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Abstract: The paper presents a hybrid (Wind–Diesel-Fuel Cell-Battery) renewable energy scheme for island/village 
electricity utilisation. The proposed hybrid renewable energy scheme with Flexible AC Transmission System (FACTS) 
stabilisation devices ensures efficient energy utilisation and robusts low impact interface of hybrid wind, diesel and the 
fuel cell. The stand-by diesel generator set is mainly used to balance the steady state load demand according to 
dynamic power changes to minimise the diesel fuel consumption. The stochastic nature of the wind energy system 
requires new FACTS stabilisation devices to maximise the wind energy utilisation. The paper also presents a 
application of soft computing self regulating Multi Objective Genetic Algorithm (MOGA) and Particle Swarm 
Optimisation (MOPSO) techniques to dynamically select optimal control gains for the 6-pulse rectifier interface 
converter, additional FACTS Dynamic Filter/Capacitor Compensation (DFC) on the AC side and Green Power Filter 
Compensator (GPFC) on the DC side schemes using dynamic self regulating objective functions based on minimal 
error tracking. A tri-loop error driven dynamic time-de-scaled controller is used to adjust the switching PWM 
sequence of the DFC on the AC side filter compensator and the GPFC for stabilisation and energy efficiency. Power 
factor correction and power quality are improved under different excursions and operating conditions, including load 
changes disturbances, faults and FC/wind velocity excursions. The multi-objective search and optimisation technique 
are used to find the optimal dynamic control gain settings that minimise the selective number of objective functions 
based on control system absolute errors. 

Keywords: Diesel-Hybrid, Fuel Cell, Backup Battery, Flexible AC Transmission System (FACTS), Multi-Objective 
Particle Swarm Optimisation (MOPSO), Multi-Objective Genetic Algorithm (MOGA) 

 
1.  Introduction 
The continuous and pressing need to utilise renewable 
energy and green energy sources (such as wind, solar, 
wave, tidal, fuel cell, biogas, small hydro, and 
geothermal) is motivated by both economic viability and 
environmental concerns. The continued reliance on 
depleting fossil fuels sources with increasing rate of 
green house gases and hydrocarbon emissions is causing 
a strategic and basic shift to energy conservation, clean 
fuel replacement and renewable energy utilisation of 
wind and photovoltaic as environmentally safe and 
economically viable alternatives (Billinton and Gao, 
2008, Hu et al., 2008). Photovoltaic and wind generation 
schemes are leading viable choices for large-scale and 
small-scale micro-grid electrical energy generation 
(Strachan and Jovcic, 2008).  

This paper presents a standalone hybrid renewable 
energy utilisation that uses a combination of wind 
turbine, fuel cell and a diesel generator with a DC 

battery backup in a typical standalone scheme capacity 
usually ranging in small and midscale sizes from 15 KW 
to 1500 KW (Hilloowala and Sharaf, 1994, 1996). 
Typical use and applications include electricity supply to 
remote (isolated Islands/villages, heating, water 
pumping, ventilation and air conditioning systems. 

For this standalone wind energy scheme, the 
induction generator terminal voltage and frequency are 
totally dependent on the rotor speed, shunt capacitance 
size and the electrical load equivalent impedance, which 
are subject to both wind gusting and dynamic electric 
load excursion/changing conditions (Lang et al., 2008). 
Such low-cost green energy scheme is usually used for 
combined passive/motorised loads such as water 
pumps/ventilation and air circulation/air conditioning 
loads, which are generally insensitive to small frequency 
variations (Singh et al., 2007). The serious voltage 
instability and possible loss of excitation problem is 
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usually a byproduct of load excursions/changes and 
wind velocity gusting conditions (Pan et al., 2008).  

The diesel driven synchronous generator provided a 
smooth AC output, whereas the output power of the 
wind turbine generation depended on the wind velocity. 
The fuel cell was added to help stabilise power flow. 
The voltage stabilisation and regulation is dependent 
upon self-excitation and loading condition of the 
induction generator and the capacitors available in the 
power grid (Muljadi et al., 2004). The need for voltage 
and reactive power requires the use of dynamic 
modulated reactive compensation systems (Sugiarto and 
Tan, 2007; Munteanu et al., 2008). This can be achieved 
by using the DC and AC side dynamic filter capacitor 
compensation schemes of Flexible AC Transmission 
System (FACTS) and switched using a flexible dynamic 
multi-loop error self-adjusting controller to ensure AC 
and DC side voltage stability for the hybrid renewable 
energy using wind turbine, fuel cell (FC), diesel 
generator and battery backup.  

Depending on wind velocity and rate of change in 
kinetic energy, fluctuations in the Induction Generator 
output voltage and frequency can cause severe generator 
voltage instability and loss of excitation and shutdowns. 
Severe power quality issues, such as voltage waveform 
RMS-value distortions and variations can reduce energy 
utilisation (Pan et al., 2008). Excessive inrush reactive 
currents can also increase distribution feeder active and 
reactive losses reduce system power factor and cause 
large variations in bus voltages.  

The paper presents two FACTS devices and Multi-
Regulation control strategies for harmonic mitigation 
using modulated power filter to improve power factor, 
energy utilisation and power quality of the hybrid AC-
DC renewable energy scheme. The AC and DC side 
FACTS-based power filter and switched capacitor 
compensation devices are dynamically adjusted and 
controlled using Multi-Objective Particle Swarm 
Optimisation (MOPSO) and Multi-Objective Genetic 
Algorithm (MOGA) techniques. The degree of reactive 
power compensation is controlled by the duty ratio of 
the PWM switching.  

The FACTS AC and DC dynamic power filter 
compensators are expected to provide (Sharaf et al., 
2007): 

- Improved power factor (at the generator and load 
buses); 

- Limited dynamic and transient over voltages and 
current inrush conditions; 

- Enhanced damping of transient conditions; and 
- Efficient energy utilisation 

Several AI-related/soft computing techniques (such 
as Genetic Algorithms (GA)) can be used to solve this 
optimisation problem. GA is an iterative search 
algorithm based on natural selection and genetic 
mechanism. However, GA is very fussy; it contains 
selection, copy, crossover and mutation scenarios and so 
on. Furthermore, the process of coding and decoding not 

only impacts precision, but also increases the complexity 
of the genetic algorithm. Particle swarm optimisation 
(PSO) is an emerging intelligence which was flexible 
optimisation algorithm proposed in 1995 (Sharaf et al., 
2007).  

There are many common characteristics between 
PSO and GA. First, they are flexible optimisation 
technologies. Second, they all have strong universal 
property independent of any gradient information. 
However, PSO is much simpler than GA, and its 
operation is more convenient, without selection, copy, 
and crossover. Switched/Modulated power filters are 
mainly used to provide measured filtering in addition to 
avoiding tuning problems associated with the use of 
passive power filters. The modulated power filter and 
compensators are controlled by the on-off timing 
sequence of switching pulses that are generated by the 
error driven dynamic controller.  

The AC and DC FACTS devices and the associated 
multi-regulator Controllers is an effective low-cost 
energy utilisation and power quality enhancement tool 
for reducing dynamic voltage and current transients and 
load excursions. In this paper, the effectiveness and 
validation of the proposed FACTS stabilisation schemes 
for both power quality improvement and power factor 
correction is fully validated with PSO/GA online 
dynamic gain scheduling using MATLAB/Simulink 
software environment of the unified wind energy 
conversion scheme utilising an induction generator. 
 
2. Single Objective Optimisation (SOO) Using GA 

and PSO 
Genetic algorithm is a random search and optimisation 
method inspired by Darwin’s reproduction and survival 
of the fittest individual (Davis, 1991). This algorithm 
looks for the fittest individual from a set of candidate 
solutions called population. The population is exposed to 
crossover, mutation and selection operators to find the 
fittest individual. The fitness function assesses the 
quality of each individual in evaluation process. The 
selection operator ensures the fittest individuals for the 
next generation. The crossover and mutation operators 
are used for variety of populations.  

The steps of genetic algorithm are described below: 
1) [Start] Generate random population of n 

chromosomes (suitable solutions for the problem).  
2) [Fitness] Evaluate the fitness f(x) of each 

chromosome x in the population. 
3) [New population] Create a new population by 

repeating following steps until the new population 
is complete. 
a) [Selection] Select two parent chromosomes 

from a population according to their fitness 
(the better fitness, the bigger chance to be 
selected). 

b) [Crossover] With a crossover probability 
cross over the parents to form a new 
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offspring (children). If no crossover was 
performed, offspring is an exact copy of 
parents.  

c) [Mutation] With a mutation probability 
mutate new offspring at each locus (position 
in chromosome).  

d) [Accepting] Place new offspring in a new 
population.  

4) [Replace] Use new generated population for a 
further run of algorithm. 

5) [Test] If the end condition is satisfied, stop, and 
return the best solution in current population  

6) [Loop] Go to step 2.  
Particle Swarm Optimisation (PSO) is an 

evolutionary computation optimisation technique (a 
search method based on a natural system) developed by 
Kennedy and Eberhart (Shi and Eberhart, 1998, 1999; 
Eberhart and Shi, 2001). The system initially has a 
population of random selective solutions. Each potential 
solution is called a particle. Each particle is given a 
random velocity and is flown through the problem space.  

The particles have memory and each particle keeps 
track of its previous best position (called the Pbest) and its 
corresponding fitness. There exist a number of Pbest for 
the respective particles in the swarm and the particle 
with greatest fitness is called the global best (Gbest) of the 
swarm. The basic concept of the PSO technique lies in 
accelerating each particle towards its Pbest and Gbest 
locations, with a random weighted acceleration at each 
time step.  

The main steps in the particle swarm optimisation 
algorithm and selection process are described as follows: 

1) Initialise a population of particles with random 
positions and velocities in d dimensions of the 
problem space and fly them. 

2) Evaluate the fitness of each particle in the swarm. 
3) For every iteration, compare each particle’s 

fitness with its previous best fitness (Pbest) 
obtained. If the current value is better than Pbest, 
then set Pbest equal to the current value and the 
Pbest location equal to the current location in the 
dimensional space. 

4) Compare Pbest of particles with each other and 
update the swarm global best location with the 
greatest fitness (Gbest). 

5) Change the velocity and position of the particle 
according to Equations 1 and 2, respectively. 

( ) ( )idgdididid XPrandCXPrandCV −××+−××+×= 2211idV ω          
                        …… Eq.1 

ididid VXX +=                                                  …… Eq.2 

Where: Vid and Xid represent the velocity and 
position of the i_th particle with d dimensions, 
respectively. rand1 and rand2 are two uniform 
random functions, and ω is the inertia weight, 
which is chosen beforehand. 

6) Repeat steps 2 to 5 until convergence is reached 

based on some desired single or multiple criteria.   
The PSO optimisation random search utilised the 

dynamic total error minimisation algorithm that has 
many key parameters and these are described as follows: 
ω is called the inertia weight that controls the 
exploration and exploitation of the search space  because 
it dynamically adjusts velocity. The use of GA and PSO 
in search and optimisation requires the specifications of 
a number of objective functions based on control errors 
to be dynamically minimised using random direct search 
PSO/GA algorithm. 

 
3. Multi-Objective Optimisation MOO 
The following definitions are used in the proposed 
Multi-Objective Optimisation (MOO) search algorithm 
(Ngatchou et al., 2005; Berizzi et al., 2001; Coello and 
Lechuga, 2003): 
Def. 1 The general MO problem requiring the 
optimisation of N objectives may be formulated as 
follows: 

Minimise 
[ ]T

N xfxfxfxfxFy )(....,),(,)(,)()( 321
rrrrrrrrrrr

==   
                          …… Eq.3 

( ) M,1,2,j0xg j K
r

=≤tosubject  

Where: [ ] Ω∈=
T

Pxxxx **
2

*
1

* ,...,, rrrr  
                          …… Eq.4 

yr  is the objective vector, the  represents the 

constraints and
( )xg i
rr

*xr is a P-dimensional vector 
representing the decision variables within a parameter 
space Ω . The space spanned by the objective vectors is 
called the objective space. The subspace of the objective 
vectors satisfying the constraints is called the feasible 
space.  
Def. 2 A decision vector Ω∈1xr  is said to dominate the 
decision vector Ω∈2xr  (denoted by 21 xx r

p
r ), if the 

decision vector 
1xr  is not worse than in all objectives 

and strictly better than 
2xr

2xr  in at least one objective. 

Def. 3 A decision vector Ω∈1xr  is called Pareto-optimal, 
if there does not exist another  that dominates it. 
An objective vector is called Pareto-optimal, if the 
corresponding decision vector is Pareto-optimal. 

Ω∈2xr

Def. 4 The non-dominated set of the entire feasible 
search space Ω is the Pareto-optimal set. The Pareto-
optimal set in the objective space is called Pareto-
optimal front. 
 
3.1 Multi-Objective Genetic Algorithm MOGA 
The Non-Dominated Sorting Genetic Algorithm 
(NSGA) is a multi-objective genetic algorithm that was 
developed by (Deb et al., 2002). This algorithm has been 
chosen over a conventional genetic algorithm for three 
principal reasons: (a) no need to specify a sharing 
parameter, (b) a strong tendency to find a diverse set of 
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solutions along the Pareto optimal front, and (c) the 
ability to specify multiple objectives without the need to 
combine them using a weighted sum. The basic idea 
behind NSGA is the ranking process executed before the 
selection operation, as shown in Figure 1. This process 
identifies non-dominated solutions in the population, at 
each generation, to form non-dominated fronts, after 
this, the selection, crossover, and mutation usual 
operators are performed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flow chart of GA search and optimisation algorithm 

 
In the ranking procedure, the non-dominated 

individuals in the current population are first identified. 
Then, these individuals are assumed to constitute the 
first non-dominated front with a large dummy fitness 
value (Srinivas and Deb, 1993). The same fitness value 
is assigned to all of them. In order to maintain diversity 
in the population, a sharing method is then applied. 
Afterwards, the individuals of the first front are ignored 
temporarily and the rest of population is processed in the 
same way to identify individuals for the second non-
dominated front. A dummy fitness value that is kept 
smaller than the minimum shared dummy fitness of the 
previous front is assigned to all individuals belonging to 
the new front. This process continues until the whole 
population is classified into non-dominated fronts. Since 
the non-dominated fronts are defined, the population is 
then reproduced according to the dummy fitness values. 
 
3.2 Multi-Objective Particle Swarm Optimisation 

MOPSO 
In MOPSO, a set of particles is initialised in the decision 
space at random (Ngatchou et al. 2005; Berizzi et al., 

2001; Coello and Lechuga, 2003). For each particle i, a 
position xi in the decision space and a velocity vi are 
assigned. The particles change their positions and move 
towards the so far best-found solutions. The non-
dominated solutions from the last generations are kept in 
the archive. The archive is an external population, in 
which the so far found non-dominated solutions are kept. 
Moving towards the optima is done in the calculations of 
the velocities as follows: 

( )
( )idrd

idpdid

XPrandC

XPrandCV

−××+

−××+×=

22

11idV ω  

Start

Generation of
Initial Population

Evaluate Process
Front = 1

Population
was

classified?

Nondominated
Individuals Identification

Assignment of
Dummy Fitness Value

Fitness Sharing

Front = Front + 1

Gen = Gen +1

Selection

Crossover

Mutation

Gen < MaxGen

End

No

Yes

Yes

No

             …… Eq.5 
Where  are randomly chosen from a single 

global Pareto archive, ω is the inertia factor influencing 
the local and global abilities of the algorithm, Vi,d is the 
velocity of the particle i in the d_th dimension, c1 and c2 
are weights affecting the cognitive and social factors, 
respectively. r1 and r2 are two uniform random functions 
in the range [0, 1]. According to Equation 5, each 
particle has to change its position Xi,d towards the 
position of the two guides Pr,d, Pp,d which must be 
selected from the updated set of non-dominated 
solutions stored in the archive.  

 P ,P dp,dr,

The particles change their positions during 
generations until a termination criterion is met. Finding a 
relatively large set of Pareto-optimal trade-off solutions 
is possible by running the MOPSO for many 
generations. Figure 2 shows the Algorithm-Flow Chart 
of the Multi-Objective Particle Swarm Optimisation 
MOPSO. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Flow chart of the MOPSO optimisation search algorithm 

Update position

Evaluate
Particles

Find Global best
then insert in archive

Update Velocity

Initialize Position,
Velocity, and archive

Update the memory
of each particle

archive

 

 
4. Sample Study System Description 
A hybrid renewable green energy Conversion Scheme is 
validated using two FACTS devices with soft dynamic 
regulating control strategies under a set of imposed 
excursions of load variations, and prime mover 
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excursions. The standalone hybrid scheme is connected 
to the load bus over a radial transmission line. The 
hybrid renewable energy comprises the following main 
components, as shown in Figure 3.  

• Fuel Cell, 
• Battery Backup System, 
• Induction generator driven by the wind turbine, 
• Stabilisation interface scheme and stabilisation 

controller, and • Wind turbine, 
• Gear box, • The hybrid electric load. 
• Synchronous Generator driven by the Diesel Engine 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Sample three-phase Study AC system with the AC Dynamic Filter Compensator (DFC) and DC-side Green plug filter 
compensator 
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The hybrid renewable energy scheme was subjected 
to severe combined sequence of load switching/load 
variation/load excursion and wind speed variation, diesel 
and fuel cell source conditions.  

The hybrid AC-DC (Wind-FC-Diesel-Battery) 
scheme is combined with four regulators controllers. The 
multi-regulator error-driven, self-regulating multi-loop 
controller is utilised with MOGA and MOPSO search 
algorithms. Each regulator has multi-loop error driven 
time decoupled, descaled configuration, AC side filter 
compensator, 6-pulse controlled rectifier, DC side GPFC 
and large DC-PM motor drive. The FACTS AC side 
dynamic modulated filter and compensator scheme can 
also be an attractive solution for energy conservation and 
loss reduction in distribution and utilisation radial 
circuits, feeding a nonlinear type load.  

Figures 4-7 depict the dynamic self-regulating PID 
controller and self-tuned variable structure sliding mode 
dynamic controller for adjusting the switching duty-
cycle-ratio based on MOPSO search and optimisation 
technique. The effective reactance of the combined 

hybrid fixed capacitors and the modulated tuned arm 
filter depends on the duty cycle and the frequency of the 
SPWM output which in turn is a function of the self 
tuned variable structure sliding mode controller output. 
The output of the SPWM generator is a train of pulses 
with variable duty cycles and constant frequency. The 
degree of filtering and compensation is dependent on the 
duty cycle of the generated pulses. This would in turn 
vary the effective reactance of the hybrid power filter.  

The tri-loop error-driven dynamic controller is a 
time de-scaled structure and used to control GPFC, 
MPFC, and PMDC motor. The global error is the 
summation of the three loop individual errors including 
voltage stability, current limiting and synthesize 
dynamic power loops. The (per-unit) three dimensional-
error vector (evg ,eIg, epg) of the FACTS modulated 
MPFC AC filter scheme is governed by the following 
equations: 
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                  …… Eq.6 
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                …… Eq.8 

The total or global error etg(k) for the MPFC AC 
side scheme at a time instant: 

( ) ( ) ( ) ( )kekekeke pgpgigigvgvgtg γγγ ++=                 
                        ……Eq.9 

In the same manner, The (per-unit) three 
dimensional-error vector (evd ,eId, epd) of the GPFC 

scheme is governed by the following equations: 
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Figure 4. Dynamic tri-loop error-driven Self-Tuned Multi-Loop Recurrent/recursive incremental Controller for the DC side series-parallel 
GPFC compensation scheme 
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Figure 5. Dynamic tri-loop error-driven Self-Tuned Multi-Loop Recurrent/recursive incremental Controller for the AC side converter-α 

control scheme 
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Figure 6. Dynamic tri-loop error-driven Self-Tuned Multi-Loop Recurrent/recursive incremental Controller the AC side MPFC filter 

compensation scheme 
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Figure 7. Dynamic tri-loop error-driven Self-Tuned Multi-Loop Recurrent/recursive incremental Controller for speed regulation of PMDC 

motor drive 

 
The total or global error etg (k) for the DC side green 

plug filter compensator GPFC scheme at a time instant: 
( ) ( ) ( ) ( )kekekeke pdpdididvdvdtd γγγ ++=                       

              ……Eq.13 
In addition, the (per-unit) three dimensional-error 

vector (evR, eIR, epR) of the three phase controlled 
rectifier scheme is governed by the following equations: 
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              ……Eq.16 

The total or global error etg (k) for the three phase 
controlled converter rectifier scheme at a time instant: 

( ) ( ) ( ) kekekeke pRpRiRiR γγγ ++= ( )vRvRtR
                    

              ……Eq.17 
 Finally, the (per-unit) three dimensional-error 

vector (eωm ,eIm, epm) of the PMDC motor scheme is 
governed by the following equations: 
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The total or global error etg (k) for the MPFC 
scheme at a time instant: 

( ) ( ) ( ) ( )kekekeke pmpmimimmmtm γγγ ωω ++=                    
              ……Eq.21 

The change in the control voltage ΔVc of the Multi-
Loop Incremental Controller is defined as: 

c

c

Vke
kekekekV

Δ+−+
−+−+−=Δ

54

321

)4(
)3()2()1()(

γγ
γγγ               

              ……Eq.22 
)1()()( −+Δ= kVkVkV ccc

                                   
              ……Eq.23 

In this strategy, the PSO and GA searching 
algorithms are implemented for tuning the recurrent 
weighting gains (γ1, γ2, γ3, γ4) minimise the selected 
objective functions (J1 – J5).  

  A set of conflicting objective functions is selected 
for GA/PSO search and optimisation. These objective 
functions are defined by the following: 

{ }tmtRtgtd eeeeMinimizeJ ,,,1 =                      
              ……Eq.24 

)()()(2 kkkeErrorStateSteadyJ mref ωωω −===               
              ……Eq.25 

   

     

The effectiveness of dynamic simulators brings on 
detailed sub-models selections and tested sub-models 
MATLAB library of power system components already 
tested and validated. The common DC bus voltage 
reference is set at 1 PU. Digital simulations are obtained 
with sampling interval Ts = 20µs. Dynamic responses 
obtained with GA are compared with ones resulting from 
the PSO for the proposed Self-tuned multi-stage 
incremental recurrent/recursive controller. The dynamic 
simulation conditions are identical for all tuned 
controllers. To compare the global performances of all 
controllers, the Normalised Mean Square Error (NMSE) 
deviations between output plant variables and desired 
values, and are defined as: 

TimeSettlingJ =3
                

              ……Eq.26 
ShootOverMaximumJ =4                      

              ……Eq.27 
TimeRiseJ =5

                     
              ……Eq.28 
 
5. Digital Simulation Results 
The hybrid Multi-source AC-DC operation of a wind 
turbine, the diesel generator set, and the fuel cell with a 
back-up battery is compared for the two cases, with 
fixed and self-tuned type controller based on MOGA and 
MOPSO. MATLAB-Simulink software was used to 
design, test, and validate the effectiveness of the two 
FACTS devices and the associated dynamic SPWM 
controllers.  

The test results are presented for MPFC on the test 
system using MOGA and MOPSO algorithms. The 
unified system performance is compared for two cases, 
with fixed and self-tuned type controllers using either 
GA or PSO. The second case is to compare the 
performance with Artificial Neural Network (ANN) 
controller and Fuzzy Logic Controller (FLC) with the 
self-tuned type controllers. Self-tuned multi-stage 
incremental recurrent/recursive controller has been 
applied to the speed tracking control of the PMDCM for 
performance comparison.  

There are three different speed references. In the 
first speed track, the speed increases linearly and reaches 
the 1 PU at the end of the first five seconds, and then the 
reference speed remains speed constant during five 
seconds. At tenth second, the reference speed decreases 
with same slope as at the first five seconds. After fifteen 

second, the motor changes the direction and motor 
increases its speed through the reverse direction. At 
twentieth second, the reference speed reaches the -1 PU 
and remains constant speed at the end of twenty-fifth 
second and then the reference speed decreases and 
becomes zero at thirtieth second. The second reference 
speed waveform is sinusoidal and its magnitude is 1 PU 
and the period is 12 seconds. The third reference track is 
constant speed reference starting with an exponential 
track.  

In all references, the system responses have been 
observed. MATLAB-Simulink Software was used to 
design, test, and validate the proposed renewable 
generation system with the FACTS devices. The digital 
dynamic simulation model allows for low cost 
assessment and prototyping, system parameters selection 
and optimisation of control settings. The use of PSO- 
search algorithm is used in online gain adjusting to 
minimise controller absolute value of total error. This is 
required before full-scale prototyping which is both 
expensive and time consuming.  
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              ……Eq.30 
The digital simulation results validated the 

effectiveness of both GA and PSO based tuned 
controllers in providing effective speed tracking for 
three test speed reference trajectories with minimal 
steady-state errors. Transients are also damped with 
minimal overshoot, settling time, and fall time. The GA 
and PSO based self-tuned controllers are more effective 
and dynamically advantageous in comparison with the 
ANN controller, the FLC and fixed type controllers. The 
self-regulation is based on minimal value of absolute 
total or global error of each regulator.  

The control system comprises the three dynamic 
multi-loop regulators is inherently using weight 
assignment and time-scale decoupling coordinated to 
minimise the selected objective functions. SOO obtains a 
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single global or near optimal solution based on a single 
weighted objective function. The use of a weighted 
single objective function combines several conflicting 
objective functions requires assigned and selected 
weighting factors as follows: 

5544332211weighted   J JJJJJ ααααα ++++=
                   ……Eq.31 

Where α1 = 0.20, α2 = 0.20, α3 = 0.20, α4 = 0.20, α5 = 
0.20 are selected assigned equal weighting factors. J1, J2, 
J3, J4 and J5 are the selected objective functions. On the 
other hand, the MO finds the set of acceptable (trade-off) 
Optimal Solutions. This set of accepted solutions is 
called Pareto front. These acceptable trade-off multi 
level solutions give more ability to the user to make an 
informed decision by seeing a wide range of near 
optimal selected solutions.  

Table 1 shows the proposed system behavior 
comparison using the traditional controllers; constant 

gains Multi-Loop Recurrent Controller, ANN controller 
and FLC controller under normal conditions for the three 
selected reference tracks. For comparison, Table 2 
shows the proposed system behavior comparison using 
the GA- and PSO-based self-tuned multi-loop recurrent 
controller under normal conditions for the three selected 
reference tracks. These results show the effectiveness of 
MOPSO and MOGA search and optimised control gains 
in tracking the PMDC motor three reference speed 
trajectories.  

Comparing the unified AC-DC system dynamic 
response results for the two study cases, using GA and 
PSO search and gain tuning algorithms and traditional 
controllers with constant gains controller, ANN and FLC 
incremental controllers, it is quite apparent that the GA 
and PSO tuning algorithms highly improved the PMDC 
system dynamic performance from a general power 
quality point of view. 

 

Table 1. Comparison of PMDC motor response using the fixed gains and soft regulating dynamic controllers 
Self Tuned Multi-Loop Recurrent 

Controller ANN Controller FLC 

 First 
Speed 

Reference 

Second 
Speed 

Reference 

Third 
Speed 

Reference 

First 
Speed 

Reference 

Second 
Speed 

Reference 

Third 
Speed 

Reference 

First 
Speed 

Reference 

Second 
Speed 

Reference 

Third 
Speed 

Reference 
System Efficiency 0.81490 0.82633 0.81224 0.84428 0.85079 0.84814 0.86241 0.85618 0.86143 
AC Bus Power Factor 0.94643 0.93974 0.93207 0.96360 0.94491 0.95402 0.95440 0.94889 0.95071 
RMS of Motor current 
(PU) 0.84425 0.85439 0.86054 0.74595 0.74650 0.74432 0.76028 0.74571 0.76157 

THD_DC_Bus_Voltage 
(%) ×100 0.25375 0.26323 0.24542 0.14390 0.15091 0.15160 0.15136 0.15177 0.15084 

THD_DC_Current (%) 
×100 0.26204 0.25703 0.26319 0.14632 0.15869 0.15078 0.15247 0.14369 0.15476 

THD_ AC Bus 
_Voltage (%) ×100 0.25074 0.25962 0.25968 0.15097 0.14822 0.15012 0.16332 0.15301 0.15066 

THD_ AC Bus 
_Current (%) ×100 0.25903 0.25085 0.26189 0.14675 0.15066 0.16226 0.15378 0.14479 0.15841 

DC Voltage 
Over/Under Shoot (PU) 
×10-1 

0.4298 0.5562 0.6309 0.5127 0.5833 0.15734 0.16355 0.14718 0.15541 

DC Current–
Over/Under Shoot (PU) 
×10-1 

0.6298 0.4838 0.5375 0.5632 0.5135 0.5316 0.5873 0.4555 0.4379 

AC Voltage 
Over/Under Shoot (PU) 
×10-1 

0.5071 0.5752 0.6264 0.5297 0.4561 0.5310 0.6285 0.5065 0.4982 

AC Current–
Over/Under Shoot (PU) 
×10-1 

0.5920 0.4916 0.4664 0.5747 0.4845 0.5255 0.6070 0.6150 0.5766 

Motor Speed 
Over/Under Shoot (PU) 
×10-1 

0.5884 0.6346 0.5137 0.4565 0.5819 0.6188 0.4649 0.4379 0.5300 

NMSE_VDC-Bus ×10-1 0.4486 0.5661 0.6299 0.5255 0.5422 0.4428 0.5331 0.5170 0.4905 
NMSE_ωm ×10-1 0.4900 0.5880 0.4492 0.4450 0.5811 0.5903 0.5678 0.6000 0.5078 
Motor Speed Steady 
State Error ×10-1 0.4935 0.5071 0.5781 0.4644 0.6007 0.5273 0.5813 0.6389 0.5054 

Control System Total 
Error ×10-1 0.5832 0.5660 0.5727 0.4304 0.5670 0.6284 0.5583 0.5942 0.4295 

Motor Speed Rise Time 0.5971 0.5644 0.4665 0.5406 0.4750 0.5445 0.4411 0.5529 0.5167 
Motor Speed Settling 
Time 0.4682 0.4423 0.4446 0.4943 0.6282 0.6359 0.5460 0.6376 0.5749 

 



A.M. Sharaf and A.A.A. El-Gammal: A Coordinated FACTS-Based Hybrid Renewable Energy Scheme for Island/Village Electricity 68
 

Table 2. Comparison of PMDC motor response using soft regulating gains adjusting GA- and PSO-based self-tuned multi-loop 
recurrent/recursive incremental dynamic controller 

SOGA MOGA SOPSO MOPSO 
 First 

Speed 
Reference 

Second 
Speed 

Reference 

Third 
Speed 

Reference 

First 
Speed 

Reference 

Second 
Speed 

Reference 

Third 
Speed 

Reference 

First 
Speed 

Reference 

Second 
Speed 

Reference 

Third 
Speed 

Reference 

First 
Speed 

Reference 

Second 
Speed 

Reference 

Third 
Speed 

Reference 
System Efficiency 0.9095 0.9176 0.9070 0.92314 0.93170 0.92898 0.91252 0.91327 0.91023 0.93227 0.92588 0.92961 
AC Bus Power Factor 0.96235 0.9847 0.9660 0.9845 0.9964 0.9925 0.9854 0.9875 0.9810 0.9933 0.9905 0.9909 
RMS of Motor current 
(PU) 0.7158 0.7176 0.7178 0.6856 0.6863 0.6708 0.71320 0.7065 0.70228 0.6556 0.6672 0.6572 

THD_DC_Bus_Voltage 
(%) ×10 0.6075 0.6397 0.5716 0.5708 0.4058 0.4329 0.5727 0.5089 0.5045 0.4350 0.4786 0.4194 

THD_DC_Current (%) 
×10 0.7931 0.6689 0.6697 0.6729 0.5927 0.6432 0.6607 0.6762 0.7087 0.4104 0.5091 0.4542 

THD_ AC Bus 
_Voltage (%) ×10 0.6337 0.6188 0.6023 0.5650 0.5016 0.5682 0.6010 0.5900 0.6009 0.4416 0.5824 0.4941 

THD_ AC Bus 
_Current (%) ×10 0.7059 0.6488 0.6070 0.5772 0.5442 0.6228 0.5755 0.6600 0.5967 0.5309 0.4392 0.4147 

DC Voltage 
Over/Under Shoot (PU) 
×10-2 

0.1653 0.3357 0.1861 0.1821 0.3138 0.2845 0.1576 0.1313 0.3176 0.1709 0.1919 0.2685 

DC Current – 
Over/Under Shoot (PU) 
×10-2 

0.1889 0.2279 0.1425 0.3375 0.2519 0.2182 0.2377 0.1993 0.2202 0.1765 0.2513 0.2894 

AC Bus Voltage 
Over/Under Shoot (PU) 
×10-2 

0.2407 0.2641 0.1730 0.2090 0.2942 0.2726 0.2262 0.2487 0.2965 0.1413 0.2561 0.1394 

AC Bus Current – 
Over/Under Shoot (PU) 
×10-2 

0.2165 0.1932 0.3135 0.1320 0.2910 0.3338 0.3379 0.2954 0.2214 0.2340 0.1740 0.2647 

Motor Speed 
Over/Under Shoot (PU) 
×10-2 

0.1964 0.3316 0.2823 0.2158 0.2861 0.1854 0.2217 0.3259 0.2731 0.1737 0.3060 0.2616 

NMSE_VDC-Bus ×10-2 0.1571 0.1725 0.2570 0.2618 0.2070 0.2503 0.2241 0.1381 0.1345 0.1948 0.1315 0.2099 
NMSE_ωm ×10-2 0.2731 0.1484 0.1363 0.2581 0.2573 0.1321 0.1323 0.1689 0.2528 0.1410 0.2064 0.2622 
Motor Speed Steady 
State Error ×10-2 0.2804 0.2751 0.1466 0.2248 0.2221 0.2034 0.1612 0.2715 0.2765 0.2824 0.2298 0.2460 

Control System Total 
Error ×10-2 0.1544 0.2240 0.2800 0.3174 0.1865 0.1826 0.3116 0.1779 0.2988 0.3207 0.1778 0.1793 

Motor Speed Rise Time 0.1393 0.1454 0.2641 0.1691 0.3070 0.1655 0.1649 0.3388 0.2217 0.2006 0.1952 0.2059 
Motor Speed Settling 
Time 0.2119 0.2537 0.1541 0.1369 0.2257 0.3125 0.3261 0.1847 0.1627 0.3131 0.1790 0.2652 

 
 
 
6. Conclusions 
The paper presents a hybrid AC-DC renewable (Wind–
Diesel-FC-Battery) energy scheme with two dynamic 
FACTS-based devices and a coordinated multi regulator 
dynamic controller. The unified scheme with multi-
regulation dynamic gain scheduling controllers is 
validated for efficient energy utilisation and stabilised 
operation. The MOGA and MOPSO techniques are used 
to adjust all four regulator-control gains online to 
minimise a set of specified objective functions.  

The multi-regulator multi-loop error-driven time de-
scaled and decoupled control scheme and the two 
FACTS-based devices developed are effective in 
ensuring AC and DC bus voltage stabilisation and 
enhanced energy utilisation under load changes and 
wind velocity excursions. The use of direct random 
search and optimisation PSO/GA techniques for online 
dynamic Control Gain-Scheduling and Controller Gain 
Selection validated the effectiveness of the AI 
Evolutionary Computing MOGA and MOPSO Methods 
in maintaining AC and DC Bus voltage levels around 
1pu and limiting transient over-voltages and inrush-type 
current conditions. 

 These two devices with the self-regulating dynamic 
error-driven and gain-scheduled controller are also 
effective in voltage stabilisation, power factor 
correction, power quality, efficient energy utilisation, 
feeder-loss reduction and minimal transient and inrush 
current conditions. 
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