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Abstract: When attempting to achieve an improved design of some physical system, the important variables, the “design 
variables”, are manipulated to find the combination that results in the best system performance. Most research deals with 
cases where design variables are deterministic thus ignoring possible uncertainties present due to manufacturing or 
environmental conditions. When uncertainty is considered, the design variables follow a particular distribution whose 
parameters are defined. Parameter design aims to reduce the probability of failure of a system by moving the distribution 
parameters of the design variables. In this paper, we focus on moving the means of the design variables to search for a 
reduced failure probability. The most popular method to estimate the probability of failure is a Monte Carlo Simulation 
where, using the distribution parameters, many design variable combinations are generated and the number of times the 
corresponding response does not meet specifications is counted. This method, however, can become time-consuming as 
mechanistic models become increasingly complex. From structural reliability theory, the First Order Reliability Method 
(FORM) is an efficient method to estimate probability and to search for the parameters that reduce the failure probability. 
However, if the mechanistic model is too complex or implicit, FORM becomes difficult to use. This paper presents a 
methodology that uses approximating functions, called ‘metamodels’, with FORM to search for the design parameters that 
minimises the probability of failure. The method will be applied to three examples and the accuracy, along with the speed, of 
the methodology will be discussed. 
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Notation 
f(v) A function of the design variables, v. 
gk(u) kth LSF (in u-space). 
gk(v) kth LSF (in v-space). 
n Total number of design variables. 
NLF Total number of LSFs. 
y(v) Metamodel 
M Total number of training sets. 
p Vector of design parameters, p = [µ1,...,µn]T. 
r(v) Column vector of functions of the design variable. 

( )vr T~  Vector of the correlation between the new response, v, 
 and each training set. 

uk* MLFP corresponding to the kth LSS. 
v Vector of design variables. 
wT Vector of metamodel constants. 
xi The vector of training sets for the ith design variable. 
z Vector of training responses. 
X Matrix of training design variable sets. 
αk sign(gk(u) = 0). 
βR Reliability Index. 
 
 
1.  Introduction 
For most physical systems, experimentation is costly 
especially in the case of design where the experimental 
space is searched to find the best design (Barton, 1998). 
To compensate, analysts usually attempt to find a 
mathematical model to describe the behaviour of the 
system (Esfandiari and Lu, 2010; Lobontiu 2010). Such 

models are termed, herein, as “mechanistic models”. 
Using these models, computer simulations are built to 
simulate the behaviour of the physical system. In the 
design of systems, much research involves deterministic 
optimisation that does not account for uncertainties 
present in manufacturing or environment conditions. 
More recent research, however, attempts to account for 
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kRβ Reliability Index corresponding to the kth LSF. 

β0, β1, ... ,βl Metamodel parameters. 
( )

iv
y
∂
∂ v  First derivative of the metamodel with respect to the ith 

design variable. 
θ1, ...,θp Kriging correlation function parameters. 
ζ Upper or Lower Design Specification. 
Φ Normal CDF Function. 

Γ Kriging model correlation matrix whose elements 
represent the correlation between  

 training sets. 
CV Cross-Validation. 
CV-RMSE Cross-Validation Root Mean Squared Error. 
FORM First Order Reliability Method. 
LSF Limit State Function. 
LSS Limit State Surface. 
MCS Monte Carlo Simulation. 
MLFP Most Likely Failure Point. 
RSM Response Surface Model 
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such uncertainties by assuming that the design variables 
follow some type of distribution (Grandhi and Wang, 
1998; Allen et al., 2004).  

Reliability-Based Design Optimisation deals with 
problems with uncertainty present in design variables. 
Here, the problem usually entails minimising a cost 
while ensuring certain probabilistic constraints are met. 
These constraints relate the demand with the 
performance characteristic in the form of a limit state 
function (LSF) and the probability of failure is 
calculated using either the Monte Carlo Simulation 
(MCS) or the structural reliability concept the First 
Order Reliability Method (FORM) (Madsen et al., 
1986). 

In probabilistic design, when uncertainty is 
considered, we attempt to find the distribution 
parameters (means and/or tolerances) of the design 
variables that improve or optimise the selected 
performance measures. Furthermore, an optimum system 
performance occurs when the probability of failure is at 
a minimum. The design variables include for example 
sizes, weights and material compositions.  

In most cases, however, the mechanistic model is 
too complex or implicit thus resulting in length Monte 
Carlo simulations or difficult reliability calculations. 
These mathematical models are usually in the form of 
differential or even implicit equations thus making them 
difficult to use in simple design calculations. Recent 
research in function approximation and response 
estimation has developed approximating functions, 
known as “metamodel”, to replace complex mechanistic 
models (Barton, 1998; Hussain et al., 2002).  

A lot of research has compared the performance of 
various metamodels in fitting complex or even implicit 
functions (Hussain et al., 2002; Jin et al., 2001; Simpson 
et al., 2001; Muller and Messac, 2006). These papers 
have discussed the advantages and disadvantages of 
different metamodels and their ability to fit functions of 
varying degrees of complexity.  

Recent research has started using metamodels in 
reliability analysis (Schueremans and Van Gemert, 
2005; Deng, 2006). In these problems, design variables 
are random and, provided with design criteria, the 
probability of failure is estimated using either Monte 
Carlo Simulation (Schueremans and Van Gemert, 2005) 
or the first- or second-order reliability method (FORM 
or SORM) (Deng, 2006). These papers have shown that 
metamodels offer accurate and efficient alternatives 
where mechanistic models are implicit or just too 
complex. This paper will extend this idea to use 
metamodels to search for the best design using FORM. 
 
2. Proposed Methodology 
This paper presents a methodology that uses metamodels 
and FORM to search for the means of the design 
variables that result in an improved system performance 
as applied to static systems. When we refer to a “static 

system” we refer to a system with a steady-state 
response. This improved performance is based upon the 
specific design specifications that the system must meet. 
The flowchart shown in Figure 1 outlines the major steps 
involved in this metamodel-based parameter design 
methodology.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

P hysica l 
S ystem  

S tep  1 : B u ild  a  co m p uter m o d el b ased  up o n  
the  m echan istic  m o d el. 

S tep  2 : U sing  the  sign ifican t d esign  variab les, 
se lec t the  “ tra in ing  d esign”  using  so m e 

exp erim en ta l d esign  o r sam p ling  m etho d . 

S tep 3 : C ho o se  a  m etam o d el and  estim ate  
m o d el p aram eters. 

S tep  4 : C heck  the  fit o f the  m etam o d el. 

Is  the  m etam o d el a  
go o d  fit?  

N o

S tep 5 : U sing  the  up p er and /o r lo w er d esign  
sp ec ifica tio ns, b u ild  the  L S F (s). 

Y es 

S tep  6 : T ransfo rm  the  L S F (s) fro m  v -sp ace  
to  u -sp ace . 

S tep  7 : S earch  fo r the  d esign  p aram eters ,  
p  =  [µ 1,...µ n], tha t resu lt in  a  m in im um  

fa ilu re  p ro b ab ility  as estim ated  b y  F O R M . 

B est 
D esign  

Figure 1. A flowchart showing the main steps involved in 
metamodel-based parameter design 

 
Typically, we start with a mathematical 

representation of some physical system which we then 
use to build a computer-based simulation using a 
program like MATLAB®. The next step involves 
extracting a sample of experimental design variable sets 
and their corresponding responses, called the ‘training 
design’, which is used to estimate the parameters of the 
chosen metamodel. An important step in metamodel-
based design is to check the fit of the metamodel. If the 
fit is not found to be acceptable, there are two choices 
we can make; the first is to use another metamodel or the 
second is to use another sampling method. If, however, 
the metamodel is a good fit, we then use the metamodel 
and the stated design criteria to build a “limit-state 
function”. This limit-state function, LSF, is used with 
the first-order reliability method, a method popular in 
reliability analysis, to estimate the failure probability 
when provided with the initial design parameters. These 
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design parameters are made up of the mean and 
tolerance of each design variable. For the purpose of this 
work, we will focus on the means. Using the LSF, 
FORM and an optimisation routine like “fmincon” in 
MATLAB®, the design parameters are moved so that the 
failure probability is reduced.  

To illustrate the proposed methodology, three 
examples will be presented whose responses must meet 
specific design criteria. In the following sections, this 
paper will present an overview of two metamodels; 
Response Surface and Kriging Models. A brief overview 
will also be provided about FORM and will show how 
the metamodels can be used in FORM to calculate the 
probability of failure of some arbitrary system when 
provided with pre-stated design specifications. The 
method will be applied to three simple case studies and 
the speed and accuracy of this metamodel-based 
parameter design method will be discussed. 
 
3. Metamodelling Process 
In the modelling process, the modeller abstracts 
properties from various components in order to obtain a 
representation of the physical world. In a similar way, a 
model of the modelling process itself can be obtained; 
this is termed a metamodel (Barton, 1998). In the 
metamodelling process, three main steps are involved; 
first, a sample of design variables and their 
corresponding responses is obtained from the computer 
model, second, a metamodel form is chosen and using 
the “training design” obtained in Step 1, the metamodel 
parameters are estimated. Finally, the fit of the 
metamodel is checked. 
 
3.1 The Training Design 
The training design is a sample of responses from the 
computer simulation of the mechanistic model that is 
used to ‘fit’ the metamodel. It is chosen through the use 
of statistical design of experiments such as the Full or 
Fractional Factorial Designs or sampling techniques like 
Latin Hypercube Sampling (Montgomery, 2005). The 
design gives rise to a total of M runs that are used to 
generate some initial dynamic responses.  The design 
variables used to generate these initial responses are 
called the “training sets”.  

Using some experimental design technique or 
sampling method, M different combinations of n design 
variables are obtained and recorded into the matrix Xd as 
shown. Each unique combination of the n design 
variables is termed the “training set”. 
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In Xd,   
corresponds to the jth training set of the ith 

design variable (j = 1,…,M and i = 1,…,n). The matrix 

Xd is then input to the computer simulation based on the 
mechanistic model and a sample of training responses, 
corresponding to each training set, is obtained. 
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3.2 Metamodel Form 
In general, the metamodels can have the form, 

)()( vrwv Ty =                          ….Eq.1 

where y(v) is a function of the response with respect to 
the design variables, v. w is a row vector of the 
metamodel constants estimated using the training data 
(Xd, z) and r(v) is a column vector whose elements 
contain functions of the design variable. At this point, 
clear distinction should be made between xj,i, which is a 
sample point of variable i and vi which is the general 
term. This is necessary since the gradient-based 
optimisation with FORM requires derivatives of y(v) 
with respect to each variable vi. Therefore, since the 
fitting parameters are constants, the derivatives of 
interest is  

i

T

i vv
y

∂
∂

=
∂
∂ )()( vrwv                      …..Eq.2 

 
3.3 Response Surface Model (RSM) 
Perhaps the simplest and most common metamodel is 
the Response Surface Model (RSM). Given a response, 
y, and a vector of design variables, v influencing y, the 
relationship between y and v is 

( ) εββββ ++++= ∑∑∑∑
<== ji

jiij

n

i
iii

n

i
ii vvvvy

1

2

1
0,βv

 
  …..Eq.3 

where β0, βi,... are model parameters to be estimated and 
vi represents the ith design variable. In this paper, we use 
a second-order RSM. Equation 3 can be transformed to 
look like Equation 1 so that w is a vector of constants 
and r(v) is a vector of functions of the design variables. 
An example of how this is done is shown in the 
Appendices A, B and C. 

For a second-order RSM, the length of r(v) depends 
upon the total number of design variable, n through the 
equation 

∏
−

= −
−+

=
1

0 2
)2(d

j j
jnl                              …Eq.4 

Therefore, when n=2, l = 6. The actual data matrix 
must have l columns and so Xd is augmented by a unit 
vector to the left and an appropriate sub-matrix of 
functions of Xd to the right, so 

          
[ ] )()(1 lMdda f ×= XXX           ….Eq.5 

where f(Xd) is a high order function (second-order for 
the purposes of this paper) of the training sets that 
follows the factorial arrangement. Therefore, for n = 
2, ( ) [ ]21

2
2

2
1 xxxxX =df  and 
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Typically, for the RSM, model parameters are 
estimated using the least-squares estimation method 

                          …Eq.6 

To estimate the variance, σ2, consider the sum of squares 
of the residuals 

     
  ….Eq.7 

Substituting into Equation 7 and simplifying, 
the sum of squares of the residuals becomes 

        ….Eq.8 

with M-(n+1) degrees of freedom. It can be shown that 
E(SSE) = σ2(M-l) (Montgomery, 2005). Therefore, an 
unbiased estimator of σ2 is given by 

       lM
SS E

RSM −
=2σ̂    ….Eq.9 

When presented with a full second-order 
polynomial RSM, the significance of each model 
parameter can be tested to reduce the size of the model 
(Montgomery, 2005). The details of this method will not 
be explored in this paper but such a method is worth 
mentioning. Also differentiating the second-order RSM 
is not difficult. Therefore, the details are not shown. 
 
3.4 Kriging 
There are several types of Kriging models; ordinary, 
universal, detrended etc. In this work, we use a universal 
Kriging model in which the first part of the model is 
represented by a linear RSM. Given sampled inputs, Xd, 
and the resulting outputs z = [z(x1),…,z(xM)]T, Kriging 
treats the linear predictor at any point v, ( )vy , as a 
random function (Sacks et al., 1989; Martin and 
Simpson, 2005). The metamodel is then the Best Linear 
Unbiased Predictor (BLUP) of   ( )vy
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. Γ is a special correlation matrix that 

quantifies the correlation between two observations, x1 
and x2, using a spatial correlation function 
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where iθ is the model parameter to be estimated. The 
vector, Tr~ , contains the correlation between an unknown 
point, v, and the M known sample points 

    ( ) ( ) ( )[ MM
T

×= 11 ,,,,~ xvxvvr γγ K

Each element in Tr~ , jr~ , is found using Equation 14. 
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Equation 10 can be simplified to the general 
metamodel of equation (1) where 
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The Maximum Likelihood Estimation (MLE) 
method is most commonly used to provide the best 
estimate of the Kriging model parameters where the 
optimal value of β is found to be 

    ( ) zΓXXΓXβ 111ˆ −−−= TT
      ….Eq.16 

and is 2ˆ KGσ

    
( ) ( )XβzΓXβz −−= −12 1ˆ T

KG M
σ     ….Eq.17 

Since a closed-form solution does not exist for θ the best 
estimate for θ is found by maximising Equation 18 
(Martin and Simpson, 2005; Simpson et al., 2001). 
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3.5 Kriging Derivatives 
After converting the general Kriging model to look like 
Equation 2, the model is differentiated, as in Equation 3, 
where 
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Since f(v) is just a linear function, differentiating 
this function is straightforward. However, the same 
cannot be said for ( )vr~ . Suppose we simplify equation 
14, so that 
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….Eq.20 
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After some simplification (see Appendix C), 
Equation 21 becomes 
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i
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3.6 Metamodel Validation 

]   ….Eq.13 After estimating metamodel parameters, the next step is 



T. S. Seecharan and G. J. Savage: Metamodel-Based Parameter Design of Static Systems  14

to determine how the metamodel fits the training design. 
There are two methods involved in checking the fit of a 
metamodel; the first involves estimating the ability of 
the metamodel to reproduce the responses of the training 
design and the second involves estimating the accuracy 
of the metamodel in estimating the response at a new set 
of untried design variables. In this paper, we focus on 
the second method. 

The most commonly used method in statistical 
regression modelling is finding the coefficient of 
determination, R2. However, the Kriging model 
characteristically fits the training design exactly, 
therefore, calculating R2 will always produce a value of 
1. An alternative method is to run the simulation again 
using new design variables sets, use the metamodel to 
predict the response at these new locations and then 
estimate the error. However, in cases where running the 
simulation is time-consuming, this method is not 
recommended. Where the Kriging model is used, the 
cross-validation root mean squared error (CV-RMSE) 
can be estimated (Meckesheimer et al., 2002). 

Cross-validation (CV) groups the training design 
into a total of nf “folds” containing M/nf training sets. 
Each fold is used in both training and testing the 
metamodel. For example, for a training design with 25 
design variable sets, if a “leave-one-out” CV method is 
used then we have nf = M folds each containing 1 
training set. When one design variable set is withheld, 
the other 24 design variable sets are used to estimate the 
parameters of the chosen metamodel. Using this newly 
fit metamodel, an estimate of the response at the 
withheld design variable set is obtained. This process is 
repeated until all training sets are used in fitting and 
response estimation. In the end, there are now 25 
estimated responses that can be used with their values 
from the computer simulation to estimate the root mean 
squared error (RMSE). The RMSE calculated in this 
way, using CV is called the Cross Validation Root Mean 
Squared Error (CV-RMSE). 
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zz
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RMSE-CV   ….Eq.23 

 
4. First Order Reliability Method (FORM) 
Parameter design attempts to find the distribution 
parameters, of random design variables, that minimise 
system failure. To achieve this, there are two main 
points that must be addressed. First, how do we relate 
the response to the critical limits to determine when 
‘success’ or ‘failure’ occurs and second, how do we 
calculate the respective probabilities (Madsen et al., 
1986; Melchers, 1987). The first is answered using a 
‘limit state function’ (LSF) and using the LSF the failure 
probability is estimated using FORM. 

When provided with an upper or lower specification 
(demand), ζ, the limit-state function (LSF) is written as 

    ( ) ( )( )vv yg −±= ζ         ….Eq.24 
where y(v) is the metamodel. By definition, 
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( )
( ) e)Conformanc-(Non Failure0

ce)(Conforman Success0g
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∈<
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vv
vv
vv

g

g
 ….Eq.25 

The number of LSFs depends upon the number of 
design specifications.  

The probability of failure is normally calculated 
using the joint probability distribution of the design 
variables. However, this becomes difficult for cases of 
multi-dimensional correlated variables (Madsen et al., 
1986). In order to simplify this calculation, the LSF is 
transformed into u-space where variables follow the 
standard normal distribution and the probability density 
function is symmetric. The probability of failure is 
estimated using FORM. The method makes the 
assumption that the failure surface can be fitted exactly 
with a tangent hyper-plane through the Most Likely 
Failure Point (MLFP), u* (Madsen et al., 1986; 
Melchers, 1987).  

Consider the case of two variables shown in Figure 
2. Using a suitable transformation, such as the 
Rosenblatt transformation (Madsen et al., 1986), the 
variables are transformed from v-space to u-space where 
probability density function is now rotationally 
symmetric.  

 

 
 
 
 
 

Figure 2. The limit-state surface in v-space 

 
The linearized failure surface can be rotated so that 

it is perpendicular to u1 and parallel to u2. Figure 3(a) 
shows a non-linear LSS, in u-space, fitted by a 
hyperplane tangent to the LSS at the MLFP which is also 
tangent to a normal PDF contour, whereas Figure 3(b) 
shows the hyperplane rotated to a point perpendicular to 
the u1 axis and parallel to u2. Notice the position of the 
new, but equivalent, non-conformance region. 
 

v1

v2

Failure Region
g(v) < 0 

Safe Region 
g(v) > 0 

Failure Surface 
g(v) = 0. 

Joint PDF 
Contours
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 u2 

u1 

g(u) = 0 

βk

Tangent Hyperplane 

g(u) < 0 
g(u) > 0 u* 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3(a). A non-linear LSS in u-space 

 
 
 
 

Figure 3(b). The hyperplane rotated 

 
For the bivariate, standard normal density function, 

the probability of failure is now calculated using 
Equation 26.  
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, therefore, Equation 26 can be 

simplified to 
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β
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By definition, Equation 27 is the normal cumulative 
density function (CDF) (Madsen et al., 1986). In general, 
for the kth LSS,  

     { } ( )( ) ( )
kRkk gF β−Φ=<= 0PrPr u  ….Eq.28 

Since the reliability index, βR, is just the Euclidean 
distance from the origin to the MLFP, estimating the 
MLFP is the major step involved in FORM and is found 
via the constrained optimisation problem, 

     

( )
( ) 0..

min

=u

uu
u

gts

T
    ….Eq.29 

There exists an algorithm in which Equation 29 can 
be solved (Madsen et al., 1986). However, instead of 
doing a sub-optimisation routine for every new set of 
design parameters, another more versatile approach is to 
find a plane perpendicular (via the null space vectors) to 
the outward normal gradient vector (Seshadri, 2002). At 
the MLFP, the vector u* is then perpendicular to each of 
the null space vectors. More specifically, if we have n 
design variables, there will be n – 1 null space vectors 
each of length n denoted as the matrix ( )( )ukgnull ∇ .  

Then at u*, we have the orthogonal conditions as n 
– 1 scalar products 

     ( )( ) 1,,2,10 −==∇⋅ njgnull jkk Kuu  ….Eq.30 

where uk is the MLFP associated with the kth LSF. 
  
5. Searching for a Balanced Design 
Probability is associated with βR, therefore, for an ideal 
situation, we wish to maximise simultaneously while 

keeping all
kRβ

kRβ at about the same value. This is termed a 
‘balanced design’. In order to achieve this, suppose a 
weight is written for each LSF 

     ( )
kRkkW βα−= exp    …Eq.31 

where each term, αk, is the sign of gk(u) = 0. Wi 
approaches zero for a large, positive product 
( )

kRk βα but becomes large for negative 

products ( )
kRk βα . In addition, for small changes about 

a small
kRβ , the exponential changes rapidly. A vector 

of all nLF limit-state functions is defined as 

     
[ ]

LFN
T
LF WW K1=γ    ….Eq.32 

By invoking a sum-of-squares type formulation, we have 
the objective function 

     
( ) (

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−== ∑

=

LF

k

N

k
RkLF

T
LFQ

1

2exp
2
1

2
1 βαγγμ v )  ….Eq.33 

The objective function of Equation 33 has some 
interesting properties. If all ak = +1, then the success 
region contains the origin in u-space, and the objective 
function has a lower bound of zero for very large βR’s 
and an upper bound of NLF for βR’s approaching zero. 
For any αk = -1, such that the success region does not 
contain the origin, then the objective function is always 
larger than the number of negative αk’s. 

In summary, the method attempts to move the 
parameters, p = [µ1,µ2,...,µn] so that the origin in u-space 
is the geometrical centre of the success region. If this is 
so, for multiple LSSs, then all LSSs are approximately 
equal distance from the origin and a “balanced design” is 
achieved. Therefore, to find a balanced design, the 
optimisation problem of Equation 33 becomes 

u1 
u* βk 

u2 

( ) 0<ug

( ) 0>ug

( ) 0=ug
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   ….Eq.34 

( )

( )
( )( )

UBLB

gnull
g

ts

jkk

k

N

k
Rk

LF

k

≤≤

=∇⋅
=

−∑
=

v

uu
u

μ
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μ

0
0

..

2expmin
1

In Equation 34, NLF represents the total number of 
LSFs, and LB and UB represent the upper and lower 
boundary conditions on the mean of each design 
variable. The subscripts k and j are counters for the total 
number of LSFs, and null space vectors respectively; k = 
1,..., NLF and j = 1,..., n-1. 

System failure is estimated by first determining 
whether the components follow a series or parallel 
arrangement. In this work, we assume the LSFs follow a 
series arrangement, therefore,  if one LSF does not meet 
specifications, the entire system has “failed”.  Assuming 
that LSFs are uncorrelated and that their intersections are 
negligible,  

      
   ….Eq.35 ( ) ( )∑

=

=
LFN

i
iF

1

PrPr F

 
6. Examples 
Three examples are presented with static responses and 
uncertain variables. Each example contains specific 
design specifications and our goal is to search for the 
mean, of each design variable, that allows the system to 
meet stated design specifications. 
 
6.1 Example 1: Servo System 
This simple example is used to illustrate the 
methodology proposed in figure 1 and appears in 
(Savage 2011). Consider an electrical-mechanical servo 
system whose steady-state shaft speed has the function, 

      
( )

1

2

v
v

Gz =v     ….Eq.36 

where G = 2. In this mechanistic model, there are two 
variables of interest, v1 and v2. For an optimal design, the 
mean of each design variable falls within the ranges 
shown in Equation 37 and the standard deviations are 
estimated using Equation 38. 

      ….Eq.37 1.19.00081.00078.0 21 ≤≤≤≤ μμ

     300
5.1

300
2 2

2
1

1
μ

σ
μ

σ ==    ….Eq.38 

 
STEP 1: Building the computer model  
Using MATLAB®, a computer simulation based upon 
the mechanistic model of Equation 36 is developed that 
allows us to obtain the training responses. 
 
STEP 2: Selecting the training design  
In order to generate the training design, three levels of 
each design variable are used to produce a total of 9 
training sets (see Table 1).  

Table 1. The three levels of each design variable used to develop 
the training design 

Level v1 v2 
Low 0.0078 0.90 
Nominal 0.00795 1.0 
High 0.0081 1.1 

 
 
These levels are obtained using the specified ranges 

of the means of the design variables. Using a full 32 
factorial design, the training sets are shown in Equation 
39, 

     

 ….Eq.39 

292,91,9

2,21,2

2,11,1

1.10081.0

0.10078.0
90.00078.0

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
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⎢
⎢
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=
MMMM

xx
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dX

Using the MATLAB m-file that has been developed 
based upon the mechanistic model, the corresponding 
training responses have been obtained using the 9 
combinations of the training sets, 

[ ]T60.27105.28241.25677.230 K=z    …Eq.40 
 
STEP 3: Choose a metamodel and estimate model 

parameters 
In this work, we investigate the feasibility of using the 
RSM and Kriging metamodels. Therefore, the 
parameters of each model are estimated. For the 
regression model, a hypothesis test of the model 
parameters (Montgomery 2005) found that the model 
parameter corresponding to the term is not significant 
and can be ignored. Therefore, to put the model in the 
form y = wTr(v), we have  

2
2v

[ ] 5143210 ×= βββββTw and 

( ) [ ]Tvvvvv 5121
2
1211 ×=vr .  

For the universal kriging model, we have  

( )[ ]XβzΓw −= −1
210 βββT  and  

( ) ( )[ ]vrvr TT vv ~1 21=   

where z is the vector of training responses shown in 
Equation 40, 

391.10081.01

9.00078.01

×
⎥
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⎢
⎢
⎢

⎣
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M
vr .  

The next step is to check the fit of the metamodels 
which is done using the cross-validation method. 
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STEP 4: Checking the fit of the metamodel 
Since our training design consists of a total of only 9 
training sets, a “leave-one-out CV” method is used to 
calculate the root mean squared error. These results for 
each metamodel are shown in Table 2. 

Since CV-RMSE estimates the prediction error, a 
smaller value indicates a better fit. Although both 
metamodels produced very small and, thus, acceptable 
results, the RSM produced a smaller CV-RMSE than 
Kriging. These results indicate that the RSM provided a 
better fit than the Kriging model. 
 

Table 2. Comparison of metamodel performance using the CV-
RMSE 

Model CV-RMSE 
RSM 1.204 x 10-2 

Kriging 3.159 x 10-2 

 
 
STEP 5: Building the LSFs 
This problem requires a ‘target-is-best’ solution and we 
are given upper and lower design specifications of 255 
rad/s and 245 rad/s respectively. Following Equation 24, 
the limit-state functions look like 

        ….Eq.41 ( ) ( )vv yg −= 2551

        ….Eq.42 ( ) ( ) 2452 −= vv yg
 
STEP 6: Transform the LSFs from v-space to u-space 
The LSFs are now transformed to u-space using a 
transformation method like the Rosenblatt 
transformation (Madsen et al., 1986). Since the variables 
are normally distributed and are uncorrelated, to 

transform the LSF to u-space, the following 
transformation is used. 

     iiii uv σμ +=     ….Eq.43  

After substituting equation 43 into Equations 41 and 42, 
the LSF is now transformed to u-space. 
 
STEP 7: Search for the best design 
For this problem, we focus on finding the design 
parameters, p = [µ1 µ2], that produce a minimum system 
failure. In order to first find a feasible design, our 
optimisation problem looks like  

     

( ) ( )

( )( )
( )( )

1.19.0
0081.00.0078

0
0

:Subject to

2exp2expmin

2

1

122

111

21 21

≤≤
≤≤

=∇⋅

=∇⋅

−+−=

μ
μ

βαβα
μ

uu
uu

gnull
gnull

Q RR

 ….Eq.44 

Since this problem consists of 2 design variables, 
then there is only 1 null-space vector ( )( 1ukgnull )∇ . The 
results of the optimisation using the mechanistic model 
and both metamodels, with FORM, will be presented. 
These results are shown in Table 3. Our design already 
produces failure probabilities that are acceptable (< 
0.01). 

In Table 3, the second column shows the best design 
found using the corresponding model, identified in 
column 1. The MLFP at the best design is shown where 

corresponds to the MLFP of the first LSS (whose 

function is equation 41) and is the MLFP at the 
second LSS (whose function is Equation 42).  

∗
1u

∗
2u

 

Table 3. The best design calculated using FORM with the different models 

Model Best Design MLFP 1Rβ  
2Rβ  

Mechanistic ⎥
⎦

⎤
⎢
⎣

⎡
=

9997.0
008001.0

p  
⎥
⎦

⎤
⎢
⎣

⎡−
=∗

429.1
944.1

1u  
⎥
⎦

⎤
⎢
⎣

⎡
−

=
450.1

896.1*
2u  2.413 2.387 

RSM ⎥
⎦

⎤
⎢
⎣

⎡
=

9999.0
008001.0

p  
⎥
⎦

⎤
⎢
⎣

⎡−
=∗

418.1
929.1

1u  
⎥
⎦

⎤
⎢
⎣

⎡
−

=
460.1

907.1*
2u  2.394 2.402 

Kriging ⎥
⎦

⎤
⎢
⎣

⎡
=

9999.0
008001.0

p  
⎥
⎦

⎤
⎢
⎣

⎡−
=∗

419.1
929.1

1u  
⎥
⎦

⎤
⎢
⎣

⎡
−

=
462.1

910.1*
2u  2.395 2.405 

 
 

The reliability indexes, 
1Rβ and

2Rβ , of the first and 
second LSSs are shown. The results from the 
mechanistic model are assumed to be the “true” or “most 
accurate” results. The difference in the failure points 
obtained from the metamodels and the mechanistic 
models is very small (< 0.1%).  

In order to visualise these results, the limit-state 
surfaces are plotted along with the normal PDF contours 
and shown in Figure 4. In this work, the normal PDF 
numbers just show that the LSSs are about the same 
distance away from the origin, therefore resulting in a 

“balanced design”. This is also observed in Table 3 
where 

1Rβ and 
2Rβ do not differ by much. Now, in 

order to test the reliability of FORM, a MCS is run to 
check if the probabilities are consistent. 

On observing Figure 4, the LSSs are straight lines. 
Therefore, their tangent hyperplane approximations are, 
theoretically exact. As a result, FORM should provide an 
exact estimate of the failure probability. In order to 
check this assumption, a MCS using each model is done 
and the failure probability obtained is compared with the 
FORM failure probability estimate. These results are 
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shown in Table 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The two limit-state surfaces (in u-space) and the joint 
Normal PDF contours 

As shown in Table 4, ( ) ( )( )0PrPr 11 <≡ vgF  
and ( ) ( )( )0PrPr 22 <≡ vgF . The number of samples 
required for the MCS, depends upon the order of the 
probability of failure to be estimated (Andrieau-Renaud 
et al., 2004). To accurately compute a probability of 
failure of 10-n, typically, somewhere between 10n+2 and 
10n+3 samples are required. Therefore, for this problem, 
somewhere between 105 and 106 samples are needed. 
Here, we use 500,000 samples.  
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1.4 There are differences in the probability of failure 
estimated but in the worst case, this difference is 5% and 
is the result of the difference in the failure points at each 
model. The computation time shown is the time required 
to estimate the failure probability at the best design. 
Kriging requires the longest time because of the 
additional effort required to compute the Kriging model 
derivates. To check the accuracy of FORM, a Monte 
Carlo Simulation of each model is done.  

 

Table 4. The probabilities of failure estimated using FORM and a Monte Carlo Simulation with each model 

FORM MCS (500,000 runs) 
Model Best Design 

Pr(F1) Pr(F2) 
CPU 
Time Pr(F1) Pr(F2) 

CPU 
Time 

Mechanistic ⎥
⎦

⎤
⎢
⎣

⎡
=

9997.0
008000.0

p  0.007912 0.008490 1.7s 0.007778 0.008606 < 1s 

RSM ⎥
⎦

⎤
⎢
⎣

⎡
=

9999.0
008001.0

p  0.008323 0.008159 1.9s 0.008505 0.008030 < 1s 

Kriging ⎥
⎦

⎤
⎢
⎣

⎡
=

9999.0
008001.0

p  0.008285 0.008133 ~3s 0.008404 0.008118 ~4.5s 

 
 
 

FORM computes a probability that is consistent 
with the MCS failure probability. In the worst case, this 
difference is approximately 2%. Due to the nature of the 
Kriging model, being more complex than the RSM, or in 
this case, also the mechanistic model, a MCS of the 
Kriging model takes a longer time. The speed of the 
RSM, however, is almost on par to the speed of the 
simple mechanistic model. 
 
6.2 Example 2: Thin Film Layer 
This example is adopted from (Bagchi and Templeton 
1994). The electrical impedance of a film is given 
explicitly as a function of three variables v1, insulator 
thickness, v2, conductor line width and v3, line height, 
through the equation. 

     
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

=
32

1

8.0
98.5

ln
2

87
vv

v
z

ε
v   ….Eq.45 

where the dielectric constant of the material ε = 
3.094539. 
 
STEP 1: Building the computer model 
A computer model based upon the mechanistic model, 

Equation 45, is built using MATLAB®. 
 
STEP 2: Selecting the training design 
Using the distribution of each, 

( )2
1 3333.0,6.26~ Nv , ( )2

2 2222.0,5.17~ Nv  and 
( )2

3 1111.0,6~ Nv , three levels of each variable are 
obtained (see Table 5) and a full 33 factorial training 
design is developed. 
 
Table 5. The three levels of each design variable used to develop 

the training design 

Level v1 v2 v3 
Low 24.6 16.16 5.34 
Nominal 26.6 17.5 6.00 
High 28.6 18.84 6.67 

 
 
STEPS 3 and 4: Choose a metamodel and estimate 

parameters and check the fit of the metamodel 
As in the previous example, the parameters of both the 
RSM and universal Kriging models are estimated and 
their fit is checked using CV to estimate the RMSE. 
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Table 6 depicts these results. It is shown that the RSM 
provided a better fit of the training design than the 
Kriging model. 
 

Table 6. The CV-RMSE estimate of each Metamodel 

Model CV-RMSE 
RSM 5.469 x 10-4 

Kriging 2.489 x 10-3 

 
 
STEP 5: Building the LSF 
In this problem, the upper and lower specification limits 
of 86 and 84 produce the limit state functions. 

        ….Eq.46 ( ) ( )vv yg −= 861

        ….Eq.47 ( ) ( ) 842 −= vv yg
 
STEP 6: Transform variables from v-space to u-space 
The Rosenblatt transformation is normally used to 
transform the variables from v-space to normal, 
uncorrelated u-space. A detailed description of this 
transformation is provided in (Madsen et al., 1986). 
Since the variables are normally distributed and 
uncorrelated, the transformation function looks like 

      iiii uv σμ +=    ….Eq.48 

 
STEP 7: Searching for the best design 
The optimisation looks like (44) with new bounds on the 
means; [ ] [ TT 33.617.186.2767.583.165.25 ≤≤ vμ

( )( )1ukgnull ∇

] . 
Since this problem consists of 3 design variables, then 
are two null-space vectors;  ( )( )ukgnull 2∇ . 
The results of the optimisation using the mechanistic 
model and both metamodels with FORM, are presented. 

Although the better fit of the RSM produces a closer 
design when compared with the results from the 
mechanistic model (see Table 7). This is observed in 
both the location of the MLFP and the estimation of the 
reliability index. This difference is not very great since 
the worse difference being approximately 1%. The 
difference between reliability indexes is less than 0.2%. 
The failure probabilities at the best design, estimate 
using both FORM and a MCS with 100,000 runs, are 
shown in Table 8. 

Similar to that of the previous example, 
( ) ( )( ) 086Pr 1 <−≡ vyF and . In this 

example, Kriging seems to be more conservative than 
the RSM since the failure probability estimate is higher 
than the mechanistic model-based FORM results.  

( ) ( )( ) 084Pr 2 <−≡ vyF

 
 

Table 7. The best design found using each metamodel with FORM 

Model Best Design MLFP 
1Rβ  

2Rβ  

Mechanistic 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

329.6
00.18
60.27

p  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=∗

5211.0
8643.0
184.1

1u
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=∗

5229.0
8299.0

190.1

1u
 

1.556 1.542 

RSM 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

328.6
01.18
60.27

p  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=∗

5219.0
8665.0
185.1

1u
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=∗

5226.0
8295.0

191.1

2u
 

1.558 1.543 

Kriging 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

330.6
00.18
60.27

p
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=∗

5244.0
8519.0
183.1

1u
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=∗

5198.0
8319.0

188.1

2u
 

1.553 1.544 

 
 
 

Table 8. Probability of failure estimated using a MCS of the Metamodel at the best design 

FORM MCS (100,000 runs) 
Model Best Design 

Pr(F1) Pr(F2) 
CPU 
Time Pr(F1) Pr(F2) 

CPU 
Time 

Mechanistic 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

329.6
01.18
60.27

p
 

0.05986 0.06158 ~1.5s 0.05957 0.06097 < 1s 

RSM 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

328.6
01.18
60.27

p
 

0.05965 0.06147 ~1.5s 0.05865 0.06114 < 1s 

Kriging 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

330.6
00.18
60.27

p
 

0.06070 0.06172 ~6s 0.06024 0.06166 ~1.5s 
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The difference in the probabilities is acceptable 
since the worse case difference ~ 2%. Like the previous 
example, the Kriging-based FORM method is slower 
than the RSM-based method. FORM is again consistent 
with Monte Carlo results. 
 
6.3 Example 3: Nonlinear LSF 
Consider the following mathematical problem, shown in 
Equation 48, based upon a problem from (Youn and 
Choi, 2004).  

    
 ( )21min μμ

μ
+=f

Subject to: 
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⎦
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⎢
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⎠

⎞
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⎝

⎛ −−
+
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=

−Φ≤
⎥
⎥
⎦

⎤

⎢
⎢
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⎡
≥−=

  

…Eq.49 

     
⎥
⎦

⎤
⎢
⎣

⎡
≤≤⎥

⎦

⎤
⎢
⎣

⎡

≤≤

8.3
8.4

2.0
2.1

 3.002.75
iR

vμ

β

 

It is assumed that each variable has the 
distribution ( )23.0,~ ii Nv μ . Using the means µ1 = 3 and 
µ2 = 2 along with the relation µi ± 6σ, five levels of each 
variable, v1 and v2, are obtained. The response of these 
25 design variable sets is then generated for each 
function, g1 and g2. A response surface model (RSM) 
and Kriging model is then fit and the associated CV-
RMSE is estimated to compare the fit of each 
metamodel.  

Table 9 shows the results. Kriging provided a better 
fit for the first mechanistic model but the RSM provided 
a better fit for the second. The fit of the Kriging 
metamodel is consistent since the both errors are in the 
order of 10-5. This is not true for the RSM. One fit is bad 
and the other is very good. 

 
Table 9. CVRMSE of each metamodel for each LSF

 Level g1 g2 
RSM 0.0276 1.742 × 10-15 
Kriging 1.082× 10-5 1.718 × 10-5 

 
 

FORM is used with each metamodel to calculate the 
best design. This problem has two steps to completion; 
the first involves finding the feasible design using 
Equation 34 and the second step involves optimising 
Equation 49. The best design is also calculated using the 
original functions with FORM.  

Table 10 depicts the results. It is shown that the best 
design found using the Kriging metamodel is closer to 
that found using the mechanistic model, although the 
RSM design was not bad. As seen in the previous 
examples, Kriging takes a longer time to find the MLFP 
than the RSM. Figure 5 shows a plot of the non-linear 
limit-state surfaces and the normal PDF contours. The 
solid line corresponds to g1 and the dotted line 
corresponds to g2. 

Using the MATLAB function ‘norminv’ the 
reliability index is estimated using the probability of 
failure from the MCS of each model. The results are 
shown in Table 11. Although not exactly equation to 
3.00 and 2.75, the designs produce reliability indexes 
that fall well within the specified boundaries. In terms of 
speed, the RSM is still faster than Kriging. 

 
 

 

 

 

 

 

 

 

Figure 5. The two limit-state surfaces, in u-space, along with the 
normal PDF contours 
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Table 10. The best design found using each model with FORM and the corresponding reliability indexes for each LSF 

Model Best Design MLFP 
1Rβ  

2Rβ  CPU 
Time

 

Mechanistic ⎥
⎦

⎤
⎢
⎣

⎡
=

218.3
470.3

p  
⎥
⎦

⎤
⎢
⎣

⎡
−
−

=∗

272.1
717.2

1u  
⎥
⎦

⎤
⎢
⎣

⎡
−

=∗

573.2
9706.0

1u  3.00 2.75 ~ 2s 

RSM ⎥
⎦

⎤
⎢
⎣

⎡
=

193.3
405.3

p  
⎥
⎦

⎤
⎢
⎣

⎡
−
−

=∗

456.1
623.2

1u  
⎥
⎦

⎤
⎢
⎣

⎡
−

=∗

551.2
028.1

1u  3.00 2.75 ~ 1.5s 

Kriging ⎥
⎦

⎤
⎢
⎣

⎡
=

218.3
471.3

p  
⎥
⎦

⎤
⎢
⎣

⎡
−
−

=∗

269.1
719.2

1u  ⎥
⎦

⎤
⎢
⎣

⎡
−

=∗

573.2
9702.0

1u  3.00 2.75 ~ 8.5s 
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Table 11. The probability of failure, at the best design, estimated 
using a Monte Carlo Simulation (500,000 runs) 

Model Best Design Pr(F1) Pr(F2) 
CPU 
Time 

Mechanistic ⎥
⎦

⎤
⎢
⎣

⎡
=

218.3
470.3

p  0.001450 
(2.978) 

0.002446 
(2.814) < 1s 

RSM ⎥
⎦

⎤
⎢
⎣

⎡
=

193.3
405.3

p  0.001522 
(2.963) 

0.002530 
(2.803) < 1s 

Kriging ⎥
⎦

⎤
⎢
⎣

⎡
=

218.3
471.3

p  0.001518 
(2.964) 

0.002574 
(2.798) ~ 8s 

 
 
8. Conclusion 
This paper has presented a simplified approach for 
parameter design of static systems when provided with 
random design variables. The method first uses a 
metamodel to approximate the mechanistic model which 
is then used to build the LSF based upon the design 
criteria. Finally, FORM is used to estimate the 
probability of failure. Since the design variables are 
random, the method searches for the means of the design 
variables that result in a reduced failure probability.  

Three examples have been presented to illustrate 
and show the accuracy of this methodology for 
metamodel-based parameter design . Two different 
metamodels have been used and the best design found 
using each metamodel, along with the failure point, 
reliability index and probability of failure have been 
compared. Since the examples presented are fairly 
simple, the failure point, reliability index and failure 
probability have also been found using the mechanistic 
model; these were considered to be the most accurate 
results and used to test the accuracy of the metamodel-
based FORM results.  

The examples have shown that the metamodels 
worked very well with FORM to find a design that is 
very close to the results from the mechanistic model. 
The accuracy of FORM is very good when compared to 
the Monte Carlo Simulation showing that FORM is 
reliable and has potential to replace the MCS to estimate 
the failure probability. In terms of speed, Kriging was 
the slower metamodel. Although FORM has been 
generally slower than a Monte Carlo simulation in 
estimating probabilities, FORM is able to produce a 
balanced design without adding additional constraints.  

The metamodel-based parameter design 
methodology has potential and further work involves 
increasing the complexity of the mechanistic models to 
include highly nonlinear or implicit mechanistic models. 
This method would also be applied to the design of 
systems with a dynamic response. 
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Appendix A:  
Converting the RSM to matrix-vector form 
Consider a 2nd order RSM with two design variables as shown in 
equation. 

( ) 215
2
24
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1322110 vvvvvvy ββββββ +++++=v          (A.1) 
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(A.2) 

Grouping and separating the constants, β and the variables, v we 
can get two vectors, (A.3) and (A.4), that when multiplied, 
according to equation (1) produces the exact form of (A.1). 
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Appendix B:  
Converting the Kriging model to matrix-vector form 
Consider the universal kriging model consisting of 2 design 
variables, v1 and v2. In its common form, this model would look 
like 

  ( ) ( ) ( )XβzΓvrv −+++= −1
22110

~Tvvy βββ            (B.1) 
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(B.2) 
Equation (B.2) is simplified to look like equation (B.3) where each 
element of ρ looks like (B.4). 
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Grouping and separating constants and variables, we  
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From these groupings, Tβ~ , β and ( )Xβz −−1Γ  are all 
vectors whose elements contain constants. Therefore, we can 
further group all these terms into the matrix wT, where, for our 2 
design variables, universal kriging model looks like. 
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Appendix C:  
Differentiating the Kriging Model 
Following Equation 2, differentiating the Kriging model involves 
differentiating (B.6). Therefore, the first derivative with respect to 
v1 looks like. 
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Now, using equations (B.3) and (B.4),  

     

( )
( ) ( )( v
v
v

j
j

jr
ρ

ρ
−−=

∂

∂
exp

~
)               (C.2) 

     

( ) ( )1,11
1

2 j
j xv
v

−=
∂

∂
θ

ρ v               (C.3) 

Substituting equations (C.2) and (C.3) into equation (21) we get 
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But ( ) ( )( )vv jjr ρ−= exp , therefore, 
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Substituting (C.5) back into (C.1) 
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This is repeated for v2. 
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