transient Temperature
Distributions of Fuel and Coolant in Radial
and Axial Drrectlons ina Cylmdrrcal
Nuclear FueI Element

'M.A. Mehrabian'.

Steady-state and transtent temperature distributions throughout a nuolear fuel

element composed of ﬁzel -gap and clad regions as well as the mean cookmt
-temperature are predicted using a finite difference conduction-convection
numerical analysis. The implicit Crank-Nicolson scheme is used to predict -
temperature_in the fuel pin nodes and the mean coolant temperature in each -
axial section. These temperatures are then used to solve the explicit governmg
equation for the coolant and give the outlet temperature from each axial
section. The numerical analysis is based on energy equation for a node, to
make sure that energy is always conserved in a strict sense, especially at the
boundaries of four different regions (fuel, gap, clad, coolant) when the
adjacent nodes belong to the non-homogeneous regions. :
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1. Introduction ‘ i
In nuclear reactors, the temperature field in fael

elements changes as a result of heat generated from
the fission interactions inside the fuel elements.

- The temperature distribution in nuclear fuel elements in
‘'steady-state and transient regimes provides important
information regarding the cooling system which
should be designed in a way that absorbs heat from the
reactor core while safety considerations are taken into
account [1]. In this paper, the analytical approach to
solve the heat conduction equation in a homogeneous
cylindrical fuel element is introduced, followed by the
finite difference numerical method based on energy
balance equation for a node.

The heat conduction equiation in a nuclear fuel

in which, 9 is the rate of heat generation per unit

volume, k therthal conductivity, & thermal diffusivity
and T(r.0). temperature function in the fuel element,

: The fuel elément is-assumed to have cylindrical shape
' havmg radius @ with negligible temperature changes -

in axial direction. Therefore, Eq.'1 is reduced to:
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Considering the axial symmetry of the cylindrdical
fuel element, Eq. 2 becomes: -

or_ T 1 oT | ' |
element is 2k +4 R 3
_ D (ar ror ) ®
oT a2 q ) -
ot —OL_(V T+ k) ..(1) We may assume that in the time interval ¢ « (oo—O)'

temperature varlatlons with respect to time are
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negligible; where time t"_'O corresponds to the shut

down period. Thus, Eq. 3 becomes:

o

T 19T q_
a* rge- ko (4)
or,
2
or ot kL 5
| aIy
Eq. 5 indicates that when =0 then or l=v=

that is, at time =0

constant and may be called L though,

T00)=T,

To solve Eq. 4, the following homogeneous equation
is solved first,

PT 1T

or* ror L @
The solution to the above equation is:

T=cInr+c, (8)

Applying the conditions at fuel centre, (Eq. 6), gives
the values of ¢t =0 and 2 =7 which reduces Eq. 8
into: '

The non-homogeneous version of Eq. 7, is written as
follows:

sz 10T

o ror k

The specific so_luﬂon to the above equation is:

the temperature at fuel centre is

T=Ar’+Br+C

Differentiating the above equation and applying into
Eq. 10 gives the values of A=~ ¢ /44 B=0 5,9 C=0
which reduces the above equation into:

"
4k

~ Thus, a general solution to Eq. 4, when (7 <0} would
be the sum of Eqs. 9 and 12:

2

qr

I'ir.n)=T, ——
(r.1) Y

n

(1<0)

Theoretically, if the fuel is covered by insulation and
the insulation effectively prevents heat to escape, the
rate of temperature changes at the wall is zero, thus:

§£
or

0

r=ar=t

Therefare, the heat conduction equation for the fuel element
and its boundary and initial conditions are:

oT T 137 ¢
(G B &)
ot or ror k (14a)
Q“T“IJ“:a:O
e (14h)
7"2

T(r0)=T, -1

" 4k (14¢)

We may further assume, after the reactor is shut down

(t>0) | there is no heat generation (4=0)_ thys,
Eqs. 14(a), 14(b) and 14(c) become:

art ror

aT

FY
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9T =0
o (15b)
T(r) =T, - a
4k L (15¢)
To separate the variables, we assume:
T@ro=fngo (16)
1g.
e (17
forto (18)
The solution to Eq. 17 is:
s=Aexp-piot) (19)
The general solution to Eq. 18 is:
F(ry=AJ(pr)
o (20)
in which,
1) P?‘ 2% _
Jolpr)= Zk 0 (k')
o) ent (pn)°
22 2242 224 262
........ 2n
Substituting Egs. 19 and 20 into Eq. 16a gives:
T(r,t)=Aexp(—p* oo (pr)
=0 (22)

Differentiating Eq. 22 with respect to 7 gives:

oT
5 =Ap eXP(—p an) g, (pr) =

........

—Apexp(~p o)l (pr) - (23)

Eq. 22 satisfies the boundary condition expressed in
Eq. 15b, giving:

- S(pay=0 (24)

Assuming (" € ¥V {0}) are the roots of Eq. 24, we
then have: :

- —Zn
pamzn=>p—a ne Nui{0} (25)

Eq. 22 then becomes:

2
T.(r.H=A, exp(— Ln_ OLt)J (z —)

The first positive zeros of Y1{P®) are as follows [4}:

(13.3237 ,, 10.1735 ,, 7.0156 ,, 3.8317)

The function 7' (7.5) ig defined as:
(=2, T

That means at T >0, we have:

2
f— oo r
T'(r,1) =2k=1Af‘ exP(—%‘;Oﬂf)Jo(Zk 2

Comparing Egs. 28 and 15¢ and considering the

continuity of the temperature function at =9 we
have:

}jmf—)[]-}- T‘(r,t) = T(r90) ........ (29)
Therefore,
AJ(z —~) T, -
Z KT0Mk 4k ........ (30)
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Différentiat:ing Eq. 30 with respect to 7 gives:

- Aka r qar
Jo'(z,—)y=—=
Zk:l 2 o ( Y@ 2% et 31)
and,
o2 Akzk F qr
S =)=~ :
Zk:l a i€ a2 L (32)
| o<l <y =L
in which, 0Sr<aor @ . Assuming @ and
@ = AZy pesults in:
)
- _ qga’r
a,J{z,t)=
ZH CAC 2k (33)

in which %« are the positive zeros of function *1{*)

‘We can therefore write [5]:

1 2,2
a=—2 [T 1 Gvar
Tz}t 70 2k
........ (34)
A =%
replacing £ by # and assuming Zn , Eq. 34
becomes:
_ iy | |
= J‘th.]l(z”t)dt
ke, Jolz)” "0 (35)

Applying the recurrence relation [6] into Eq. 35 and

0

assuming %0 =V gives:.

A = qaz JO(zn)

Yk, Tz, (n=12,3,.)

We may define function 7(%:%) as follows:

T(r,0) = A, +T"(r.0)
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a

- T(r,)= Z::G A, exp(— )Jd'(zk f;)

The following results are obtained from the above
equation:

lim_, T(r.0=4 - (39)
- 2

T = 2k=0Ak exp(— Z;; ;xt)
SO ¢ 14)

T, =T(0,0)=

Z::l A= 4 +2:;1Ak :
........ 4n

Ay =T, —Z;Ak =

2 _
Tfﬂ_{_qa = Jy(z,)
k 2, 2, 15(z,) (42

_ 3 A,
It can easily be seen that “~»=1 " is convergent and
furthermore,

~0<A0<2":;]A,l <T,

from Eq. 40 we have,

2
y oo ot
T(0,1)= ZH:GAn exp(m—z’; =)

Jo(z, D) <J,0) =€’ =1
. —

Ll

When 0<r<a, w have
therefore:
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znzw‘

T(r,0)= z::[;An exp(— )

az

Iz, D ST(rH<T,
a .

cen(43)

Tt can be observed that ("1 at the centre of fuel

eleme'nt (r=0), is a descending, while at the wall
(r= .a) ‘is an ascending function and at each time ¢,
we have:

T(a,H <A <T0,) -

Detailed descriptions of this subject covering key
issues such as radial power depression, burnup and
densification are available in [8] and [9].

-----

FUEL FIN
COOLANT

2. Numerical Solution Method

A finite difference conduction-convection computer
programme written in Fortran IV is designed to
calculate one-dimensional steady and transient
temperature distributions throughout a nuclear fuel
element composed of fuel, gap and clad regions as
well as the mean coolant temperature (Figure 1).
Stability and speed (less computation time) are the most
significant ¢riteria for this programme. Cylindrical
geometry, axial symmetry, single phase flow and radial

“space variation are the underlying assumptions.

Furthermote, the rod and coolant channel are divided
into an arbitrary number of axial divisions-(Figure 2).
Within each axial section, the heat generation is
assumed uniform in thé fuel region and heat transport

in the element is considered to occur in the radial

direction. The number of nodes in the fuel and the .
cladding may be specified arbitrarily. '
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FIGURE 1: Nodalisation of the Reactor Geoniétry Jor Thermal Analysis
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FIGURE 2: Illustration of Axial Divisions

The programme requires numerical input data
that specify the initial conditions and the heat
generation in the fuel, mass flow rate of the coolant
and the inlet temperature of the coolant as functions

of time. In addition, the user may specify constant '

values of thermal conductivity and heat transfer -

coefficients or provide tables, which the programme
uses to calculate variable propérties.

The programme is based on the Crank-
Nicolson scheme and considers the nodal points in the
middie of radial divisions (Figure 3). Thermal
properties vary from one radial section to another and
they are specified in a backward difference manner as
well as geometry factors, i.e., km for example indicates
conductivity between nodes » and (m—1),

The programme consists of six subroutines and
a main programme. All computational work is done in

FIGURE 3: Nodal Structure in Fuel Pin with Nomenclature
used in Computer Programme

the subroutines. The main programme serves to call
them in the proper sequence and print out results.

Subroutine 1 reads most of the input data,
initialises most variables and then prints out a
summary of the input. If a steady state initial
conditlon is specified, the main programme then
calls Subroutine 2, which calculates a steady state
temperatiure distribution based on input
heat genefatiox), coclant inlet temperature and constant
thetmal properties. At this point ,all initial conditions
for the calculation are known.

~ The first step in calculating temperatures for

the first time increment is to determine the outlet
coolant tcm_peratu're‘_: of ea}ch axial division. This is done
explicitly in Subroatine 3. The calculational procedure
is based on the method of Bender [7]. With the inlet
and outlet temperatures of each axial division known,
the mean coolant temperature and the nodal
temperatures in the fucl pin are combined in an implicit
{Crank-Nicolson) manner to solve for their values at
the next time step. Subroutine 4 performs this
calculation using forward elimination and backward
substitution (Thomas algorithm) to solve the
tridiagonal matrix setup for each axial section.
Subroutine 5 takes care of the pellet thermal expansion
and gap closure behaviour.

The main programme now writes out the
calculated temperature values, if required to do so, sets

-the values of the previous step equal to the present

70

ones, then begins the calculations for the next time
increment,
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3. Energy Equation for the Coolant
The governing equation for the coolant temperature
is:
CA dT, (,2) .
ot

pCAV M =2nrg"
0z

This is a lumped parameter formulation and considers

only the axial and temporal variation of T, (the mean
coolant temperature, independent of radius). It is solved
by assuming a steady state initial condition based on

initial heat flux from the fuel (4o") and initial flow
- velocity (Vo) This initial condition is stated as:

2wr q,"
T (0, 0,0)+- 4o, -
w(0,2)=T,(0,0) SCA V.
T.(0,0)+b2e 7
v i (46)
where,
_ 2nr
pCA

The boundary condition for the solution is a step
change in coolant inlet temperature,

T, (t0) =T,

Hence the initial and boundary conditions incorporate
- step changes in heat flux, inlet temperature and flow
velocity. The solution to Eq. 45 under the assumed
conditions, by Laplace transform method, is:

| Tw(O,-z)=Tw(0,z)+bV(%-—-%‘¢-)t (z< V1)

o

71

T0,2)=T (r(})-l-bf/ z (z>V)

Where Vt is the distance the perturbation has

propagated up the coolant channel from % = 020 T=0
If L is an axial step size at the outlet of an axial section
(z=L) Bgs. 48 becomes:

T,(t,L) = TW(O,L)+bV(q7-qVL)t (L<V§)

12

........ (49b)
where, according to Eq. 46,
T,(0,L) =T, (0,0)+bL qvi
or:
n V, ‘ ;
=—%{T,(0,L)~T,(0,0)]
L~ (50)

In addition, we know:

q"=h(T-T,)
coend(51)

Combining Egs. 50 and 51 with Egs. 49 and
defining: '

T, (H=T,tL)
TL_j =T,(t%)

'TLjJrl = TL(tj+1)
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At =g/ ¢/
C=2nrh = bk
pCA
A=L/V

a finite difference form for Egs. 49 is obtained:

1,/ =1, () -, NS
w (T -T, YAt (AT>1)

Bender [7] found that in actual practice, due to the
likelihood of non-linear temperature profiles in an

axial section, a better finite difference formulation

for Egs. 49, which includes a linear variation of inlet
temperature, would be:

2At

TLjH = TLj _(TLj+1 _TWJ)T-F |

w (T =T, YAt (At >D)

T M _p

T, =T,/ 2 i (AT L)+
T

w (T =T, VAt (At <d)

Eqs. 52 are the expressions used in the computer
programme to evaluate the outlet temperatures from
each axial section. To solve these equations, we need to

know T (temperature in the fuel element nodes) and

J .
T, {mean coolant temperature in each axial section)

which are evaluated from an implicitly formulated
enetgy balance on each node,

72

4, Energy Equation for a Node

The heat conduction equation is the basis for any finite
difference formulation, i.e., partial derivatives of the
differential equation are approximated by difference
expressions. In this programme, when four different
regions (fuel, gap, clad and coolant) are present, it
seems advantageous to start with the energy balance
equation, to make sure that energy is always conserved
in a strict sense especially at the boundaries when
the adjacent nodes belong to the non-homogeneous
regions. Looking at Figure 4, the energy balance on a
node can simply be expressed as:

Q('n + Qgeﬂ = Qom + QS!DJ'E ‘(54)

QHWV

-

) qom

- -
R TR L

FIGURE 4: Energy Balance on a Node

Each térm is expressed in terms of temperature
variations at adjacent points, the Crank-Nicolson
method will lead to:

T"i,:l - Tn{jll‘n + Tnfn — Tnf—l,n
an = _km,nAm(Az) ZAI‘m
Qgen = Bm 9n (Az)
JH il b i
Qs ==k 10 A1 (AZ) Lo = Tnn +Ti10 = T
’ 2Arm+§

' Tj+1-_ Tj
QLMH!=:pcuin(ﬁg)_lﬁﬂ___ﬁuL
At
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where,
A, =2n(RA),,
T
RA),, =-m—mil
(RA),, 2

B, =mi(RA)2, —~(RA)]

Substituting these results into Eq. 54 yields:

A kMﬂTJ+1

2AI’ mn-ln

m

e
+(Em

A, .k

n+ 4l m-i-ln)

247,

'Ak
+
2Ar,

m

_ Am+1km+ln TJ+1 —
2Ai‘ mtln

Jtl
n,n

ALk
B+ mmnTJun
q IAr m—1

m

A,k

m-H " m+ln )

2Ar,,,

At

Ak,
2Ar,

A,k

m+1Vmtln TJ

2 A?‘ m+Ln

This equation remains unchanged in form throughout
the fuel, gap and clad regions. At convective boundaries
(fuel— gap), gap-clad), the heat transfer conductance

rm Ak /280, i replaced by (hA,) where b is
the convective heat transfer coefficient. _

It should be noticed that there can be as many
nodal points in the clad region as desired and Eq. 55
supplies one equatlon for each point. The coolant
temperature has to satisfy the coolant energy equation
which is achieved by an energy balance on the cooland

node, -

73

T %= T +W(M)
W.n 2

J+
[I}CO n

rré‘On Twiﬂ_T j}

AT AT p g
o T T D=5 T T

Rearranging,

j+l

ICO

AC)) +[14 2200
2

w (A'c) A'c
2 x_
T J‘+w (At)

Wn

[7}(:0,, ““Tw:: _

-+
ni

AT |
,_H(TL:I Lnu1)+7b

Eq. 55 together with Eq. 57 form a tridiagonal matix,
because any equation contains three unknowns (based
on knowmg temperatures at time J ). The system of
simultaneous linear algebraic equations is solved using
Thomas algorithm to give the temperatures of the
system at the advanced time step.

5. Stabillty Analysis

_The time iricrement (AT) and the mesh size in axial

direction (AZ) should be selected in a way that the
following stability criterion is met:

SC=AtV/Az <1

“That means, the time 1ncrement (AT) must be equal

to or less than the transient time of the flow through
one axial section (Az/V),

In addition to Eq. 58, the general equipment
for an implicit finite chfference formulation {5] should
be satlsﬁed
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OAT < 1

rAr 2
...{59)

6. Results

A sample problem for the case of a typical U0, fuelled
fuel pin, involving a-step change in coolant inlet
temperature from the steady state value of 134.4°C
to 287.8°C is studied. There are 12 vertical divisions
and nine nodal locations in the fuel pin (six in the fuel
and three in the clad). The gap heat transfer coefficient
is given a constant value of 66.1 kW/m?K, but
conductivities and coolant heat transfer coefficients
are variable and tables of their values are read in,
The heat generation is constant (3.38 x 10 W/m?) all
over the rod and the mass flow rate is also constant
(0.425 kgs).

For the steady-state calculations, a vo,
thermal conductivity of 40.3 W/mK is used, as is 262
W/mK for the clad and 661 kW/m?K for the coolant
heat transfer coefficient.

The height of the core is 3.6576 m, making
each division 0.3048 m. The fuel radius is 4.66 mm,
followed by a gap of 0.1646 mm. The clad outer
radius is'5.36 min and the coolant channel is 8.3 mm
in radius,

Table 1 indicates the programme’s predictions
for fuel centre line, T(1,N,1), fuel outer surface,
‘T(EN,1), and for the purpose of shortening; only one
selected nodal point in the fuel, T(3,N,1), as wellas
clad inner surface, TACIN,1), clad outer surface,
T(ICO,N,1), and the coolant, T, (N, 1), temperatures in
steady state condition at 12 different axial divisions.

Table 2 indicates the programme’s predictions
for fuel center line, T(1,N,8), fuel outer surface,
T(IF,N,8), and for the purpose of shortening, only
one selected nodal point in the fuel, T(3,N.8), as well
as, clad inner surface, T(ICI,N,8), clad outer surface,

T(KCO,N,8), and the coolant, T (N,8), temperatures '

after eight time increments at 12 different axial
divisions.

- 7. Discussion

A finjte difference conduction-convection computer
programme is developed to predict one-dimensional
steady and transient temperature profiles throughout
a nuclear fuel element composed of fuel, gap and
clad regions as well as the mean coolant temperature.
The programme takes advantage of the implicit Crank-

74

Nicolson scheme and energy balance approach.
Thermal properties are temperature dependent and
nodal points are in the middle of radial divisions.
The thickness of radial divisions is not uniform and
the number of nodes in clad is unlimited. The stability
requirements are defined by Eqs. 58 and 59. The CPU
for standard priority to run the programme for steady
state and eight time increments is about 8 seconds.

The order of error is:

O(A) + O(AxH) +error in
q

The effect of time increment on coolant outlet
temperature is studied using coolant inlet temperature
as the transient. Coolant inlet temperature is subjected
to a step change and the programme is run with two'
different time increments. Figure 5 shows when
the criteria of Eq. 58 is violated, ATV /Az2=4, e
programme does not properly handle the propagation
of the perturbation up the channel, and the results
become inaccurate.

The effect of time increment on the

-maximum fuel and clad temperatures is studied when

coolant mass flow rate and fuel heat generation are
the transients. LOCA-like coolant mass flow rate

(Figure 6) and fuel heat generation (Figure 7) are

input variables, system nodal temperature variations
are presented in Figure 8.

The effect of time increment on coolant
outlet temperature is studied when coolant inlet
temperature is the transient. Coolant inlet temperature
is subjected to a linear ramp change rather than a step
change which was deseribed before. Figure 9 shows

- the coolant outlet

temperature at time 0.2 s when Eq. 58 is violated.
The same analysis is done at time 0.4 s in Figure
10.

8. Conclusions

The transient thermal response of a reactor fuel
rod and coolant channel to reactivity and flow
perturbations are studied numerically. Large and
rapid transients are handled in the minimum
computation time, while stability and speed are
greatly appreciated.

The gap heat transfer coefficient is
either constant or supplied by the programme.
The programme encompasses geometries ranging
from an open gap with partial fuel-to-cladding
contact to a closed gap with solid-to-solid contact.
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TABLE 1: Computed Results evaluated by the Prdgramme in Steady State Condition

662.6"

T{,N,0) TBNO  TICING  T(CONO)  T,N0) TA.NO) N
8354 623 ' 3045 165.6" 1485 136.4 1 0
838.2 6259 307.3 1684 "1_51.3 T30z 2 0
841 628.7 - 3102 171.3 154.1 ' 142.1'- 3 0
8439 631.5 313 1741 157 1448 4 0
8467 6343 3158 176.9 1508 | 1477 5 0
849.5 6372 318.6 179.8 162.6 150.6 6 0
852.4 640 3215 182.6 1665 1534 7 o
855.2 642.8 324.3 185.4 168.3 156.2 8 0
858 645.7 327.1 1882 1711 159 9 0
8608 648.5 1830 '4 191.1 173.9 1619 10 0
863.7 651.3. 3328 1939 17687 647 ” 0
866.5 654.1 335.6- 196.7 1796 167.5 12 0

T;\iSLE 2: Computed Results evaluated by the Programme after Eight Time Increments

T(1,N,8) T(3N,8) TUCING)  TICONS)  T,N8) ‘T(1.,N,8) N
" 838 631.2 367.6 295.8 - 2805 288.2 1 02016
840.8 6339 3542 273.3 276.5. 284.2 2 0.2016
8437 636.7 342.9 2313 238.2 2527 3 0.2016
846.5 16396 3386 198.4 191.2 197.2 4 0.2016
8494 - 642.5 339.4 187.7 166.8° 616 5 0.2016
852.2 654.3 341.8 1878 1626 152.9 6 02016
855.1 648.8- 344.4 1903 165 154.1 7 0.2016
8579 651.6 347.1 193 167.2 1568 8 02016
1860.8° 654 3497 195.8 170 159.6 9 0.2016
. 863.6 656.8 352.4 198.5 172.9 1624 10 0.2016
866.5 659.7 355 201.3 175.7 165.3 11 0.2016
869.3 357.7 - 204 178.5 168.1 12 0.2016
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' z (m)

FIGURE 5: Effect of Time Increment on Coolant Outlet Temperature when
Coolant Inlet Temperature is subjected to a § tep Change

* Time dsi

FIGURE 6: Coolant Mass Flow Raie as a Fi unctign of Time {Inpiit Variable)

“Time {s)
FIGURE 7: Fuel Heat Generation as a Function of Time (Input Variable)
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Time (s}

FIGURE 8: Maximum Fuel and Clad Temperatures for Rapid
Variations in Mass Flow Rate and Heat Generation

B 4

FIGURE 9: Effect of Time Increment on Coolant Outlet Temperature when Coolant
Inlet Temperature is subjected to a Ramp Change (0.2 5}

[E80=1a"8c5 SC=3 |

% (m}

FIGURE 1&: Maximum Fuel and Clad Temperatures for Rapid
Variations in Mass Flow Rate and Heat Generation
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The radial temperature distributions of the
system are calculated in a given time increment, in
two distinct steps. First, the outlet coolant temperatures
(mean, independent of radius) for each axial section
are calculated using a fully explicit method. Then, the-
radial node temperatures are computed by an implicit
formulation using the previous results as input.

The coolant outlet temperature is sensitive
to the variations of the coolant inlet temperature
with respect to time. The maximum fuel and clad
temperatures are also sensitive to the variations of mass
flow rate and heat generation with respect to time.

Nomenclature

Coolant flow area

Cross section area

Fuel radins

Coolant specific heat
Heat transfer coefficient
Fuel thermal conductivity
Axial division height
Rate of heat generation
Clad inner radius

Heat flux from the fuel

Tnitial heat flux from the fuel _
Rate of heat generation per unit volume
Average radius

Stability criterion _ :
Dimensionless radial distance (r/a)

L RS

o]
)

Initial temperature at fuel center

Nt eno

Mean coolant temperature

Q

Inside clad temperature

o Bl
3

Outside clad temperature
Intlet coolant temperature

~ .
=

~
=

Outside fuel temperature

Outlet coolant temperature
Coolant flow velocity

Initial flow velocity

Thermal diffusivity

Time needed for coolant to move one axial
section (L/V)

AT Time increment

P Coolant density

e <M
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