Petrophysical and Microhardness Characterisation of the Sans Souci Formation, Trinidad

Anastasia A. Baboolal¹, Ricardo M. Clarke¹, Joscelyn C. Knight¹ and Hasley Vincent¹

¹Department of Physics, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies; E-mails: anastasia.baboolal@gmail.com; ricardo.clarke@sta.uwi.edu; joscelyn.knight@sta.uwi.edu

²Department of Chemical Engineering, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies; E-mail: hasley.vincent@sta.uwi.edu

Corresponding Author

(Received 05 October 2012; Revised 07 January 2013; Accepted 17 January 2013)

Abstract: Since 1907, the Sans Souci Formation, the only igneous outcrop in Trinidad, has been investigated using scientific procedures such as lithology, stratigraphy, petrology, paleomagnetism, microscopic analysis and mineralogy. The approach taken in this work revolved around mineralogical, topographical, elemental and microhardness distribution characteristics using various laboratory analysis techniques, including x-ray diffraction (XRD), scanning electron microscopy, physical properties characterisation and vickers hardness methods. This is an attempt at quantitatively characterising the mineralogy as well as determining the elemental distribution within the rocks of the Formation. The results are expected to contribute to existing knowledge with respect to the petrophysical and microhardness characterisation of the Sans Souci Formation. Qualitative and quantitative XRD analyses of three (3) outcrop samples studied established that the minerals calcite, chlorite and albite featured predominantly in the Sans Souci Formation. Physical characteristics such as apparent porosity, bulk density and water absorption were also determined and their values ranged 0.91-1.97%, 0.58-1.29% and 1.50-1.69 g cm⁻³, respectively. The average Vickers Hardness value for sample SS3 was determined to be 833.9.

Keywords: Petrophysics; microhardness; mineralogy; Sans Souci; Scanning Electron Microscopy

1. Introduction

Trinidad is the southernmost of the West Indian islands. The Sans Souci Formation is located in the eastern region of the Northern Range and is the only igneous outcrop found in Trinidad (Cruz et al., 2007; Donovan, 1994). As early as 1907 this small outcrop, formerly known as the Sans Souci Volcanic Formation, was described in terms of lithology, geology, petrology, mineralogy and microscopy. Cunningham-Craig (1907) classified it as an epidiorite sill. Waring (1926) used microscopic analysis to establish that the igneous rocks were a combination of basaltic tuff, granophyre and diabase. Maxwell (1948) employed the same technique as Waring (1926) and obtained similar results, in that the igneous rocks were a stock of andesitic composition. Barr (1963) described the rocks as dense, lithified, dark-green to grey-green, generally fine grained and poorly sorted pyroclastic material. Wedge and Macdonald (1985) discontinued the use of the name Sans Souci Volcanic Formation and formally used Sans Souci Formation after they determined the major and trace elements and petrophysically described the chemical alteration of the rocks. Frey, Saunders and Schwander (1988) used x-ray powder diffraction to determine the mineralogy of the rock sample, but only qualitatively.

In terms of a petrophysical description of the Sans Souci Formation, the works cited above represent the most significant researches thus far. In this present study, a non-invasive laboratory approach which involved a combination of petrophysical techniques to characterise the rock samples was adopted. These included x-ray diffraction (XRD), scanning electron microscopy (SEM), physical characterisation and vickers hardness methods. With the application of these techniques, these outcrop samples can be qualitatively and quantitatively characterised in terms of their mineralogy and elemental composition as well as microstructurally defined. This work serves to augment the paucity of research done with respect to the petrophysical and microhardness characterisation of the Sans Souci Formation.

Therefore, the main objective of this research was to give a more detailed petrophysical characterisation of the igneous rocks of the Formation using a combination of advanced analytical techniques now available.

2. Materials and Methods

2.1 Sampling Technique

Samples were taken at the type section of the outcrop close to the Old Sans Souci Fishing Depot (see Figure 1).
Fresh unweathered samples were preferred in order to avoid probable misleading results should weathered samples be used. The samples were chiselled out of the rock mass beneath the regolith layer.

2.2 Laboratory Methods

X-ray powder diffraction
XRD and mineralogical characterisation of the rock samples was done using Cu Kα radiation in a Bruker 5005D x-ray diffractometer. Samples from the bulk rocks were ground to a particle size of less than 500 µm, and analysed over the 2-theta range 3º to 40º (Jenkins and Snyder, 1996; Knorr and Bruker, 2008; Pecharsky and Zavalij, 2009; Szponder and Trybalski, 2010). In conjunction with the qualitative profiles obtained, the TOPAS software based on the Rietveld quantitative phase analysis was used to generate quantitative data. This is a widely used and reliable quantitative phase analysis technique widely employed in both research and industrial purposes (Chalmers, Ross and Bustin, 2012; University of Cambridge, 2012).

Scanning electron microscope
Fractured sections from the bulk rocks were gold coated and imaged in a Philips 500 electron microscope operated at 20 kV. Energy Dispersive X-ray Analysis (EDXA) elemental mapping was also done using the microscope together with the EDAX Genesis elemental analyser (Goldstein et al., 2003).

Physical characterisation methods
The water displacement method based on the Archimedes principle was used to determine the apparent porosity, bulk density and water absorption of the samples (Yavuz, Demirdag and Caran 2010). The method involved obtaining a dry weight \(W_d \) and a wet weight \(W_w \) after the open pores were saturated with water under vacuum. Subsequently, a suspended weight \(W_s \) was also obtained (ASTM, 2006; Siegesmund and Durrast, 2011). These weights were used to calculate the various physical property parameters according to:

\[
\text{Apparent Porosity} = \frac{W_s - W_d}{W_d} \times 100\% \quad (1)
\]
\[
\text{Water Absorption} = \frac{W_w - W_d}{W_d} \times 100\% \quad (2), \text{ and}
\]
\[
\text{Bulk Density} = \frac{W_d}{V} \text{ g cm}^{-3} \quad (3)
\]

In each sample twelve (12) replicates were used to calculate the standard deviation.

Vicker’s Hardness
Samples from the Formation studied in this research were set in resin, ground and polished, then mounted and tested in the Buehler, IndentaMet 1100 Series MicroIndentation Hardness Testers. This equipment was used to determine the Vickers Hardness Values for the rock samples. A load of 300 grams was used and a dwell time of 8 seconds was applied to the resin set samples.

All three samples taken from the Sans Souci Formation were prepared to determine the Vickers Hardness, however SS1 and SS2 samples could not be used due to the poor nature of the samples such that no determinations of Vickers Hardness could have been made. In addition to obtaining the hardness number, the indentation response of the sample was observed and imaged using the camera of the instrument interfaced with a computer.

3. Discussions

Table 1 shows the general description of the Sans Souci samples analysed. Generally, all three samples were similar in appearance, with the exception that SS2 displayed areas of purple and magenta hues.

<table>
<thead>
<tr>
<th>Rock Classification</th>
<th>Sample</th>
<th>General Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabasalt</td>
<td>SS1</td>
<td>Black, dark grey, angular and very dense in appearance and texture</td>
</tr>
<tr>
<td>Metagabbro</td>
<td>SS2</td>
<td>Black, grey, dark brown, purple/magenta appearance, angular and very dense</td>
</tr>
<tr>
<td>Metabasalt</td>
<td>SS3</td>
<td>Black, grey, angular and very dense in appearance</td>
</tr>
</tbody>
</table>

On X-ray diffraction
Figure 2 shows normalised XRD profiles for SS1, SS2 and SS3. As can be seen, quartz, chlorite, calcite and albite were the most prominent minerals detected in the SS1 and SS2 samples. In the SS3 sample, chlorite and calcite predominated. Quantitatively, Table 2 reveals that in fact SS3 was comprised mostly of calcite and chlorite and to a lesser extent albite. On the other hand, the constituents of SS1 and SS2 were mostly calcite, chlorite and albite. Qualitatively, these minerals detected in the SS1, SS2 and SS3 samples were basically the same.
reported by Frey, Saunders and Schwander (1988) for their sampling site in the Sans Souci Formation.

Higher magnification imaging in the vicinity of the quartz veins (Figure 3(b)), suggests that there may be some degree of vertical layering in the calcite/chlorite/albite intermix. In yet another selected region of the same sample (Figure 3(c)), angular quartz grains (left) can be seen embedded in the intermix.

On scanning electron microscopy
Table 2 shows the quantitative mineralogical values obtained for rock samples. Figure 3(a) shows a SEM micrograph of a selected area of horizontally stacked, bedded intermixed calcite/chlorite/albite permeated by transverse quartz veins in the SS1 sample in which the combined calcite/chlorite content amounted to some 84%.

Table 2. The quantitative mineralogical values obtained for rock samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Quartz %</th>
<th>Calcite %</th>
<th>Chlorite %</th>
<th>Albite %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS1</td>
<td>3.79</td>
<td>63.12</td>
<td>20.63</td>
<td>12.46</td>
</tr>
<tr>
<td>SS2</td>
<td>4.11</td>
<td>17.08</td>
<td>31.78</td>
<td>47.02</td>
</tr>
<tr>
<td>SS3</td>
<td>0.48</td>
<td>76.05</td>
<td>14.69</td>
<td>8.78</td>
</tr>
</tbody>
</table>

To highlight the variability of the microstructure of the samples, Figure 4(a) shows a selected area of fine particulate calcite in the sample SS3. High magnification imaging (Figure 4(b)) further reveals a honeycomb-like texture to the particles.

Figure 5 shows a selected region of the SS1 sample with the corresponding elemental maps shown in Figure 6. Consistent with quartz, calcite, chlorite and albite being the major constituents (see Table 2), areas rich in, for example Al (Figure 6(a)), Si (Figure 6(b)) and Ca (Figure 6(d)) are clearly identifiable. Further, in addition to Fe and Ti, trace amounts of Na, V, Mn, Co, B were also detected and confrimed on the basis of the EDXA spectrum (see Figure 7) obtained from the same field of view of the sample.
On Physical Properties

Table 3 shows the apparent porosity, bulk density and water absorption of the samples. For all of the samples, the apparent porosity and the water absorption were low.

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Apparent Porosity/ %</th>
<th>Bulk Density/ g cm$^{-3}$</th>
<th>Water Absorption/ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS1</td>
<td>1.44 ± 0.39</td>
<td>1.56 ± 0.01</td>
<td>0.92 ± 0.25</td>
</tr>
<tr>
<td>SS2</td>
<td>1.97 ± 0.46</td>
<td>1.69 ± 0.17</td>
<td>1.29 ± 0.30</td>
</tr>
<tr>
<td>SS3</td>
<td>0.91 ± 0.23</td>
<td>1.50 ± 0.10</td>
<td>0.58 ± 0.15</td>
</tr>
</tbody>
</table>

Vicker’s Hardness

From the results shown in Table 4, the average Vickers Hardness value for sample SS3, was determined to be 833.9. The response of the rock to indentation is shown in Figure 8. Lateral cracks and lateral chipping can be seen around the indentation. Due to the indentation, the areas around the indentation appear to be pushed upwards, indicated by shiny appearances around the square based pyramid indent. However, this behaviour seen for the SS3 samples relates to that of a typical brittle material.
Table 4. The Vickers Hardness Values obtained for rock sample, SS3

<table>
<thead>
<tr>
<th>Trial</th>
<th>Vickers Hardness Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>819.8</td>
</tr>
<tr>
<td>2</td>
<td>990.4</td>
</tr>
<tr>
<td>3</td>
<td>766.0</td>
</tr>
<tr>
<td>4</td>
<td>798.2</td>
</tr>
<tr>
<td>5</td>
<td>795.2</td>
</tr>
</tbody>
</table>

Figure 8.(a) - (d). Typical indentation response of Sample SS3

4. Conclusions

The Sans Souci Formation was characterised petrophysically/ microstructurally defined using a combination of analytical techniques which included X-Ray Diffraction, Scanning Electron Microscopy, Physical Characterisation and Vickers Hardness Methods. Physically, the rocks of the Formation are hard and dense and of low porosity with, at a microscopic level, considerable variability in microstructure.

The results of the mineralogical analysis for the type section studied, revealed that the rocks are comprised principally of calcite, chlorite, quartz and albite. Spatially, however, there is, in terms of composition, a high degree of variability to their relative proportions. The empirical hardness value determined for this Formation was relative to the micro hardness scale. The Sans Souci Formation is now microstructurally characterised. The originality of this work lies therein the analytical techniques used to microstructurally characterise the Sans Souci Formation, and the properties analysed can be further used for civil engineering purposes.

References:

Authors’ Biographical Notes:

Anastasia Anjna Baboolal is a postgraduate researcher at the
Environmental Physics Laboratory, Department of Physics, The University of the West Indies (UWI), St. Augustine. She holds a BSc in Physics (minors in Environmental Physics and Materials Science) and is currently in the final stages of examination for the MPhil degree. Her research involves petrological and microhardness characterisation of some metamorphic and sedimentary Formations in Trinidad. Ms. Baboolal plans to extend her research towards characterising the porcellanites of South-west Trinidad.

Ricardo Marcus Clarke is a lecturer in Environmental Physics. He holds a BSc, MPhil and PhD from The University of the West Indies. His main research area is Renewable energy, particularly focusing on solar energy. Dr. Clarke leads research at the Environmental Physics Laboratory and some of the areas include wind energy assessment, climate and climate impact analyses and petrology.

Joscelyn C. Knight is a senior lecturer at The University of the West Indies (UWI), St. Augustine in Materials Science. He holds a BSc from The UWI, and a PhD from Cambridge University, United Kingdom. His area of research is Materials Science with a focus in Ceramics and Mineralogy. Dr. Knight has published some fifty papers in this area.

Hasley Vincent received his undergraduate degree in geology from The University of the West Indies, Jamaica and a Masters degree in Petroleum Geosciences from Imperial College London. In 2008, he completed doctoral research on the sedimentology of Trinidad clastics at Dalhousie University, Halifax. Dr. Vincent has been involved in oil and gas exploration and development over the past 14 years in organisations such as Halliburton, Petrotrin, the Ministry of Energy and Energy Affairs and most recently, BG Trinidad and Tobago.