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Abstract:  Indices derived from the morphological features of photoplethysmography waveforms are increasingly being 

investigated and linked to cardiovascular diseases, and may eventually be used to enhance patient risk assessments. These 

indices can be retrieved faster than the results for cholesterol tests (i.e., which are typically required for many risk 

assessments), are non-invasive, and may be less costly. This paper presents an overview of the development of a non-

invasive, continuous, compact and portable device used to acquire the cardiovascular data necessary for assessment and 

diagnosis in real-time. Typically these indices are not evaluated in real-time, but are instead assessed offline and manually, 

once the waveform is retrieved. The system presented performs real-time, automatic feature extraction for cardiovascular 

diagnosis by identifying the ‘a’, ‘b’ and ‘e’ waves derived from the second derivative of the photoplethysmogram waveform, 

followed by calculating indices associated with these waves.  Results demonstrate the feasibility and utility of such a system 

as an enabler of personalised cardiovascular care systems. Results from demonstrative tests with test subjects are 

comparable to those in the literature.  This paper also offers valuable insights into the challenges in deploying automated, 

non-invasive, continuous monitoring systems for extraction of cardiovascular health indicators beyond heart rate and blood 

pressure. 
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1.  Introduction 

Cardiovascular disease (CVD) is one of four main types 
of non-communicable diseases (NCDs) which are the 
leading causes of death globally (WHO, 2014). In a 
comparison of NCDs that are categorised as leading 
causes of death in the years 2000 and 2012, heart disease 
contributed significantly to the number of deaths per 
year (WHO 2014). There was an alarming increase of 
deaths from CVDs, such as ischaemic heart disease, 
hypertensive heart disease and stroke, from 12.5 million 
in 2000 to 15.2 million in 2012 (WHO 2014). The 
Caribbean is one of the most affected regions of the 
Americas, as chronic diseases are now the main cause of 
early death. In 2008, the Caribbean region was ranked 
the third in the number of deaths from NCDs compared 
to the total number of deaths in that region (THCC, 
2014).  

Given the impact upon the region, it is necessary to 
reduce the incidence of CVDs and healthcare costs. A 
key strategic intervention is predicting the likelihood of 
developing CVDs and associated complications.  To 
assess a patient’s risk of developing a CVD, 
multivariable risk prediction approaches have been 
developed which incorporate risk factors such as age, 
sex, and blood pressure etc. (D’Agostino et al., 2008). 

These assessments, as well as monitoring the disease, 
can be important to reversing the epidemic which has led 
to a rise in deaths and disabilities from NCDs. Emerging 
evidence has shown that clinical decisions based on 
CVD risk assessment, which includes prescribing the 
relevant drugs, has led to improved management of 
CVD risks.  For example, initial risk assessment and 
targeted treatment can lead to a reduction in the risk of 
CVDs such as cardiovascular heart disease (CHD) 
(Heart Foundation, 2015). 

Photoplethysmography (PPG) is an optical 
measurement technique that can be used to capture 
cardiovascular data. Indices calculated from the 
physiological features identified from the PPG 
waveform are being correlated with the risk of CHD in 
individuals (Elgendi, 2012). Other risk assessments, 
such as the popular Framingham risk model and other 
models discussed in Bitton and Gaziano (2010), 
typically use age, gender, cholesterol and systolic blood 
pressure to calculate the risk score (D’Agostino et al., 
2008). To obtain a cholesterol reading a sample of blood 
is required from the patient, whereas the PPG waveform, 
from which the indices are calculated, is retrieved non-
invasively (Lai and Insoo, 2015). In addition to using 
non-invasive measurements, PPG devices can be used to 
continuously monitor patients and provide these indices, 
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shortly after measurement.  This is in contrast to typical 
assessments, for which there are long delays in obtaining 
the results, for example the cholesterol test (Mayo Clinic 
2015).  

Consequently, using PPG-based devices with 
appropriate signal processing techniques to estimate 
alternative risk indices, such as those proposed in 
Elgendi (2012), would also increase the frequency of 
risk evaluations for CHDs.  This facilitates increased 
personalised and data-driven treatment for persons who 
may have or may develop CVDs.  Furthermore, the 
ability to track progression of CVDs  would help 
determine the degree to which intervention such as 
lifestyle changes or medication are lowering the impact 
CHDs.  

PPG-based devices offer several advantages in 
addition to low manufacturing costs. They can also be 
wearable devices, such as wrist wearable units (e.g., 
watches) (Ahanathapillai et al., 2015), and they can be 
integrated with mobile devices, such as smart phones 
(Lai and Insoo, 2015). Wearable devices are becoming 
more popular since this increases the ability for patient 
self-monitoring (Lewy, 2015). This can save on the cost 
associated with tests required by the Framingham model 
as well as the inconvenience of going to the laboratories 
or healthcare facilities to have tests done (Mansor et al., 
2013). Such devices are also advantageous for providing 
healthcare professionals with important patient data in 
cases where access is a challenge, such as in remote or 
under-resourced communities, or even between patient 
visits or routine follow-up.  

PPG waveforms offer tremendous potential for 
determining key health indicators.  For example, there 
has been considerable work on developing portable 
PPG-based devices which capture the PPG waveform for 
estimating heart rate or blood pressure automatically, for 
example finger oximeters (DMG, 2015).  These 
waveforms have also been used to automatically 
estimate blood oxygen content (Covidien, 2014).  
However, further automatic feature extraction required 
for cardiovascular diagnosis is limited.  Either the 
waveforms are not accessible to the end user, or if they 
are then the indices are calculated offline by visual 
inspection of the waveform to manually identify the 
relevant morphological features (Gonzalez, 2008).   

This paper builds on the existing work in PPG-
based diagnosis and presents the development of a 
compact, portable device for automatic feature 
extraction of relevant cardiovascular metrics for 
cardiovascular assessment and diagnosis in real-time.  
The development of this device is aimed at making 
cardiovascular diagnosis more affordable, and 
accessible, particularly to those in resource-constrained 
or remote locations.  To the best of the authors’ 
knowledge such functionality has not been realised in 
current commercial devices, and therefore a gap 
currently exists. Given the incidence of cardiovascular 
diseases in the Caribbean and globally, this device has 

tremendous potential for integration into a personalised 
health care strategy for the diagnosis and treatment of 
cardiovascular diseases. 

The paper is organised as follows. Section 2 
provides a brief introduction to PPG, and describes the 
technique by which the PPG waveform is retrieved. The 
indices developed from the PPG waveform, some of 
which will be derived by the system, are discussed in 
Section 3. Section 4 presents the technical system which 
retrieves the PPG waveform continuously and non-
invasively; acquires the necessary physiological 
features; and calculates the values of the indices in real-
time. The method by which the system is tested is 
described in Section 5. An analysis of the results 
retrieved by the system is discussed in Section 6. 
Recommendations for future works based on issues 
discussed in Section 6 are presented in Section 7, 
followed by concluding statements in Section 8. 
 
2. Photoplethysmography   

For the PPG technique, the volume of pulsating blood 
(i.e., the blood volume pulse – BVP) at a part of the 
body is estimated by detecting the amount of reflected or 
transmitted light when a light source illuminates the 
measurement site.  Typically the light source is a light 
emitting diode (LED) and the detector is a photodiode or 
phototransistor. For both reflection type and 
transmission type of the PPG measurement techniques, 
the principles of light absorption, light transmission and 
light dispersion determine the sensed PPG waveform.  
For both techniques a decreased volume of blood in the 
area in which the sensor is placed results in an increase 
in the intensity of the received light by the 
photodetector. Increased blood volumes result in 
decreased received light intensity. 

Since PPG-based techniques are optical in nature, it 
is expected that performance would depend upon the 
properties of chosen wavelengths for system operation. 
It has been observed that the dominant absorption peak 
corresponding to red blood cells is in the blue region of 
the spectrum, followed by the green-yellow region 
(between 500 and 600 nm) (Tamura et al., 2014). Red 
wavelengths could be used for retrieving the PPG 
waveform since they sufficiently penetrate various 
measurement sites (Elgendi, 2012).  However, infrared 
(IR) or near-IR light have longer wavelengths than the 
red, green and blue (RGB) wavelengths and hence are 
better for measurement of deep-tissue blood flow 
(Tamura et al., 2014). Wavelengths shorter than that of 
the RGB wavelengths are strongly absorbed by melanin.  
In recent literature green light is becoming increasingly 
popular, although it is less penetrating than IR, due to its 
higher signal to noise ratio compared to IR wavelengths 
(Tamura et al., 2014). 

PPG waveforms can be separated into a slowly-
varying baseline (referred to as the DC component in the 
literature) and a pulsatile component (referred to as the 
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AC component in the literature). The DC component 
arises from lower frequency biological signals including 
those due to respiration, thermoregulation and the 
sympathetic nervous system.  The AC component arises 
due to changes in the blood volume at the measurement 
site with each heartbeat. Figure 1 illustrates an example 
of a PPG waveform.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Example PPG waveform (upper figure) with critical 
points of the second derivative of the PPG waveform (lower 

figure) 

 
The AC component is superimposed onto the DC 

component and contains the information needed for 
cardiovascular diagnosis. The AC component of the PPG 
waveform has 2 peaks and a “notch” or a point of 
inflection in the downslope (Laucevičius et al., 2004). 
The notch, also referred to as the dicrotic notch, 
corresponds to the closure of the aortic valve at the end 
of systole which causes momentary increase in blood 
volume of the arteries (Elgendi, 2012). The systolic peak 
corresponds to the heart muscle contracting and pushing 
blood through the arteries, whereas the diastolic peak 
corresponds to the heart muscle resting between beats 
and refilling with blood (American Heart Association, 
2014). 
 
3. Indices derived from PPG waveform 

For cardiovascular diagnosis, the critical points of the 
PPG waveform are found by determining the second 
derivative of the photoplethysmogram (SDPTG) with 
respect to time (Elgendi, 2012). This allows for easier 
and more accurate interpretation of the inflection points 
(AHA, 2014). Figure 2 illustrates an example of a PPG 
waveform and the derived SDPTG.  Features used from 
the first derivative of the PPG waveform (middle sub-
figure) are not used in this work.  The SDPTG is made 
up of four systolic waves, which are the ‘a’ to ‘d’ waves 
and one diastolic wave, which is the ‘e’ wave (Elgendi, 
2012).  The ratios which have been calculated from the 
critical points of the SDPTG are: 
• the b/a ratio -  an indicator of arterial stiffness which 

increases with age and increasing arterial stiffness 
(Baek et al., 2012); 

• the c/a ratio - an indicator of arterial stiffness which 
decreases with age (Baek et al., 2012); 

• the d/a ratio - an indicator of arterial stiffness and 
vascular tone which both decrease with age 
(Chowienczyk et al., 1999; University of Maryland 
Medical Center, 2014); 

• the e/a ratio - an indicator of arterial stiffness which 
decreases with age (Elgendi, 2012); 

• the aging index, expressed as ((b - c - d - e)/a or (b - 
e)/a) – an indicator of vascular aging and 
arteriosclerotic disease (Elgendi, 2012). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. System data flow overview 

 
Although these indices have been the primary focus of 

the investigation into characterising arterial health, they 
can be used to investigate other pathologies indicative of 
CVD, such as the diseases listed in Table 1.  However, a 
full understanding of the diagnostic value of the different 
features, with respect to the application of the indices to 
the diseases, is still being researched (Elgendi, 2012).  

 
4. Cardiovascular Monitor Design 

The implemented interface allows for data transferred 
over the internet to be viewed and analysed remotely by 
a healthcare official, provided the relevant ICT access is 
available. The implemented measurement system 
contains a monitoring module, a data collection module, 
a data analysis module and a user interface. Figure 3 
shows the hardware components used in the modules. 
The monitoring module comprises of the optoelectronic 
sensor and pre-processing circuitry for amplification and 
filtration of the received PPG waveform. A 
microcontroller was used for the data collection module 
and to communicate to the data analysis module and the 
user interface.  In the data analysis module, the data is 
further filtered and processed to extract features of the 
waveform which are analysed. The user interface 
displays the resultant information, processed in the data 
analysis module, to the user.  
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Table 1. Types of Heart Disease (Source: Extracted from WHF (2014)  

Type of Heart Disease Cause Effect 

rheumatic several attacks of rheumatic fever damages the heart valves 

hypertensive high blood pressure (BP) overburdens the heart and blood vessels 

ischemic the narrowing of the coronary arteries reduces the blood flow to the heart 

cerebrovascular obstructed blood supply to the brain leads to strokes 

inflammatory toxic or infectious agents inflammation of the heart muscle 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Hardware components utilised for each module 
 
The implemented cardiovascular diagnostic system 

was intended to be more compact and portable than the 
PPG diagnostic system developed by Elgendi (2012). 
And the system discussed in this paper automates the 
evaluation of the indices discussed in the previous 
section.  The end goal was to enable automatic 
evaluation of the presence and extent of different heart 
diseases, as opposed to the typical functionality of 
current PPG-based devices which primarily focus on 
blood pressure, heart rate monitoring, and blood oxygen 
saturation.  

The diagnostic system comprises several signal 
processing stages, as shown in Figure 4. The first stage 
is the retrieval of the cardiovascular signal using an 
optoelectronic sensor. The next stage is pre-processing 
of the PPG signal using analog signal processing to 
isolate the desired PPG waveforms. The DC component 
is filtered out of the signal, using a high pass filter with 
cut-off frequency 0.5Hz, since the AC signal contains 
the necessary information.  Low pass filters are used to 
aid in identifying key points of the waveform and 
minimise power line interference without compromising 
the integrity of the signal. An active analog filter was 
used to amplify the output of the sensor, and to prevent 
aliasing during analog-to-digital conversion. Following 
analog signal processing and analog-to-digital 
conversion the digitised signal was sent to the 
microprocessor.  The third stage (implemented in the 
microprocessor) included data transmission and feature 
extraction. 

 
 

 
 

Figure 4. Signal processing stages of implemented cardiovascular 
diagnostic system 

 

For this study, feature extraction involved the 
determination of the ‘a’, ‘b’ and ‘e’ waves, since most of 
the indices can be calculated by using only these waves.  
To identify these features a period of the PPG waveform 
is first extracted and then the systolic peak, the diastolic 
peak and the dicrotic notch of the PPG waveform are 
identified. The indices that are subsequently calculated 
are the b/a, e/a, and (b-e)/a, (i.e., the aging index).  
 
4.1 Feature extraction algorithm 

To determine the ‘a’, ‘b’ and ‘e’ waves, the systolic 
peak, the diastolic peak and the dicrotic notch were 
extracted. To identify the systolic peak, the diastolic 
peak and the dicrotic notch it was necessary to extract a 
period of the waveform.  Strictly speaking the waveform 
is quasiperiodic, but for the measurement interval, the 
captured sequence of waveforms is assumed to be 
approximately periodic, which is reasonably assumed in 
practice (Elgendi, 2012).  Following this assumption, 
each period of the PPG waveform has a: 
• prominent positive-going zero-crossing 

corresponding to the start of the waveform; and 
• less pronounced positive-going zero-crossing, 

corresponding to the dicrotic notch. 
Smoothing was used to determine the more 

prominent positive-going zero-crossing points to find the 
period between zero-crossings. Upon extraction of the 
period, the systolic peak and the diastolic peak were 
identified. Figure 5 illustrates the algorithm for this.   
The first derivative of the period of the PPG waveform 
was then used to determine the positive-going zero that 
corresponded to the dicrotic notch of the PPG signal. To 
reduce the fluctuations in the amplitude of the first 
derivative, to clearly identify the positive-going zero-
crossing points, smoothing was used. These false zero-
crossings were as a result of random fluctuations in the 
amplitude of the first derivative.  
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Figure 5. Algorithm to identify systolic peak, diastolic peak and 
dicrotic notch 

 
If these features could not be identified from the 

extracted period, which may be as a result of distortion 
due to motion artefacts, another period from the 
recorded dataset was used. Once the systolic peak, 
diastolic peak and dicrotic notch were identified the 
second derivative was calculated from the unsmoothed 
first derivative, which was then used in conjunction with 
the PPG signal to determine the ‘a’, ‘b’ and ‘e’ waves. 
Figure 6 illustrates the algorithm for this. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Wave identifying algorithm 

 
5. System Testing 

The system’s functional requirements were verified in 
two stages:  

• unit testing – testing of each individual module e.g. 
testing the sensor to ensure a PPG waveform was 
being retrieved; the microcontroller to ensure that it 
was accurately retrieving and transmitting the PPG 
voltages; and the algorithms used for signal 
processing 

• system testing – testing of interconnected modules  

For system testing, each test subject was required to 
remain as motionless as possible, to reduce motion 
artefact, and the sensor was placed on the measurement 
site. The PPG waveform was captured, and processed 
using the automatic feature extraction approach 
described and displayed using the user interface which 
was implemented as a MATLAB executable.  Figure 7 
shows an example screenshot of the implemented user 
interface for visualisation of the signal points of interest, 
as well as to display the automatically-extracted indices. 
    Following system testing, the system was further 
evaluated using 10 test subjects.  Appropriate 
permissions were obtained prior to collecting data from 
test subjects.  The medical state/history of each test 
subject was unknown.  The heart rate, gender, age and 
weight and height for each of the 10 test subjects were 
recorded before testing.  The sensor from the monitoring 
module was placed on each test subject to observe the 
PPG waveforms being retrieved.  To retrieve the best 
suited waveform, the sensor was positioned on the left 
wrist. Each subject was required to remain as motionless 
as possible to reduce disturbances due to motion 
artefacts of captured waveforms.  Captured data was 
used to extract the features and determine indices 
demonstrating the required functionality of the system.   
 
6. Results and Analysis 

Table 2 is a compilation of the information recorded 
from the test subjects.  In addition to functional testing, 
the system performance has to be assessed to provide a 
baseline for future work on enhancements to the system. 

Of prime importance at this stage was the error 
performance of the implemented system.  Currently, 
there are no available gold standard devices which 
extract the features and indices which can be used for 
comparison.  Therefore visual inspection and waveform 
annotation by an expert provided a reliable method for 
comparison to the automatically-extracted features for 
error analysis.  This is the currently accepted approach in 
the literature (see Elgendi 2012).  

 
 

Table 2. Summary of characteristics parameters of test subjects 

Number of Subjects 10 

Male/ Female 5/5 

Age range  (years) 20-53 

Heart rate range (bpm) 70 –111 

Weight range (kg) 54.4-90.7 

Height range (m) 1.6- 1.8 

Body mass index range (kg/ m2)  19.0 - 27.9 
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Figure 7. Example screenshot of user interface for cardiovascular monitor 

 

 
Figures 8, 9 and 10 present the error graphs for each 

index, comparing the indices derived from 
automatically-extracted waves to the indices derived 
from expert visual inspection of the waves for all test 
subjects. While in general, as seen from the plots, there 
was a small deviation of the automatically-derived 
values from the values identified by visual inspection for 
the ‘a’ and ‘b’ waves for both genders, the ‘e’ wave 
sometimes deviated significantly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Comparison of automatically extracted b/a index to 
expertly visually extracted b/a index 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 9. Comparison of automatically extracted e/a index to 
expertly visually extracted e/a index 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Comparison of automatically extracted (b-e)/a index to 

expertly visually extracted (b-e)/a index 
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This heavily impacted the e/a index and the aging 
index as seen in Table 3 since the mean square errors 
(MSE) for both were higher than that of the b/a index. 
However the MSE for all were small which suggests that 
the implemented algorithms were fairly accurate. 
Despite measurement precautions, errors in identifying 
the waves could have been due to motion artefacts. 
 

Table 3. Mean Square Error for each index 

Index MSE 

b/a 0.000008 
e/a 0.000680 

(b-e)/a 0.000698 
 
 

The system was further validated through 
comparison of the relationships between the variables 
BMI, weight, height and age with each index.  This was 
done by measuring the correlation of each index with the 
listed parameters using the Spearman’s Rank Correlation 
(SRC). The results in Table 4, where correlated to both 
the automatically-derived indices as well as to the 
expert-derived values are given.  The following is the 
ranges for the types of correlation that were used to 
analyse the data (Laerd Statistics, 2016): 
• high correlation: 0.5 to 1.0 or - 0.5 to -1.0  
• medium correlation: 0.3 to 0.5 or -0.3 to -0.5 
• low correlation: 0.1 to 0.3 or -0.1 to -0.3 

Further validation involved comparing results to 
that in related work. The obtained results were similar to 
those reported in the literature. For instance, it was 
observed that BMI and age have medium to high 
correlation with these indices, while weight had a 
medium correlation and height had a low correlation. 
The BMI is an index that is calculated using height and 
weight and is used as a measure of obesity. Since obesity 
is a risk factor for heart diseases (British Heart 

Foundation, 2014) then it should be expected that as the 
BMI increases, the risk of heart disease should generally 
increase (Pilt et al., 2014).  

In a study conducted by Chen et al., (2013) a high 
BMI (> 25) was associated with CHD especially for 
individuals below the age of 53. From this small scale 
study, it was observed that test subjects with higher 
BMIs (looking at BMI independent of other factors) 
generally had higher b/a and aging indices (more 
positive) and a decreased e/a index is associated with 
heart diseases such as atherosclerosis. According to the 
Texas Heart Institute (2014) as age increases the risk of 
developing CHD increases as the heart's walls may 
thicken and arteries may stiffen and harden. This was 
borne out by the data as age had a medium to high 
correlation which the indices.  

Although height and weight are both contributing 
factors to BMI, which had a high correlation to the 
indices, they have medium to low correlation with the 
indices. Since weight is a large contributing factor to 
obesity, the correlation of the indices with weight was 
expected to be similar to that for BMI.  This trend was 
observed, as seen in Table 4. 

Using similar reasoning, since height contributes 
less to obesity a lower correlation was expected between 
height and the indices.  Table 4 also highlights this.  The 
results are further supported by the main trends observed 
in the literature (Chowienczyk et al., 1999; Elgendi, 
2012; Baek et al., 2012; University of Maryland Medical 
Center, 2014). Thus, although there were some 
observable measurement errors (refer to Figures 9-11), 
the indices followed trends discussed in past literature: 
the b/a and (b-e)/a indices generally increased with age, 
i.e. became more positive, since the values for these 
indices are negative; whereas the e/a index generally 
decreased with age. 

 

 

Table 4. Spearman’s Rank Correlation for the relationship between the indices and BMI, weight, height, age and each other 

Degree of 

Correlation 

 

Relationship 

Spearman’s rank correlation coefficient 

Automatically Extracted Value  Value from Visual Inspection 

 
High 

b/a index vs aging index 0.92 0.92 

b/a index vs age 0.88 0.88 

aging index vs age 0.86 0.86 

e/a index vs aging index -0.83 -0.83 

e/a index vs age -0.77 -0.77 

aging index vs BMI 0.76 0.76 

b/a index vs BMI 0.71 0.71 

b/a index vs e/a index -0.70 -0.70 

e/a index vs BMI -0.62 -0.62 

 

Medium 

e/a index vs height 0.41 0.41 

aging index vs weight 0.41 0.41 

b/a index vs weight 0.34 0.34 

 

Low 

b/a index vs height -0.25 -0.25 

aging index vs height -0.24 -0.24 

e/a index vs weight -0.21 -0.21 
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7. Conclusion and future work 

An overview of the development of a continuous, 
non-invasive cardiovascular monitoring device for the 
real-time extraction of cardiovascular features was 
presented. The monitoring device automatically 
identified cardiovascular features which were used to 
calculate indices that would possibly provide 
information about the cardiovascular health of an 
individual. Initial results demonstrate the functionality of 
this system, and corroborate results presented in the 
literature.  This system may therefore form the basis 
from which remote monitoring systems can be 
developed to increase self-monitoring.   

The proposed system is in line with increasing 
research into the use of wireless sensors for monitoring 
individual medical data continuously, outside of 
traditional settings (e.g., clinic, doctor’s office, hospital). 
Such technology would equip individual patients with 
better health monitoring capabilities, while also 
providing healthcare researchers and service providers 
with valuable data for enhancing diagnosis, treatment 
and prevention strategies.  

Visual inspection was the reference for the derived 
values, since there was no commercially available 
solution that could be used to automatically extract ‘a’-
‘e’ waves or annotate PPG-waveforms with the ‘a’-‘e’ 
waves for measurement and comparison to the 
implemented system.  The accuracy of the system can 
only be gauged from a “gold standard” device.  For 
further work the system will be enhanced to fill this gap.   

Additionally, there are no standard measurement 
protocols currently available to account for measurement 
variability due to posture and positioning of test 
subjects.  This is extremely important, given the impact 
of motion artefacts in PPG-based signal acquisition and 
processing and considering that PPG-based devices, 
especially wearable devices, are susceptible to motion 
artefacts (Lai, 2015; Kim and Yoo, 2006). Thus future 
work will include the implementation of low-
computational cost motion artefact compensation 
algorithms to further improve the accuracy of the 
measurements.  

Finally, while the general functionality and small-
scale performance of the device was investigated, the 
device needs to be further tested in a wider scope of 
scenarios, using a wider range of test subjects. 
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