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Tunable PuIse-Shapmg Wave Dlgltal

Filter Networks

S.A. Samad'

This paper describes the design of Wave Digital Filtérs (WDFs) that perform basic
functions of classical analogue pulse-shaping networks i in radiation spectroscopy.

The f‘e&ultmgWDF structures realise CR-RC type and semi-Gaussian shaping of

/e

.digitised, preamplzf er signals. The basic section of the WDF is derived from a
res:snvely terminated analogue. netivork and the same configuration:is used for the
whole structure giving a modular design.-Each section of the WDF has a single
tunable multiplier coefficient that controls the parameters of the output pulse..

In coniparison to other digital filters, WDFs have the advantages of highly
todular, structures, minimum tunable coefficients and direct correspondence with
analogue pulse-shapmg network parameters
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1. Introduction

Analogue filters are traditionally used for pulsc-_ '
‘processing in radiation spectroscopy systems. Also

known as amplifiers, these circuits are useful due to
the frequency selective properties that mould-and shape
the pulsés of the preamplifier. The required
shaping may. involve a simple shorfening of the long
tail that characterises many preamplifier signals and
" reducing its noise content to aflow fof a more precise
determination of the amplitude. On the other hand, the

shaping may require more complex operations to obtain -

the cusp, Gaussian or triangular shapes. Combinations

of passive low order filters are found to be practical in-

providing basic CR-RC type and semi- Gaussian
shaping while active filters are used for semi-triangular
~ shaping. The cusp and true Gaussian shaping is not
physically realisable, while true triangular sﬁaping ig
realisable but not in a cost-effective way [1]-[2].
‘More recently, digital systems were introduced
as an alternative fo classical analogue spectroscopy
- systems [3]-[4]. These systems offer the advantages
~ as other digital systems over their analogue
‘counterparts in terms of.design flexibility and
rehabihty Wlth}n the digital systems digital filters are

used to shape the samplcd and dlgltlsed prcamphﬁer\_
pulses. These filters are either Finite Impulse Response-
(FIR) or Infinite Impulse Response (HR) having the
required transfer charactenstlcs [51-[71. However,
these realisations use structures with non-optimum
number of coefficients. In order to change
the transfer function of a filter section, modlﬁcatlons
to all the coefficients are required. »

. Wave Digital Filters (WDFs) are IR filters as
the transfer function is, denved from passive analogue
filters using a bilinear transformation. There are many
types of WDFs based on the analogue filters that are
used as"the reference, c.g., ladder, lattice and
unit element WDFs, In addltion to the transfer function,

aWDF mimics the structu:re of the analogue reference
filter from which it is derived. The WDF retains the
good sensitivity properties of a well-designed analogue
filter which results in: structures ‘with reduced
coefficient wordlength rcquuements “good dynarmc
range and excellent stability. WDFs also have the
power complementary transfer function” property.
The same structure can be used to realise the lowpass

~ and highpass, or bandpass and bandstop, responses,

dependmg on the filter type [_8]—[9] Although IIR
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filters have non-linear phase for WDFs that are derived
from classical Butterworth and Chebyshev analogue
filters, the phase response is almost linear throughout
the passband. For applications that do not require
perfect linear phase response, these filters are ideal
since they are more efficient than FIR filters. TIR filters
require fewer multiplying coefficxents t6 implement

than IIR filters for tht_: same magnitude response.

specifications.

This paper will show the design of WDFs that
are derived from passive ladder analogue pulse-shaping
filters. The WDF networks are configured from
established first order sections but arranged in a manner
similar to analogue pulse-shaping networks.
In addition, the coefficients and responses of the WDF
are derived in terms of the digital equivalent of the
analogue domain pulse-shaping parameters, The
advantages of this design include obtaining highly
modular structures, having direct correspondence
between the design parameters in both the analogue
and digital domains, and minimising the number of
digital filter coefficients requiremerit. The WDFs
obtained for CR-RC type and semi-Gayssian shaping
are also tunable with a single multiplier coefficient for
each of the modular components.

2. CR-RC Pulse-Shaping Network

Pulse-shaping is required to process a train of pulses
- produced by a preamplifier of a radiation dctec__tor
The pulses from the preamplifier tend to overlap one
another due to the pulse-long duration and short, sharp
peak. The term CR-RC shaping refers to the use of
passive resistor capacitor networks to carry out a
~ desired alteration in the pulse shape, Traditional CR-
'RC pulse-shaping, analogue networks are low-pass and
high-pass filters also known as integrators and
differentiators, respectively. The shaping shortens the
pulse and changes its peak amplitude.

In a resistor capacitor filter network, the

critical parameter is the time constant given'by

T =RC (1

........

where R is the resistance and C, the capacitance of |

the circuit. The cut-off frequency of the filter is related
to the time constant according to

Q= Q)

For a basic CR differpntiatoi‘ network as shown‘in,
Figure 1, the equation that describes its response to a
unit step input is

r=eTu® 3)
c
+o—|
Vi R | Vo
- & : 9-

FIGURE 1: CR Differentiator Network

For a basic RC integrator network shown in Figure 2,
the unit step response is

B = (- u(t) Y
R

+ @—A M e+

" L.

FIGURE 2: RC Integrator Network

Vi

A CR-RC network is obtained with the two networks
above using a suitable impedance isolation network
so that neither network influences the operation of
the other [2]. An ideal isolation network is a unity
gain amplifier with infinite input impedance and zero
output impedance. For the CR-RC network shown in

- Figure 3, the unit step response is

T _ _
1 (e ﬁ‘!l —e -ﬂt'z)u(f)
Ti=Ts e (5)
where "1 and T2 are the time constants of the
differentiating and integrating networks, respectively.
If the time constants are of equal value, T, the unit

h(f)y=

. step response is

(D) =(i }“”u(r)
T
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FIGURE 3: CR-RC Shaping Network

Varying unequal time constants changes the maximum
amplitude of the output signal and the time that it
occurs with respect to the relative values of the time
constants, When both time constants are equal to T,
the maximum output amplitude is

R() =€ )

occurring at the instance, called the peak time,

T =T (8)
Basic CR-RC shaping produces non-symmetrical
pulses. Better symmetry is achieved by cascading a
single CR differentiation network with several stages
of RC integrators, with the differentiator and integrator
networks having equal time constants. This results in
semi-Gaussian shaping. One of the advantages of the
semi-Gaussian pulse is that the more symmetric shape
results in a faster return to baseline, thereby reducing
pulse pile-up [2]. _

For a differentiator followed by p sections of
the RC integrator network, the step response is

h(?) :(1],, Loty

A more symmetrical shape is achieved at the expense
of delayed peak time and reduced maximum amplitude.
The time required for the shaped pulse to reach its
maximum is

T peat = PT ern(10)

while the maximum amplitude is

h(fymax = p” l‘e'P
P re(11)

The time constants can be adjusted to give similar
peak time for both the p lowpass section network and
the p=1 lowpass section. This can be achieved by
scaling the time constants of all the sections of the
p lowpass network, including the highpass section,
according to '

p = Tp=1 'p

The choice for the time constant of the shaping
networks depends en the charge collecting time of the
detector used. The time constant is often selected to
optiniisp the performance of the shaper by optimising
the signal to noise ratio [1]. Thus, by making the time
constant variable, an optintum performance can be
achieved depending on the circumstance. For analogue
filters, changing the time constant requires_ché.nging
the analogue components according to (1), For digital
filters, this is achieved by varying the coefficient
values. : '

3. WODF Elements and Adaptors.

The i’elqtionship between a WDF, operating at a
sampling rate F=1/T, and its reference analogue filter
is established in the frequency domain by the means
of the bilinear transformation

e

T\z+1

where s is the reference analogue domain and z the
digital domain. The relationship between the analog
frequency €2 on the s plane and the digital frequency
@ on the z plane is

2
= tan(lo /2
T (@/2)

Direct realisation of the digital filter structure obtained
with (13) will produce signal flow-graphs with
delay-free loops. To overcome this, WDFs use wave
network '

characterisation te obtain realisable digital
structures.

Each element in the analogue domain is
represented as a classical port characterised by a
current, i, voltage, v, and port resistance, R. The signals
going into a port is known as the incident wave, a, and
the signal going out of the port is the reflected wave,
b. The equations that relate these parameters are {8]
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a=v+iR
b=v-iR

Each port is represented by the wave quantities and a
port resistance. The incident and reflected waves are
the signal variables of WDFs. The port resistance value
depends on the analogue elements that it models and
these parameters are shown in Figure 4.

~To form a WDF structure, connections
between WDF elements are required. This is

accomplished using adaptors that connect the elements
in a_ccordance to Kirchoff’s laws, thus making the
structures realisable. The adaptors contain the
multipliers and adders of the WDF. Adaptors are
categorised according to the number of ports that they
connect. In additionl' adaptors are classified according

‘to the type of connection that they realise, either series

or parallel, with the exception of the two-port adaptor
that realises both the series and paralle] connections,
The most ¢ommon adaptors are the two-port adaptor,

. three-port series and parallel adaptors.

ELEMENT PORT RESISTANCE (R} WDF EQUIVALENT
b
C 0—>—|
| T/2C R T
Capacitor .
a
L f—i——-—l .
: 21T - S
Inductor ' ‘ -
-1
AR : B
® a
_ *——<4—D9o
o— ¢ R
N : R _
Resistor *—p—>D
b
R
A AN - .a ‘
e &—<4—De¢
J——"Y ® > D
, b
Resistive source

FIGURE 4: WDF Equivalence of Analogue Elements
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Adaptor

Signal-fiow Diagram

FIGURE 5: WDF 3-Port Adaptors wi‘tk_Single Multiplier

The WDFs discussed in this paper use three-
port series and parallel adaptors realised in an efficient
manner requiring only a single muitiplier per adaptor.
This is obtained when two of the ports are equal in
value. These adaptors along with their signal flow
graphs are shown in Figure 5.

The equations that describe the three-port
series adaptor, with R =R, are [8]

b, =a -m(a +a,+a,)

........ (16a)
‘b,=a,-m(a, +a,+a) .(16b)
b,=-(b, +b,+a+a,+a) ... (165:)

where the coefficient of the adaptor is

m= 2K
2R +R,

The equations that desldribe‘ the three-port parallel
adaptor are

b,=b,+(a,-3)

........ (18a)
b2=‘b3+(a3"a2).

e (18b)

b1= a, - m(as‘ - al_) - m(as - az)

........ (18c)

where
_2G,
m=——im
2G;+G,
......... (19)

with G being the conductance of the port; G-= I/R.
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4. Pulse-Shaping WDF Networks

4.1  Equivalent Filter Networks
The basic differentiator network shown in Figure 1
and the integrator network shown in Figure 2 can be
realised with equivalent WDF networks. An efficient
realisation is obtained by using lossless analogue filters
terminated by equal value resistive source and load.
These filters can be designed to have the same function
as the pulse-shaping networks. The analogue network
and its WDF equivalent is ‘shown in Figure 6.

The WDF network is characterised by the
scattering matrix [8] ’

. Sll SlZ
S =
S21 Szz ........ (20)
where
al'
= ]
b0 (213)
S = 4
B (21b)
R,
1 . I[ Iz
+ _ Anslogue *
V: Vl ﬁItcr VZ_ RfR;
(2)
Ay a—p— —g—DA;
WDF
R, R=R;
B5,0— —>—DB;
(b}

FIGURE 6: (a) Analogue Network and
{b) WDF Equivalent Network

a

Sy = 2
lfa]=0 ........ (216)
a

Szz':b 2 o
2la=0 .(21(1)

For WDFs derived from lossiess analogue networks,
STS*=E

where E is thé unit matrix. This results in a WDF
network having a lowpass transfer function, 21> and

a highpass transfer funf:tion, SH_,. which. are power

complementary, where

15?1’2 + 51112 =1 +reeeen23)

The WDF can realise both the highpdss and lowpass
resporises using the same structure.

A first order Butterworth filter is shown in
Figure 7. Although other types of analogue filters can
be used, such as Chebyshev or Elliptic, Butterworth
filters have the advantage of having maximalily-flat -
response in the passband. The values of the analogue
components normalised to the cut-off frequency
1 rad/sec are R, = 12 and L. = 2H. To change the cut-
off frequency to a frequency Qc requircs scaling the
inductance according to

c woneen(24)

To connect the WDF equivqleﬁtsi of these elements.in

‘the ladder configuration, a three-port series adaptor is

required. Converting these values to the port resistance

FIGURE 7: First Order Butterworth Filter
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values, with ports 1 and 2 representing the resistive
terminations and port 3 as the inductor, and from (17)
results in

QT

m=t —=—1| .
QT+2

For pulse-shaping networks considered in this paper,

the coefﬁcmnt can be wr1tten in terms of the time
'constant as

r
m=
[T+2‘c}

‘The coefficient of the adaptor is related to the cut-
" off frequency and therefore the time constant of the
analogue network. For the purpose of digital, pulse-
shaping network, the coefficient, however, is more
conveniently expressed in terms of the dlgltai cut-off
frequency or time constant From (14) and (25), the
coefﬁc1ent is

e (252)

_ tan(w, /2)
tan(w, /2)+1 (262)
or
__tan(1/21,)
tan(l/2tp)+1 (26b)

where the %p is defined as the digital time constant of
the WDF with

Tp=—

@, e 2N

The series adaptor realisation of the first order WDFis
shown in Figure 8. The input signal is fed into the first

adaptor, while the second port input is set to zero. The

WDF has the highpass and lowpass responses as the
output signal of the first and second port; respectively,
while the third port represents the induetor.

An alternative WDF realisation using a
parallel adaptor is obtained from a first order network
consisting of a capacitor connected in parallel with
the resistors. This is the dual of the network shown
in Figure 7. However, since both types of networks
realise the same transfer function, it can be shown that
the resulting WDF has the same transfer function and
coefficient value.

42  CR-RC WDF Pulse-Shaping Network
To realise CR-RC- type shaping using. WDFs, a
cascade of two first order networks are required,
representing the differentiator and integrator sections.
The connection between the first section performlng the
high-pass filtering operation and the second section
perforrmng the lowpass filtering operat1on isshownin
Figare 9 for series adaptors.

The step response of the WDE section is the
sampled version of its analogue counterpart. Usmg the
digital time constart as defined in (27), the highpass
WDF response to a step input is -

h(n)=¢ "™ u(n)

..(28)
where 7 is the time index of the sampled signal.
The lowpass WDF step response is
h(n)=(1—€ """ Yu(n) (29)

The step response for the resulting WDF network
shown in Figure 9 is

h(n)_ (e—ﬂf'!Dl _e—ﬂhoz)u(n)
Tp 'cm '
........ (30)
I 32.0
' R; | — O IR~R,
byzhighpass b, = lowpass
output output

FIGURE 8: First Ordeer WDF with Series Adaptor
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where Tp1 and Tp2 are: the digital time constants of
the highpass and lowpass WDFs, respectively. -
If the time constant for both the lowpass and

highpass networks is equal to T, the step response is

FIGURE 9: Highpass and Lowpass WDF Shaping Network

h(n)=(1 }‘""f?u(n)
Tp

The response of the WDF is dependent on the digital
 time constant and hence multiplying coefficient, m.
The effects of varying m for the WDF rietworks are-
shown in Figure.10 for different values of m for the
highpass and lowpass sections. Similar to the analogue

U.S 1 1] T 1 1 1
D.45¢ n 0 : myp=0.0729596, my=0.1367287 ]
) o ,7 _ |
04F i 1 o : myp=my»=0.0729596 i
, | lg |
035} <>m)("c>5 0 : myp=0.1367287, myy=0.0729596 ]
1 GHa T.
@ . 3
B 0 |etli h¢
202%5r (16 & o J
'{% ’ ¢ q}{> m o)
02 B ) i {} O -
P 11t 119 |
015F ¢ sl ol e ]
R 3 0
: L 6]
01F 1 h Rir) §
PolIT
| ¥4
0.05} 144
0 - .
0 5 10 15 20
* Time index.n

FIGURE 10: Varying'rhe- Coefficients of the WDF Highpass ( m,.) and Lowpass { rﬁm)
Sections shifts.the Maximum Amplitude and Peak Time

eeee(31)
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FIGURE 11: Varying the Coefficients of Fqual Value iowPass and Highpass Sections
shifts the Peak Time while maintaining the Maximum Amplitude

network, the peak time and maximum amplitude of -

the output pulse depends on the rclafive values of the
time constants,

~ Figure 11 shows the effects of varymg the
coefficient on the output pulses for two different cases
with the lowpass and highpass sections havmg the same
multiplying coefficient value. The maximum amplitude
is as given in (7) while the peak time varies according
to the digital time constant

Tpeak:TD

This peak will only coincide with a sampling index n
if the cut-off frequency is selected such as (27) is an’
intsger. Otherwise, the peak will occur in between two
sampling instances.

Several configurations for the WDF network
are possible. The order of the lowpass and highpass
sections can be interchanged due to the linearity
property of digital filters. An equivalent realisation with
three-port parallel adaptors will produce similar

- 4.3

shaping. The adaptors can alse be of different types,
series in combination with parallel, giving a more
complex realisation, Another alternative realisation of
the WDF netwotk is by usmg resonant second order
circuit as the reference network. The resulting WDF
will have two different coefficients that control the
bandwidth and centre frequency [8]. However, simple
cascading of equivalent lowpass sections to obtain
semi-Gaussian shaping is not realisable with second
order WDI? sections.

Semi-Gaussian WDF

Pulse-Shaping Neilworks
To realise semi-Gaussian shaping, a cascade of the

- lowpass sections is required following the highpass
section. This configuration is shown in Figure 12,
For p lowpass sections, the step response is
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p lowpass sections.

FIGURE 12: Semi-Gaussian Pulse-Shapiﬁ;g WDF Network

h(n) =(—”—T le*"",vz,t(n)
T, ) P

As with the analogue network, inbreasing P has the
effect of decreasing the maximum amplitude according
to (11). The peak time is.

T peak .= P '!_:D .
The effect of increasing p on the peak time and
maximum amplitude is shown in Figure 13 with the
same coefficient value for all seciiion‘s. As with the .

lowpass and highpass shaping network, ﬁ\IQ peak will

- only coincide with a sampling index # if the cut-off
frequency is selected such as (27) is an integer.

The delay of the p lowpass sections network

can be shortened to be equivalent to a delay T
‘obtained using a single low-pass section by scaling all
the time constants according to ‘

Tp

P

:tDM Ip

0.2
0181

0.1&6

014

0.12

o
—

Amplitude
Q2
&

o
5

0.04|

0.02

myp =mgp = 0.1367287
T ooip=
o:p=6 . 1
0 p=8 :

20

30

. Time index,n

FfGURE_13: Semi-Gaussian Shaping is obtained using p WDF Lowpass
Sections with the Same Coefficient for All Sections

10
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FIGURE 14: Semi-Gaussian Shapmg with Scaled Coefficients sh:ﬁs the Peak Time of p= — 4
Lowpass WDF Secttons to equal that obtained with p = i Lowpass Section

This is equivalent to scaling the cut-off frequency of
~ the p lowpass sections WDF network and the highpass
section according to

o, =po,

The effects of changing the cut-off frequency by tuning
the coefficient is shown in Figure 14 comparing p =4
and p = I WDF networks having the same peak time.

5. Coefficient Comparison
Conventional TR filters can be used to realise digital
pulse-shaping networks using a cascade of first order

sections. For an N order filter, the number of

coéfficients required for a canonic realisation with
- respect to the number of delays is 2N+1. If an FIR
filter is used, more coefficients are required to meect
the same response as an IIR filter [10]. Hence, for a

first order filter, at least three coefficients are required.

- The WDF realisation thus réquires 1/3 the
number of coefficients for each filter section when
‘compared to conventional IIR filters. The advantage

11

increases when several lowpass sections are uscd To
obtain the seémi-Gaussian shape. In addition, the IR
and FIR filters require different coefficient values and
structures to realise highpass and lowpass filters.
This is unlike WDFs where the same adaptor is used
to realise both the lowpass and highpass sections.

With all the digital filters, an additional
coefficient can be-added to the output of the filter
structure to scale the amplitude of the output pulses.
The value of the coefficient can be set to the reciprocal
of the maximum amplitude value for the pulses as given
in (7) and (11) for the case of CR-RC type and semi-
Gaussian shaping, respectively.

6. Conclusion

This paper has shown the design of pulse shapmg WDF
networks. The correspondence between the multiplier
coefficient and the analogue and digital domain time
constants are shown along with the output responses.
By arranging the first order WDF sections according
to analogue filter networks, CR-RC type and semi-
Gaussian shaping are obtained. The WDF networks
are highly modular as the same type of adaptor is used
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to realise the highpass and lowpass responses.

' A minimum number of coefficients is required when
compared to other types of digital filter networks.
Each adaptor has a single multiplier that is tunable to
vary both the peak time and amplitude of the output
pulses. A scaling coefficient can be used at the output
of the pulse-shaping WDF networks to-adjust the
_amplitude altered by the digital filtering operations.
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