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Abstract: An adaptive model for fire (flickering flame in the infrared region) detection and subsequent suppression is 

presented. The model applies a Pyro-electric Infrared sensor (PIR)/Passive Infrared Detector (PID) for infrared fire 

detection. Sample analog signals were generated and simulated within the framework of the modeled PIR sensor/PID. The 

signals were modeled around the flame flicker region (1-13Hz) and outside the region. A Joint Time Frequency Analysis 

(JTFA) function was applied to model the Digital Signal Processing (DSP). This involved extraction of fire and non-fire 

features from the sample signals. A Piecewise Modified Artificial Neural Network (PMANN) and the Intraclass Correlation 

Coefficient (ICC) were employed in the decision framework. The PMANN generated polynomials which analysed and 

‘memorised’ the signals from DSP. The ICC further categorised cases as 'fire' or 'non-fire' by comparing data from the 

PMANN analyses. In cases of detected fire, valves to several fire suppression systems (like water sprinklers and foam 

injection lines) can be opened. Hence, the Solenoid Hydraulic Valve was modelled to be controlled by a Proportional 

Integral Derivative Controller (PIDC). The whole model of detection and suppression can be further developed, studied and 

subsequently implemented. 
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1.  Introduction 

Petroleum facilities, also known as oil and gas storage 

facilities are sites where combustible/flammable liquids 

are received from shipping vessels, pipelines, tankers 

etc. These products can be stored or blended in bulk for 

the purpose of distribution by tankers, pipelines and 

other methods of transfer and transportation. From this 

definition, one expects the observation of very high 

safety standards on such sites to prevent loss of any kind 

especially by fire. Despite the progress made in the 

design and installation of safety facilities for oil storage 

sites, they remain one of the most hazardous places on 

earth. Late detection and/or suppression of fires are 

among the primary reasons why little fire outbreaks 

leads to major oil storage site fire disasters. Two studies 

on petroleum facilities (Persson and Lonnermark, 2004 

and James and Cheng-Chung, 2006) listed the following 

as the main causes of fire outbreaks in oil and gas 

storage sites: lightning, maintenance error, operational 

error, sabotage, equipment failure, crack and rupture, 

static electricity, leak and line rupture, open flames, 

natural disasters and runaway reactions. The results 

show that most fires in these storage sites primarily 

affect the tanks, with lightening being the main cause of 

fire outbreaks.  

Even though many problems can be traced to fire 

outbreaks in oil storage sites, usually their spread is 

associated with low quality engineering. A model 

solution is proposed to the problem of early detection 

and automatic suppression. This particular problem is 

most rampant in oil and gas storage sites in local Nigeria 

as well in some other developing nations. Although 

several enhanced fire prevention/fighting engineering 

mechanisms are already being employed to mitigate this 

problem, research and development of new and better 

ones still continue. This work is just another window 

into that wide field of research.  

 

2. Related Work  

The use of fire detection systems incorporated with fire 

suppression started with Philip W. Pratt of Abington, in 

1872 (“Automatic fire suppression,” 2015, para 2). He 

patented the first automatic sprinkler system. Thus, there 

was a detection system in his design that automatically 

actuated the sprinklers. Generally, from the anatomy of 

fire, represented by Equation (1). There are four (4) 

main areas of fire detection: smoke, gas (like CO2, CO, 

H2S, etc.), heat and light. The light emitted cover both 

the infrared and ultraviolet regions. 

 

 

 Conventional smoke detectors typically detect the 

presence of certain particles generated by smoke and fire 

by ionization or photometry. An important weakness of 

such detectors is that the smoke has to reach the sensor. 

For heat detectors, the heat must be sufficient enough to 

activate the heat sensor. This may take a significant 
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amount of time to issue an alarm. The time delay can 

cause an uncontrollable fire to develop. Therefore, it is 

not possible to use them in open spaces. For UV 

detectors, they are plagued by many false alarm signals, 

which reduce their reliability (Nolan, 1996). With 

minimal and controllable false alarms (using 

sophisticated detection algorithms), infrared detection 

remains the most reliable. 

Several detection algorithms have been applied over 

time in the area of infrared flame detection. Some of the 

prominent algorithms include the statistical analysis of 

the apparent source of the heat of fires (Zhu et al, 2008) 

at a near infrared zone. After tests and experimentations, 

it was concluded that the detector functioned well for 

open flames, producing very few false alarms, while 

smoldering fires were hardly detected, since there was 

no direct radiation to the detector. They were only 

detected when they had direct radiation. Several 

Advanced Very High Resolution Radiometer (AVHRR) 

fire detection algorithms were reviewed in another study 

(Li et al 2000).  The study aimed at uncovering their 

principles of operation and limitations, while also 

making possible recommendations for improvement.  

Moreover, an adaptive method for hydrocarbon 

flame detection was developed using a Joint Time 

Frequency Analysis (JTFA) functions for Digital Signal 

Processing (DSP) and Artificial Neural Network for the 

decision mechanism (Javid et al., 2008). The JTFA 

functions used were the Short Time Fourier Transform 

(STFT) and The Fast Fourier Transform (FFT), with the 

Hamming Window function applied to narrow the 

coefficients to a particular range. That study gave 

convincing results and was eventually developed into a 

marketable practical application. Furthermore, using the 

Markov Model decision algorithm and Lagrange wavelet 

filter banks to extract fire features from signals recorded 

by pyro-electric infrared sensors, a fire detector was 

modeled which could easily detect fire within the 

flickering flame frequency (Fatih et al., 2012). Out of 

220 fire test sequences, they recorded 3 false alarms and 

217 correct alarms. Each detection had a response time 

of 77seconds.  

Some of the most prominent suppression systems 

include fire water distribution systems, sprinkler 

systems, water spray and deluge systems, water flooding 

systems, fire water control and isolation valves (Nolan, 

1996). In developing countries (e.g. Nigeria), the 

pipelines supplying water or other fire suppression 

liquids to these systems contain manually operated 

valves. This slows down the process of suppression 

during emergencies. However, by applying 

automatically actuated valves as proposed in this work, 

it will ease the fire suppression process. Proportional 

Integral Derivative Controllers (PIDC) has been applied 

in many areas to automatically actuate valves. Some of 

the applications include the study of The Position 

Control System of a hydraulic cylinder based on 

microcontrollers (Munaf, 2008). Using the MATLAB 

software, a PIDC in connection to the hydraulic valve 

was simulated. The purpose was to use the controlling 

mechanism of the PIDC to cause the cylinder to function 

automatically. Besides, pneumatic actuator systems were 

designed and controlled using PIDCs and valves (Lai et 

al., 2012). The pneumatic systems, being non-linear, 

were controlled using linear control mechanisms like 

PID controllers and valves.  

This work used an algorithm which applied the 

Discrete Wavelet Transform (DWT) (a JTFA function) 

for DSP, a Piecewise Modified ANN (PMANN) and the 

Intraclass Correlation Coefficient (ICC) for the decision 

framework. The DWT made on-line analysis and feature 

extraction of signals possible with the shortest time 

delay. The PMANN analysed and ‘memorised’ data 

(from the DSP) that could be easily matched for “fire” 

and “non-fire” cases using the ICCs. It further applied 

the PIDC to control a solenoid hydraulic valve, which is 

commonly used in petroleum facilities. Figure 1 shows 

the flow chart for the model adapted in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Flow Chart for the modeling of Fire Detection and 

Suppression System 

 

3. Methodology 

3.1 The Pyro-Electric Infrared Sensor (PIR)/Passive  

       Infrared Detector (PID) 

A PIR sensor/PID is comprised of three main parts, 

namely the Fresnel lens (which focuses the IR radiation 

to the sensor), the PIR sensor which senses the IR 

radiation and an amplifier/comparator or amplifier/ 

analog to digital converter (ADC) circuitry depending on 

the generation of the PID (Emin, 2009). The Fresnel lens 

offers a field of view (FOV) of 110o over a distance of 

11m. This work simulated the third generation PID, 

where the comparator circuitry is replaced by analog to 

digital converter (ADC) as shown in Figure 2. Hence, 

after amplification, we have the ADC. The ADC gains 

were then fed into a microprocessor containing the 

detection algorithm for further signal processing and 

categorisation decision (if the model is to be 

implemented). 
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Figure 2. Third Generation PID circuitry for capturing analog signals and converting them to digital signals 

 

 

Such a sensor/detector can be modeled as a 

capacitor with capacitance Cd with a Poly-Vinylidene 

Fluoride (PVDF) film as the dielectric with thickness d 

and surface area A (Odon, 2010). When IR radiation of 

power Φ(t), varying in time is incident on the active 

surface of the PIR sensor, an electric charge q(t) is 

generated. This is transferred as a signal with 

information content either as voltage V(t) on the detector 

electrodes or current Ip(t) flowing through the low load 

resistance of the detector output. Converting IR radiation 

into an electric signal is done in 3 stages: converting 

radiation power Φ(t) to thermal change on the sensor 

surface i.e. temperature ∆T(t), the second stage is the 

thermal to electric conversion i.e. ∆T(t) to Ip(t), and the 

last stage is the current to voltage signal conversion i.e. 

Ip(t) to V(t). The PID detects infrared radiations from 

several sources within its range or field of view. 

From automatic control theory, the procedures for 

the creation of block diagrams for simulation involves 

connecting the block transfer function in series, where 

series connection implies multiplication. For our model, 

we arranged them in the order: GT(s) (radiation to 

thermal), GTIp(s) (thermal to electrical) and GIpV(s) 

(electrical to voltage), describing properties of the 

appropriate signal conversion stage. Hence, the 

equivalent transfer function is expressed as Equation (2) 

and a schematic of the process is shown in Figure 3:  

G(s) = GT(s) × GTip(s) × GIpV(s)  (2) 

       A Laplace transfer function was developed for the 

simulation, expressed as Equation (3) (Odon, 2010): 

 

where p is the pyro-electric coefficient, ƞ-absorption 

coefficient of radiation, R-equivalent resistance, C-

equivalent capacitance, d-thickness of PVDF film, c 

prime-volume specific heat, -thermal time constant 

and -electric time constant. Using values for a 

standard detector with small PVDF thickness, sample IR 

radiations around the flickering flame frequency (1-

13Hz), and also far from it, were generated and 

simulated on the MATLAB/SIMULINK software as 

shown in Figure 4. The values for the various parameters 

were obtained from standard values for PVDF IR sensor 

(Piezo Film Sensors Technical Manual by Measurements 

Specialties Inc.) and from other test results (Odon, 

2010). The values of parameters for the PVDF PIR 

sensor/PID are outlined in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Schematic Diagram for Conversion of IR radiation to  

Voltage Signal 
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Figure 4. MATLAB/SIMULINK block for sample flickering flame signal (13Hz) 

 
Table 1. Parameters for the PVDF PIR sensor/PID 

Name Value Unit 

Pyro-electric coefficient p 3×10-6 C/cm2.K 

Volume specific heat c’ 2.4 J/cm3.K 

Permittivity ε  106×10-14 F/cm 

PIR film thickness d 25 Mm 

Thermal conductivity gth 0.00135 W/cmK 

Detector active surface A 132×10-2 Cm2 

PIR detector Capacitance Cd 560 pF 

Amplifier input capacitance CL Negligible pF 

Amplifier input resistance RL  10 MΩ 

Absorption coefficient of radiation η 1 - 

Electrical time constant of  detector-amplifier circuit τe 0.0056 S 

Thermal time constant τth 0.0110 S 

 

 

 

3.2 The Detection Algorithm 

3.2.1 Digital Signal Processing 

The digital signal processing algorithm was developed 

using the Discrete Wavelet Transform (DWT) JTFA 

function implemented in real-time as wavelet filters 

(Schneiders, 2001). The signals were first passed 

through a window function (the Hamming window) to 

attenuate the input signal, thereby reducing spectral 

leakage and causing the signal to be more periodic. A 

window length of 256 was chosen. This is advantageous 

since it reduces the response time of the detection 

mechanism by two (Javid et al., 2008). The window 

function is expressed as in Equation (4) (Robert, 2012), 

         

 

       With a 256 window length, a Nyquist sampling 

frequency of 50Hz was chosen. The flickering flame 

frequency of 13Hz (Fatih et al., 2012) was used as the 

cutoff frequency. The Nyquist sampling frequency is 

determined from fs ≥ 2 (cutoff   frequency). Applying the 

formula, we get 26Hz as our sampling frequency. But a 

50Hz sampling frequency was chosen to widen the 

frequency range in order to obtain a better sampled 

signal.  

For real signals, only half of the number of samples 

(the same as the window length) contains essential 

information without redundancy. Hence, using 

Rayleigh’s Limit (Robert, 2012), the frequency 

resolution is expressed as Equation (5), which becomes 

Equation (6) for the signals: 

  

 

Real-time wavelet filters are defined by their 

Quadrature Mirror Filters (QMF) used for DWT. QMFs 

are perfect reconstruction filter banks where the 

calculation of coefficients for the filters at all levels is 
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seen as making an orthonormal (orthogonal and 

normalised) projection onto a new base. These filters 

banks contain highpass (H) and lowpass (L) filters of 

length N+1 (Schneiders, 2001), where N is the number 

of points or filter order which is the same as window 

length.  

Depending on the number of levels, denoted as P, 

the analysis filter was applied to the input signal to 

calculate coefficients for the first level. Using N old 

input points, the coefficient was then calculated for the 

next level. Hence, the total number of old input samples 

needed for computation of a new coefficient at a certain 

decomposition level is defined by Equation (7) 

(Schneiders, 2001): 

 

 
where i is the decomposition level varying between 

1 and the maximum, P, and N the order of the original 

filters. From this point, coefficients were obtained as the 

output at each level. This way made on-line analysis and 

feature extraction possible with the shortest time delay 

for each decomposition level. This is good for real time 

situations like flickering flames and other radiation 

emitting objects. Such structure was built on the 

MATLAB software. The code produced a filter matrix 

A, which was implemented as discrete (Finite Impulse 

Response) FIR filter block on MATLAB/SIMULINK. 

Since all coefficients are updated at every sample hit, the 

time resolution increased. Hence, for filter structure as a 

wavelet analyser the time resolution is expressed as 

Equation (8) (Schneiders, 2001): 

 

The time-resolution is equal to the sample time of 

the system. For the DWT perfect reconstruction multi-

resolution tree the frequency resolution is a function of 

the decomposition level P expressed as Equation (9) 

(Schneiders, 2001): 

 

 

Using the values for sampling frequency and 

frequency resolution, the time resolution was determined 

and decomposition level was set to be  = 0.02s and P 

= 6 as shown below. 

         

 

And from Equation (6), we had             

        

 

       Using N=256 points, the filter lengths were 

calculated as: L = H = N + 1 = 256 + 1 = 257 

Substituting the values for the number of points N, 

filter lengths for the highpass (H) and lowpass (L) filters 

and the decomposition level P into our MATLAB code 

generated the needed coefficients. These coefficients 

were substituted into the Finite Impulse Response (FIR) 

filter block on MATLAB/SIMULINK software, as 

shown in Figure 5. Hence, the block was renamed 

‘Wavelet Filter’. The coefficients obtained are given in 

the matrix A. 

A = {0.00, 2.82, 0.00, 0.00, 0.00, 0.00} 

The digital signal processing as described here 

ensures that specific features of the signal are extracted, 

so that false alarms can be reduced to the barest 

minimum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 5 MATLAB/SIMULINK block for sample flickering flame signal (13Hz) 
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3.2.2 The Decision Mechanism 

An Artificial Neural Network (ANN) algorithm and the 

Intraclass Correlation Coefficient (ICC) constituted the 

decision rule. Previous research employed neurons and 

several complex scaling parameters to classify the 

network and get the desired output (Javid et al., 2008). 

The use of neurons for ANN is very difficult and 

complex. Hence, in this model neurons were not used. 

Instead the algorithm made use of polynomial 

approximations or the Least Squares approximation 

method, whereby polynomial equations were generated 

to establish a link between the input and the output 

(Chukwuka, 2014).  

        For this algorithm, the input parameters were 

distributed into the network, rather than lumping them 

into the network. Lumping the inputs into the network 

creates several errors while distributing them reduces 

these errors (Chukwuka, 2014). Four (4) distributions 

were made, which generated four equations resulting in 

a Piecewise Modified ANN (PMANN). Figures 6 and 7 

are the algorithm flow charts. 

       The polynomial generated for our own case is 

expressed as Equation 12 (Chukwuka, 2014): 

  

    where k is the number of inputs being considered. For 

the purpose of simulation k=3. But the network was 

trained with the model flame flicker frequency (13Hz) 

signal, so that it would be able to differentiate fire cases 

from non-fire during simulation. 

Let Wi be the input weights and Sfi their scaling 

factor, and ai, bi, ci and di be the coefficients of each 

input considered. The coefficients are expressed as in 

Equation (13): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Flow Chart for proposed PMANN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Inputs and Outputs of the Neural Network 

 
 

 

 

 

 

 

 

For this model and simulation, the weight was set to 

be Wi = 1.0 and scaling factor to be Sfi = 0.01. This 

simplified the scaling process, making the equations 

easily evaluated within the framework of the network. 

The coefficients obtained could be matched for ‘fire’ and 

‘non-fire’ cases using simple statistical correlations like 

the ICC. The algorithm was designed to receive inputs, 

sort them out, adjust their parameters and compute the 

expected result. The polynomial equations obtained from 

the above analysis were logged into a MATLAB m-file. 

The ensuing programme ran for different data sheets 

containing signal coefficients from the DSP. 

Using the Intraclass Correlation Coefficient (ICC), 

data from the PMANN analysis are differentiated into 

“fire” and “non-fire” cases. The ICC is used to quantify 

the degree to which measurements with a fixed degree of 

relatedness match each other in terms of quantitative 

trait. Besides, this statistical analysis can be applied to 

assess the consistency (or agreement) of quantitative 

measurements made by different observers measuring 

the same quantity. All these are classified as reliability 

analysis. Hence, this method was applied to analyse the 

data gotten from PMANN. The coefficients obtained 

from the data of sample signals of frequency 2Hz, 50Hz 

and 13Hz (fire signal) were matched against those of the 

13Hz (fire signal) used for training.  

For a perfect match, the scenario was recorded as 

“fire” otherwise it was recorded as “non-fire”. This 

analysis was carried out on the SPSS 16.0 software. The 

results obtained were for the “class 2” or “two-way” 

random single and average measures (consistency/ 

absolute agreement) ICC with a 95% confidence 

interval. Here, the measurement raters are chosen at 
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random. The reliability of the analysis is interpreted 

between the lower and upper bound of the confidence 

interval (see Figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. SPSS ICC Reliability Analysis 

 

3.2.3 Suppression Mechanism 

The fire suppression response mechanism involved the 

modeling of control valves. The aim was to come up 

with a model that could be able to control (open/close) 

fire suppression systems (foam injection lines, water 

deluge lines, and water sprinkler lines, etc.), pipelines 

and also active pumps. By using Proportional, Integral 

and Derivative Controllers (PIDCs), we simulated the 

control of an Active Hydraulic Device (ADH) such as 

hydraulic proportional valves (Yong, 2009).  

      Under normal system operations in these sites, 

pumps used for loading and unloading of petroleum 

products are always running to keep business moving. 

Also, fire pipelines for suppression systems are always 

pressurised for emergency cases. These valves can be 

connected at key places along these pipelines, such that 

immediately this model detector senses fire, signals are 

sent to these valves for prompt control as the case may 

demand. 

Developed out of the ineffectiveness of the 

Proportional (P) and Proportional Derivative (PD) 

controllers, the PIDCs are better in function and 

response since they integrate the Proportional (P) and 

Proportional Derivative (PD) controllers. They have 

several applications, including use at oil and gas storage 

sites.The conve ntional PID equation is expressed as 

Equation (14) (Yong, 2009) 

 
where e is the controller error, that is the deviation 

of the process variable u(t) from its set point uo. 

Constants KC, Ti and Td are, respectively, the 

proportional gain, integral time and derivative time 

constants of the PIDC. They represent the characteristics 

of the controller. The Laplace transfer function is 

expressed as in Equation (15) (Katsuhiko, 2010). 

 

 
In determining the values for Kc, Ti and Td for 

simulation, the Zeigler-Nichols method of tuning PIDCs 

was used (Katsuhiko, 2010). The method has two (2) 

approaches, the process reaction method and continuous 

cycling method. For the model, the process reaction 

method was applied.  

This is based on the assumption that the open-loop 

step response of most process control systems has an S-

shape, called the process reaction curve. It is 

characterised by two (2) constants, the delay time L and 

time constant T. For the PIDC Kc = 1.2T/L, Ti = 2L and 

Td = 0.5L. Substituting these into Equation (16), the 

Laplace transfer function becomes 
 

 

 

Generally, the control system makes the hydraulic 

device active. So, the head-discharge relationship of an 

AHD is usually dynamically modified via its control 

system to change the opening or closing of its control 

valve. The generalised dynamic characteristics of an 

AHD are expressed as Equation (17) (Yong, 2009): 

 

 

where Y corresponds to the solenoid of a hydraulic 

proportional valve. Electric signals from a PIDC are 

directed to the solenoid to either open/close the valve. Q 

is flow rate and H is the head. 

The solenoid of the hydraulic valve was assumed to 

have first order dynamics (Roland, 2001) expressed by 

Equation 18: 

 

 

Using standard manufacturer values for a PIDC 

(Munaf, 2008), the hydraulic proportional valve was 

simulated on MATLAB/SIMULINK interface as shown 

in Figure 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. MATLAB SIMULINK block diagram for Hydraulic 

Valve Response 
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The values were varied to get different responses for 

the same hydraulic valve constant (Munaf, 2008): 

Kc = [5, 5, 2], Ti = [5, 1, 1], Td = [2, 1, 2] and valve 

constant Kv = 1.0 

Changing Ti from the valve dynamic equation also 

changed its response to the PIDC. Generally, signal flow 

through the whole model is as shown in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 10. Signal Flow for whole model 

 

4. Results and Discussion 

Figures 11, 12 and 13 were obtained after infrared 

signals modeled at the flickering frequency (13Hz), and 

other frequencies for example 2Hz and 50Hz were 

simulated using the MATLAB/SIMULINK block for the 

PIR sensor/PID, respectively. 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. PIR Sensor/PID Output for fire at 13Hz 

 

 

 

 

 

 

 

 

 

 

Figure 12. PIR Sensor/PID Output for radiation at 2Hz 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. PIR Sensor/PID Output for radiation at 50Hz 

 

 

From these figures, the difference among the 

various radiations can easily be seen. A step function, 

sequence interpolator and pulse generator (see Figure 4) 

were added together to generate the IR analog signals. 

This accounted for the oscillatory nature of the graphs. 

The fire radiation produced higher values (from -3 and 3 

V) for voltage responsivity. If the model is to be 

implemented, the voltages are fed into a microcontroller 

with the Digital Signal Processing algorithm (DSP). A 

similar case was achieved when the voltages were fed 

into the MATLAB/SIMULINK interface containing the 

corresponding DSP blocks discussed earlier (Figure 4).  

For a Hamming window length of N = 256 and 

wavelet filter implemented on SIMULINK as a discrete 

Finite Impulse Response (FIR) filter block, the 256 

samples (or coefficients) considered by the window 

function were filtered and the recorded samples 

narrowed down to 52 samples (or coefficients). This 

further fine-tuned the detection process, for the results of 

the signal processing for a simulation time of 10 

seconds. After DSP, each signal produced coefficients 

which were fed into the PMANN for the decision 

mechanism. 

Out of the 52 samples (or coefficients) produced by 

the DSP algorithm, 18 were used in the training of the 

network (these contains recorded information i.e. non-

zero samples as seen from Figures 14, 15 and 16). The 

other 34 samples (or coefficients) could be rounded 

up/down to zero; hence, they were not needed for the 

training. The DSP output from the model fire signal 

(13Hz) was our measured and expected output. 

Therefore, it was used to train our network. After 

training and classification, the other signals (2Hz and 

50Hz) were then passed through the network for 

analysis. Below are the results for the training and 

analysis. 

The blue graph is the expected (measured) output of 

PMANN, while green is graph for the signal under 

analysis (predicted). Figure 17 shows the training of the 

network, hence, perfect match between the predicted and 

measured. While Figures 18 and 19 are the results of the 

analysis.  
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Figure 14. Radiation at 2Hz after DSP 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15. Radiation at 50Hz after DSP 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Fire Radiation after DSP 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17. PMANN training of signal at 13Hz (ideal, hence the 

perfect match of both graphs) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18. PMANN analysis of signal at 2Hz 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19. PMANN training of signal at 50Hz 

 

 

Using the ICC, the samples (or coefficients) were 

analysed and decisions were made for “fire” and “non-

fire” scenarios. Tables 2, 3 and 4 explain the decision 

rule. Our estimated reliability between the 13Hz sample 

signal and fire training signal gave 1, with 95% CI 

(1.00), which matches exactly.  Hence, such a scenario is 

is recorded “fire” (see Table 2). As indicated in Table 3, 

our estimated reliability between the 2Hz sample signal 

and fire training signal gave an average of 0.004, with 

95% CI (-1.660, 0.627), which is a miss-match. Hence, 

such a scenario is recorded “non-fire”. Moreover, Table 

4 shows that  our estimated reliability between the 50Hz 

sample signal and fire training signal is an average of 

0.144, with 95% CI (-1.222, 0.670), which is a miss-

match. Hence, such a scenario is recorded “non-fire”. 

If the model is to be implemented in real life using 

appropriate electrical equipment, the detection 

mechanism will record only real FIRE cases, and send 

electric signals to the suppression valves. For the control 

of valves along suppression systems pipelines, the model 

hydraulic solenoid valve responded perfectly as expected 

in real life.  

Figure 20 obtained was consistent with that obtained 

through experiments. Three cases of the PIDC are 

studied. The stepwise input simulated the digital nature 

of real life signals. The graphs perfectly correspond to a 

device connected to a PIDC under the Zeigler-Nichols’ 

Process Reaction method of tuning, where the delay time 
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(L) is common for all the controllers and the time 

constant (T1, T2, T3) can be calculated from the slope of 

the graph for each PIDC. Hence, it will perfectly control 

depending on the nature of the pipeline to which it is 

connected to. From the graph, the ‘PID’ controller gives 

a normal forward control or open-loop control whereby 

the valves open and close. It is the most suitable PIDC 

for this application. Controllers ‘PID1’and ‘PID2’, gave 

results for closed-looped control systems. Such systems 

experience some measure of damping (represented by 

the zigzag portion of the graphs). The damping is due to 

feedback and feed forward mechanisms as the PIDC 

tries to eliminate error. From the graph ‘PID1’ and 

‘PID2’ have damping amplitudes (or ratios) within the 

range of 0.2-0.3, which are within the Zeigler-Nichols 

range of 0.21-4.0 (Roland, 2001).  
 

 

Table 2. Intraclass Correlation Coefficient for 13Hz Sample Signals (e.g. open fires) 

13Hz Sample Signal 
Intraclass 

Correlation 

95% Confidence Interval (CI) F Test with True Value 0 

 Lower Bound Upper Bound Value df1 df2 Sig 

Single Measures 1.000 1.000 1.000 1.946E19 18 18 0.000 

Average Measures 1.000 1.000 1.000 1.946E19 18 18 0.000 

 

 
Table 3. Intraclass Correlation Coefficient for 2Hz Sample Signals (radiations from sources like Humans) 

2Hz Sample Signal 
Intraclass 

Correlation 

95% Confidence Interval (CI) F Test with True Value 0 

 Lower Bound Upper Bound Value df1 df2 Sig 

Single Measures 0.002 -0.454 0.457 1.004 17 17 0.497 

Average Measures 0.004 -1.660 0.627 1.004 17 17 0.497 

 

 
Table 4. Intraclass Correlation Coefficient for 50Hz Sample Signals (background radiations) 

50Hz Sample Signal 
Intraclass 

Correlation 

95% Confidence Interval (CI) F Test with True Value 0 

 Lower Bound Upper Bound Value df1 df2 Sig 

Single Measures 0.078 -.379 0.504 1.168 18 18 0.373 

Average Measures 0.144 -1.222 0.670 1.168 18 18 0.373 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Hydraulic Proportional Valve Response. 

 

5. Conclusion 

An adaptive model for fire detection and suppression 

system has been discussed with emphasis on automatic 

fire detection and controlled suppression mechanism. 

First, the sensor was modeled using Laplace transforms 

and the fire signal detection mechanism was modeled 

using the Hamming window function and discrete 

wavelet transforms. Then using a PMANN and ICC as 

the decision rule, our detector could differentiate 

between fire and non-fire radiations. Using model 

equations of a PIDC and the standard dynamic equation 

for a proportional hydraulic solenoid valve, with valve 

constant being unity, the suppression mechanism was 

studied and simulated.  

The results shows that under normal conditions the 

valve will control suppression systems (e.g. water 

sprinkler lines, foam injection lines and other similar fire 

suppression methods) and close pump lines in case of 

fire. We must note that sprinklers used in buildings are 

temperature activated. These are different from those 

used outside and in areas such as oil and gas storage 

sites. In Nigeria, most sprinklers used in loading gantries 

at oil and gas storage sites are perforated cone shape 

extensions of fire water lines. The detector controlled 

valves can be used to operate such sprinklers. Better 
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approaches can still be used to devise more efficient 

models to mitigate the devastating effects of fire in 

petroleum storage sites. 
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