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Abstract: As a consequence of its critical impact upon societies, the occurrence of vehicular traffic accidents is a globally 

studied phenomenon. Much effort has been directed towards the understanding and identification of causal factors, with the 

intention of minimising the occurrence. In a related area, the development of methods for the identification and classification 

of vehicles has also received necessary attention. However, little work has been done on the development of methods for the 

identification of motor vehicle accident occurrences. Thus, this work sought to develop an automated system for the 

identification of motor vehicular accidents. It utilises an artificial neural network approach to estimate the probability of 

occurrence, based on recorded acoustic signals. More specifically, it first characterises accident acoustic signals by 9 

selected signal features, in both the time and frequency domains. It then develops a dual layer artificial neural network, 

which accepts as its input the 9 characterising signal features and as its output calculates the probability of occurrence. The 

system was built and tested in the MATLAB environment, utilising 22 sample signals in the design phase and a further 53 for 

testing. An evaluation of the system found it have an accuracy of 86% and a precision of 76%, with a 100% identification of 

actual accidents. Additionally, it was found that the system prioritises the time domain signal features over those of the 

frequency domain, in the identification process. These results validate the structure of the system used and demonstrate its 

potential for real-world applications. 
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1.  Introduction 

Road safety is a global concern. The World Health 

Organisation reports that there were 1.25 million road 

traffic deaths in 2013 alone (WHO, 2017). The impact of 

this phenomenon is far reaching and many countries 

have been aggressively seeking to counteract it. 

Accordingly, much effort has been directed into the 

research of various aspects of accident occurrences. 

Many researchers have investigated the causal factors in 

the occurrence of accidents (de Ona et al., 2013; 

Dadashova et al., 2016; Mujalli and de Ona, 2011). The 

primary goal in most of these instances has been to 

understand what causes accidents, with the intention of 

minimising their occurrence. Similarly, other researchers 

have sought to develop methods for identifying road 

conflicts (Cafiso et al., 2017) or for assessing the 

likelihood of an accident occurrence in a particular 

location (Li et al., 2017). Further, some investigators 

have developed methods for reconstructing accidents, 

based on data gathered from the scene of an accident (Li 

et al., 2017; Evtiukov et al., 2017). Yet further, some 

researchers have developed methods for the 

determination of the level of injury of a vehicle's 

occupants, upon the occurrence of an accident (Kononen 

et al., 2011; Delen et al., 2006). 

A related field of study of particular interest, is the 

detection and identification of motor vehicles. Several 

researchers have used vibration and/or acoustic data, 

coupled with signal processing techniques, to develop 

effective vehicle recognition and detection methods. Wu 

et al. conducted significant work in this area and were 

among the first to utilise a frequency spectrum principal 

component analysis approach for vehicle sound 

recognition (Wu et al., 1999). George et al. (2013 a) also 

used vehicle sound signals to detect and classify vehicle 

types in an Indian context. They developed an algorithm 

that processed the acoustic data and allowed for vehicle 

detection, then used a neural network for classification.  

George et al. (2013 b) have advocated for the use of 

wavelet analyses in their detection and classification 

techniques. Yet in another case, Ozgunduz and Turkmen 

(2010) designed a vehicular classification system using a 

Mel frequency Cepstral coefficient algorithm and 

extracted features of the acoustic data which was then 

reduced by using a vector quantisation algorithm.  

Despite these efforts, little work has been done on 

the development of methods for identifying the actual 

occurrence of accidents. Currently, accident 

identification primarily relies on visual recognition. In 

many cases, this is based on reports by person(s) 
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involved in the accident or by bystanders. In others, the 

analysis of real time traffic camera data allows for 

accident identification. However, this is limited by 

several environmental factors such as the state of the 

vehicle's occupants, the presence of bystanders and their 

willingness to assist, lighting conditions and the level of 

monitoring of traffic camera data. In-vehicle collision 

systems provide an effective alternative. However, this 

too is limited by the make and model of the vehicles 

involved and the level of support system architecture in a 

particular location.  

In light of this, this work presents an automated 

approach for the identification of vehicular accidents. It 

utilises a combination of an artificial neural network and 

some selected signal processing techniques, to identify 

the occurrence of an accident based on acoustic signal 

data. Such an approach can be incorporated into existing 

traffic management systems or form the basis for a 

standalone system. In so doing, it can facilitate faster 

response times to critical accidents and increase the 

chances of saving an injured occupant's life. 

 

2. System Design 

2.1 General Approach  

By virtue of the phenomenon’s nature, there are a 

number of attributes that can be considered and 

examined in seeking to detect the occurrence of an 

accident. Some of these include visual imagery, vibration 

data, scents/odors and sounds. However, not all of these 

features are as easily quantified and recorded, and the 

level and type of information provided by each feature 

varies significantly. Notwithstanding this, the work done 

on vehicle detection methods suggests that acoustic data 

samples provide a wealth of information that can be used 

for accident identification, if processed correctly. In 

keeping with this, this work sought to use acoustic 

sample data as the primary data source for a proposed 

identification system. 

Figure 1 shows a typical acoustic sample recorded 

for an accident. It can be seen that the accident is defined 

by a distinct rise in the amplitude of the acoustic signal 

and for a short period of time. This pattern repeats itself 

for most of the acoustic samples examined. Given the 

repetitive nature of the pattern, the use of an artificial 

neural network was considered to be a feasible approach 

for identifying its occurrence within a recorded signal. 

 

2.2 Identification of Signal Features for 

Characterisation 

The efficacy of neural networks in pattern matching and 

identification, has been steadily increasing over the past 

few years. Two key contributing factors have been the 

increasing computational power of computing systems 

and the growing access to more detailed data sets.  

However, despite this increase in computational power, 

there are still some evident limitations, i.e., the 

processing of large data sets by a neural network does 

present a challenge for most standard computers. For 

instance, the car accident acoustic sample of Figure 1, 

which is 2.5 seconds long and sampled at 44.1 kHz, 

contains 110,250 data points. Attempts to directly utilise 

this sample in an artificial neural network, have proven 

to be memory-intensive for a current, standard desktop 

computer. Accordingly, an alternative approach to 

utilising the acoustic data in an artificial neural network 

had to be developed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Sample of accident acoustic data signal – Amplitude 

versus Time 

 

As an alternative, it was considered that a signal can 

be represented in both the time and frequency domains. 

In keeping with this, either presentation of the signal 

presents unique aspects of the data. Accordingly, the 

signal can be characterised by the features of either 

representation, or a combination of both. Thus, the 

authors posit that if a unique subset of the signal’s 

features in both the time domain and the frequency 

domain are identified, such that these features are 

influenced by the occurrence of an accident. Then, this 

subset can be used to identify the presence of an 

accident. Key to this proposition is that the features must 

vary specifically with the occurrence of an accident.  

In so doing, they provide both a basis set for 

representing the accident signal and for assessing the 

presence of an accident within a wider signal. However, 

it is unclear which of the many signal characteristics in 

the time or frequency domain would be critical in 

assessing the occurrence of an accident. In light of this, a 

number of well-known signal features and characteristics 

were examined, to determine their level of influence in 

accident identification from acoustic sample data. Table 

1 gives the list of the features assessed in this work.  

 

3. Data Sets and Data Acquisition 

For the purposes of training and evaluation of the 

system, acoustic samples of various accidents were 

required. However, due to limited funding availability, 

the recreation and/or simulation of real time vehicular 

accidents were not feasible in this work. Alternatively, 
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existing accident data sets were used. These comprised 

of data obtained from various crash intuitions namely 

Insurance Institute for Highway Safety (IIHS) and 

European New Car Assessment Programme (Euro 

Ncap). Both institutions conduct crash testing on a wide 

range of vehicles and various types of collisions (e.g., 

head-on, and small overlap). The sampling frequency for 

audio capture used in these data sets, was given as 44100 

Hz for both institutions. The distance from the 

microphone to the point of impact was not given; 

however, it was known to vary for both. The acoustic 

data was converted to a wav format from these mp3’s for 

greater accuracy of representation. The vehicle type and 

accident details for the various samples examined, are 

presented in Table 2.  

 

Table 1: Acoustic signal features examined to determine 

effectiveness in accident identification 

Signal feature Domain 

zero crossing rate Time 

short time energy Time 

Fundamental frequency Frequency 

Bandwidth Frequency 

Signal amplitude mean Time 

Signal power Time 

Frequency envelope Frequency 

Variance Time 

Spectral crest Frequency 

Spectral flux Frequency 

 

 

Table 2: Types of vehicles for which data was acquired 

 Micro-car Small Midsize Large 

small overlap  √  √ 

moderate overlap √  √  

front   √  

side crash √  √  

trailer underride  √  √ 

head on   √  

 

 

As opposed to one type, various types of collisions 

were used to ensure variability in the accident features 

examined. The aim of this approach was to increase the 

system's likelihood of identifying a random accident. A 

total of 45 vehicular accident samples was used in the 

development of the system. 

Additionally, simulated accident data was obtained 

from a test rig that was setup for the purposes of the 

work. The test rig consisted of a weighted automobile 

front bumper, suspended in mid-air by a pulley system. 

The bumper was lifted to a height of 12 feet and then 

allowed to fall and strike a metal sheet, which was fitted 

with an accelerometer. A microphone was positioned 10 

feet away from the drop site, to record the acoustic data. 

The data was recorded at a sampling rate of 44,100 Hz. 

A picture of the setup is shown in Figure 2. Some of the 

amples recorded here were used in the identification of 

the set of key signal features. Additionally, acoustic 

samples taken of a jackhammer in operation and of 

random noises were also recorded for use in assessing 

key signal features. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Image of simulated accident testing setup 

 

4. Results and Discussion 

4.1 Identification of Key Signal Parameters 

The signal features presented in Table 1 were assessed 

for all of the test signals previously mentioned. Various 

plots were made to examine the performance of each 

characteristic. The results obtained here were used to 

determine which characteristics were most suitable for 

classification of an accident. Figure 3 shows the plot of 

normalised mean signal amplitude against signal 

variance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3: Pot of mean amplitude vs. variance 
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It can be observed from the figure that an accident is 

easily characterised by the variance of the amplitude 

time plot. The variance of the accident signals is found to 

be lower and exhibits less variability than the other 

signals examined. An examination of the normalised, 

mean amplitude shows that for an accident signal, the 

values are much lower than the other signals considered. 

This is due to the fact that accident signals contain 

localised points of very high amplitude, with the 

remaining portion of the signal having significantly 

lower values. On the contrary, noise signals generally do 

not have notable localised peaks and consequently their 

normalised means are higher. Accordingly, both features 

are suitable for characterisation. 

Figure 4 illustrates the changes in the fundamental 

frequency and the zero-crossing rate of the signal. From 

the figure, it is evident that the values of the zero-

crossing rate are much higher for both sets of accident 

signals, as compared to other signals considered. 

Accordingly, this is a suitable signal feature for 

characterisation. Conversely, the fundamental frequency 

demonstrates a high degree of variation and does not 

show any specific relationship for the signals considered. 

In keeping with this, the fundamental frequency serves 

as a poor characteristic and its use would lower the 

efficacy of the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Plot of zero crossing rate vs. Fundamental frequency 

 

 

An examination of the bandwidth values in Figure 5, 

shows that it is difficult to differentiate an accident 

signal from those of the other signals considered. 

Accident signals have wider bandwidth ranges than the 

other signals, making characterisation difficult. 

Conversely, accident signals can clearly be distinguished 

by the spectral crest values. The spectral crest values for 

both sets of accident signals are visibly lower than the 

other signals considered. Accordingly, the spectral crest 

was selected as a feature for characterisation, while 

bandwidth was not. 

An examination of Figure 6 shows no clear 

relationship or correlation between the occurrence of an 

accident and the maximum energy or the energy flux. 

These two signal features are dispersed through a large 

area, and hence attempts to use them for accident 

characterisation may introduce some error into the 

system. Consequently, both parameters were not 

included in the final subset used to develop the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Plot of bandwidth vs spectral crest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Plot of energy flux vs. Maximum energy 

 

 

Figure 7 displays the frequency envelopes of the 

accident and noise signals tested. The signals have been 

converted into the frequency domain using a fast Fourier 

transform. An analysis of the graph shows a distinct 

difference between the noise signal (blue) and the 

accident data (black). It can be seen that the frequencies 

present within the accident signals are more stochastic as 

compared to the noise signals. Additionally, the 

amplitudes of the frequencies that are present in the 

accident signals are larger than those of the noise. 

Accordingly, the frequency envelope was chosen as a 

feature for accident characterisation. 

 

4.2 Network Development and Architecture 

Based on the previous analysis, 9 signal features were 

identified for the characterisation of accident signals. 

The  features  include  both  time  domain  and frequency  
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Figure 7: Frequency envelope of various acoustic events 

 

domain identifiers. The time domain features selected 

were the energy flux, mean amplitude, power, zero 

crossing rate and variance; whereas the frequency 

domain features include frequency envelope, bandwidth, 

spectral crest and variance.  In so doing, this allows for 

the reduction of an accident signal having 110,250 points 

to 9 characteristics. Figure 8 shows the sequence of 

computational steps within the final system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Final system architecture 

 

The development and subsequent analysis of the 

network’s performance was done using MATLAB 2015. 

This process entailed two primary decisions: a 

determination of the number of layers in the network and 

a determination of the number of neurons required for 

accurate functionality. The previous analysis indicated 

that the characteristics of an accident signal are not 

linearly separable. In keeping with this, a multilayer 

approach was considered to be more suitable. More 

specifically, a dual layer configuration was implemented, 

with a hidden layer containing a linear function and an 

output layer.   

Figure 9 shows the final architecture of the neural 

network. The batch training method was selected as the 

basis for training the network, using a sample set of 22 

signals. This was implemented with randomly 

determined batches, using a gradient descent algorithm 

via the MATLAB interface. This approach minimises the 

loss function as a means of adjusting function weights 

and improving the network performance. MATLAB 

subsequently validates the network with a subset of 

samples. 

 

 

 

 

 

 

 

 
Figure 9: Final architecture of the neural network 

 

The determination of the most suitable number of 

neurons was effected via the pruning approach. The 

proposed sequence of computational steps in Figure 8 

was implemented using a test network having 11 neurons 

in the hidden layer. This test network was trained and 

validated as previously discussed. Subsequently, its 

performance was assessed via the examination of key 

network characteristics. More specifically, the root mean 

squared error (R
2
 value) relative to a set target value was 

calculated for the test network, which was indicative of 

its ability to observe trends.  

Nine other test networks were subsequently 

developed, using a different number of neurons in the 

hidden layer, ranging from 10 to 2 neurons. Each test 

network was trained, validated and assessed in a manner 

that was identical to that of the 11-neuron network. 

Three of the test networks were found to have R
2
 values 

of 0.999, indicating the ability to accurately differentiate 

between a car accident signal and the other test samples. 

Using Ockham’s razor principle, four neurons were 

selected as the most suitable number of neurons to be 

used in the network. Accordingly, the final system 

architecture consisted of 2 layers with four neurons in 

the hidden layer. This system is such that 109 points are 

inputted based on the 9 characterisation features and a 

probability value is outputted.  

 

4.3 System Performance  

The system was tested using a number of new data sets, 

i.e., signals that had not previously been used in the 
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development and training of the system. These data sets 

consisted of 16 car accidents signals obtained from the 

Insurance Institute of Highway Safety (IIHS), 7 

simulated accident signals, 12 noise signals, 9 sample 

signals of impact strikes on different materials, and 9 

other sample signals of noises likely to be recorded on 

the roadway (e.g., emergency sirens and 

jackhammering). Of the 53 tests on the system 

conducted, Figure 10 presents the results of 36 outputs of 

the network. Table 3 presents a confusion matrix for the 

predictions made by the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10:  Results of Classifications– System Output for Acoustic 

Data 

 

Table 3: Confusion matrix for predictions made by system 

 Predicted: 

No accident 

Predicted: 

Accident 

  

Actual: No accident 23 7 30 

Actual: Accident 0 23 23 

  23 30   

 

 

In keeping with Table 3, the following performance 

criteria can be evaluated:  
Accuracy = (true positive + true negative)/total = 86% 

True positive rate = True positive/ Actual positive = 100% 

False positive rate = False positive/ Actual no = 30.4% 

Precision = True positive/ predicted yes (when it predicts 

yes, how often is it correct) = 76% 

 

4.4 System Behaviour 

In examining the system, some key relationships and 

behavioural trends were identified. One of these 

concerns the issue of the incorrect classification of the 

impact strike signals. It was noticed that impact strike 

signals where a high force was used, had a higher chance 

of being classified as an accident. This false positive 

classification occurred both with strikes to steel and 

polyethylene materials. Although the natural frequencies 

of both steel and polyethylene of similar masses contrast 

greatly, both were still classified as a car accident. This 

suggests that the neural network gives precedence to 

characteristics in the time domain, as opposed to those in 

the frequency domain. This is likely a consequence of 

the fact that the features in the time domain display a 

greater correlation with the occurrence of a car accident, 

than those in the frequency domain. 

A second key behavioural trend concerns the nature 

of the probability values obtained. The outputs for the 

tests conducted showed a range of values between 0.7 - 

1.0, to predict the occurrence of an accident. Conversely, 

probabilities of 0 - 0.21 were found in cases where the 

system suggested that an accident did not occur. These 

ranges of probability values allowed for clear 

interpretations to be made on whether or not an accident 

did occur. This result was a consequence of the sigmoid 

function in the hidden layer. Its insertion reduces the 

probability of having instances where the neural network 

predicts a 50% chance of the occurrence of a car 

accident. These results serve to validate the structure of 

the system used.   

 

5. Conclusion 

This paper presented the work done on the design of an 

automated system for identifying vehicular accidents, 

using acoustic signal data and utilising an artificial 

neural network approach. The system was based upon 

the identification of key signal features that were used to 

characterise an accident acoustic signal. A total of nine 

signal features was identified with five being time 

domain features and four of the frequency domain. These 

features allowed for large data signals to be represented 

by a much smaller data set; in so doing significantly 

decreasing the computing requirements of the system.  

 The system was designed and tested using 

MATLAB. In designing and training the system, 22 

signals were used. These signals consisted of actual 

accident recordings, simulated accident data and other 

recorded acoustic data. The system was subsequently 

tested using 53 additional signals that were not used in 

the design phase. An evaluation of the system's 

performance found that it had an accuracy of 86% and a 

precision of 76%, with a 100% identification of actual 

accidents. Testing also served to identify that the system 

prioritises the time domain signal features, due to a 

greater correlation between changes in these values and 

the occurrence of an accident.  

With correct incorporation into a wider traffic 

management and/or emergency system, the approach 

presented here has the potential to significantly increase 

the likelihood of identifying vehicular accidents. In so 

doing, it can increase the response time of emergency 

personnel and increase the potential for saving lives.     
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