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Abstract: Planning of a wind farm location requires significant data. However, wind speed data sets in the lower 
Caribbean are usually incomplete. This paper considers imputation by spatio-temporal kriging using data from 
neighbouring locations. Temporal basis functions with spatial covariates are used to model diurnal wind speed 
cyclicity. The residual set of our spatio-temporal model is modelled as a Gaussian spatial random field. Fitted models 
may be used for spatial prediction as well as imputation. Examples of predictions are illustrated using two months of 
hourly data from eight Caribbean locations with prediction accuracy being assessed by cross validation and residuals. 
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1.  Introduction 
Renewable energy (RE) sources are potential means of 
mitigating the reliance on petroleum and natural gas in 
the Caribbean. Wind energy has been identified 
regionally (Elliott et al., 1987; Renewable Energy 
Committee, 2011) as a particularly viable RE source. 
The development of wind farms requires significant 
expenditure and therefore it is crucial to identify suitable 
wind farm locations in order to optimise energy 
production and reliability while minimising capital and 
working costs. Prediction methods for wind 
characteristics at a target wind farm location with 
minimal data from one or more reference locations are 
known in the wind engineering literature as measure-
correlate-predict (MCP) algorithms (Carta, Velázquez 
and Cabrera, 2013). Initial MCP methods employed 
linear or quadratic regression techniques with data from 
a single reference location. Later MCP algorithms 
utilised multiple or vector regression methods with data 
from several reference locations. 

Wind data is typically non-stationary and auto-
correlated which implies that differencing or co-
integration adjustments are required in multiple 
regression MCP algorithms. (Hunt and Nason, 2001) 
used a wavelet packet transform method to construct an 
MCP algorithm which accounts for non-stationarity; this 
method was only applied to a single reference location 
but may be extended to multiple reference locations. The 
above methods do not account for spatial correlation 
among multiple locations and do not provide a 
transparent method of trend removal. In this paper, we 
use the spatio-temporal model. 

 
 

(1) 

where y(s,t) is wind speed at location s ∈ R2 specified by 
longitude and latitude coordinates and time t ∈ R. 
Temporal basis functions {fi (t): i = 1, …, m}  are used to 
capture the nonstationarity of wind data. The theory of 
spatial temporal basis functions is discussed in (Fuentes, 
Guttorp and Sampson, 2006) and (Wikle, Zammit-
Mangion and Cressie, 2019). Hunt and Nason also use 
basis functions but our method is clearer as it does not 
rely on wavelet theory. The spatial fields βi(s) of our 
model (1) are readily tuned (by choosing latitude and 
longitude as geographical covariates) to allow for 
varying seasonality among the reference locations.  

Similarly, there is flexibility in the choice of the 
covariance structure of the spatial random field   in order 
to improve model fit. Furthermore, this model can be 
extended to include exogenous covariates (such as 
temperature and air pressure) in order to improve wind 
prediction accuracy (see Section 4). The model (1) is 
defined in Section 2.3. A case study illustrating spatio-
temporal prediction of wind speeds using two months of 
hourly data from eight reference locations (shown in 
Figure 1) is given in Section 3. The prediction accuracy 
for this case study is assessed in Section 3.3 by the use of 
cross-validation groups. The R code for the case study is 
shown in Appendix A. A similar model was used by 
(Lindström et al., 2013) in a pollution study of NOx  
concentrations in metropolitan areas in the United States. 
Some code segments used in our case study are due to 
Lindström et al. (2013). 
 
2. Problem Formulation 
2.1 Data Sets 
The wind speed data sets used in this paper were 
obtained as CSV files from the Iowa Environmental 
Mesonet   (2021)   and     the    National     Oceanic   and  
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Figure 1. Eight reference locations for case study 
 
 
Atmospheric Administration (NOAA, 2021) and 
originated from Meteorological Terminal Aviation 
Routine Weather Report (METAR) (National Weather 
Service, 1998) hourly records from January to February 
2015. The web addresses of the download interfaces of 
the Iowa Mesonet and NOAA are given in the references 
above. Iowa Mesonet data may also be accessed within R 
using the package riem (Salmon, 2016) and NOAA data 
may similarly be obtained from the R package rnoaa 
(Chamberlain, 2021). A code example using rnoaa is 
given in Appendix A.1. Note that the METAR wind 
speed measurements have a resolution of only knot.  

Observations from eight weather stations (located at 
airports) in the lower Caribbean were used in our 
analysis. Boxplots were used to remove outliers from 
each weather station data set. Figure 2 shows time series 
plots of hourly wind speed observations for five days 
from the three of these locations: Piarco (Trinidad), 
Crown Point (Tobago) and Point Salines (Grenada). Note 
that these plots only show a small subset of our entire 
data set which consists of two months of hourly data 
from eight locations. A plot of this larger data set is 
given in Appendix A.1.  

From Figure 2, we may observe that Point Salines 
and Piarco wind speeds are correlated. Note also that 
there is more available data at Point Salines than at 
Piarco (see Figure 3). The kriging method of this paper 

allows (as an example) for the imputation of missing 
Piarco data by the use of data from Point Salines and 
other nearby weather stations. Furthermore, kriging 
allows for wind speed prediction at any location within 
the lower Caribbean region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Five day subset of hourly wind speed observations (from 

a two month data set) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Percentages of missing values 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4. Sample autocorrelation function of Piarco wind speed 
data 
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The wind speeds illustrated in Figure 2 show a 
common diurnal cyclicity which is modelled by the use 
of temporal basis functions discussed in Section 2.3. A 
multivariate ARCH test (see (Tsay, 2013)) confirms that 
our wind speed data is heteroskedastic and so the data 
was log transformed in order to stabilise the variances; 
see (Paciorek et al., 2009; Sampson et al., 2011) for 
applications of spatio-temporal modelling with log 
transformed data. 
 
2.2 Kriging 
Let D ⊆ ℝ2 be a domain in the plane and let s ∈ D be a 
generic location. A spatial random field is a family of 
random variables which is indexed by the locations  in 
the domain D, see (Cressie, 1992). As an example, Z(s) 
may model wind speeds at varying locations s at some 
fixed time.  
  (2) 

The expected value µ(s) = E(Z(s)) of the random field 
Z(s) may vary with location . The covariance function 
C(si, sj) of the random field Z(s) is defined as 

 
 

(3) 

and measures the dependence of Z between different 
spatial locations si and sj. 

Consider the case for which Z may only be sampled 
at known locations s1 , s2 , …, sn (for example, wind data 
will usually only be available at a few weather stations in 
a given region). Kriging is the determination of a best 
unbiased linear estimator of Z at an unknown location s0 
in terms of random variables Z(si) at known locations. In 
the case of simple kriging (when the random field Z(s) is 
second order stationary with known constant mean     
µ(s) = µ) then the estimator at an unknown location s0 is 

 
 

(4) 

where the kriging weights λi are obtained (see (Montero, 
Fernández-Avilés and Mateu, 2015)) by solving a linear 
system of  equations 

 
 

(5) 

with covariance coefficients. In the case of universal 
kriging, the mean E(Z(s)) is not assumed to be constant 
but is a linear combination of spatial functions fi (s). The 
kriging weights are again obtained from a linear system; 
see (Cressie, 1992). As an example, the functions βi(s) 
(used in our spatio-temporal model for wind speed given 
in Equation (1)) are spatial random fields with universal 
kriging structure in which the nonconstant means are 
assumed to be linear combinations of longitude and 
latitude. 

A spatio-temporal random field 

  (6) 

is a family of random variables indexed by locations s in 
a spatial domain D and by times t in a time interval T. 
The development of spatio-temporal kriging is similar to 
the cases of (spatial) kriging above where time may be 
regarded as a spatial dimension with the caveat that the 
spatio-temporal covariance functions (used to determine 
kriging weights) consist of distinct spatial and temporal 
components; see (Wikle, Zammit-Mangion and Cressie, 
2019) for further details. The determination of a suitable 
covariance structure of a spatio-temporal random field is 
first approached by calculating the sample spatio-
temporal semivariogram 

 
 

(7) 

where N(h,τ) is the set of pairs of spatio-temporal 
locations (si,ti), (sj,tj) that satisfy si - sj = h and ti - tj = τ; 
see (Montero, Fernández-Avilés and Mateu, 2015; 
Wikle, Zammit-Mangion and Cressie, 2019). The 
calculated semivariogram is then fitted to a suitable 
covariance model. A wire plot of a sample 
semivariogram of hourly wind speeds from the 
Caribbean wind data set is shown in Figure 5. The R 
code for obtaining the semivariogram and directional 
spatial semivariogram (discussed below) is shown in 
Appendix A.1. Note that the cyclicity along the time axis 
corresponds to alternating positive and negative 
correlation with varying time lags (Pyrcz and Deutsch, 
2014); this is supported by the cyclic sample 
autocorrelation function shown in Figure 4. 

The variability of wind speeds in the north/south and 
east/west directions may be examined with the use of a 
directional spatial semivariogram 

 
 

(8) 

where N(h) is the set of pairs of spatial locations that 
satisfy si – sj = h where the separation vectors h are 
partitioned into direction subsets; see (Pebesma, 2021). 
We first randomly sample 400 time instances from our 
spatio-temporal wind speed data frame and merge these 
into a single spatial data frame (with a time index) using 
the procedure from (Pebesma and Gräler, 2021). The 
directional spatial semivariogram shown in Figure 6 is 
formed by partitioning the direction vectors h = si – sj  
(for pairs of locations si , sj) according to the directions of 
0°, 45°, 90° and 135° that are measured clockwise from 
north. The direction h of a pair of locations is associated 
to the nearest of these four directions and so each point 
in the 45° panel in Figure 6 corresponds to a pair of 
locations with a relative direction that lies between 22.5° 
and 67.5°.  

The variability shown in the 45° panel indicates that 
our wind data set contains information required to model 
variations in the northeast direction (each point in the 
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45° panel has a time resolution of 1391 hours). 
Variability in the east/west direction may also be 
examined by considering the variation of trend 
components with longitude as shown in Figure 9. This 
longitudinal trend is considered further in Section 2.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Sample semivariogram of hourly wind speeds from 
lower Caribbean data set during January and February 2015 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 6. Directional spatial semivariogram of hourly wind speeds 
during January and February 2015 

 
2.3 A Spatio-temporal Model 
Wind speed y(s,t) at location s ∈ ℝ2 specified by 
longitude and latitude coordinates and time t ∈ R is 
modelled as 

 
 

(9) 

where {fi(t): i = 1, …, m} is a set of temporal basis 
functions with f1(t) ≡ 1 and where fi(t) (2 ≤ i ≤ m) are 

used to model non-stationary seasonal temporal 
behaviour. The basis functions fi(t) used in this paper are 
computed from incomplete data by using a singular value 
decomposition (Fuentes, Guttorp and Sampson, 2006; 
Lindström et al., 2013). Other basis functions (Fourier, 
wavelet or Wendland) may be used (Wikle, Zammit-
Mangion and Cressie, 2019). The number m of basis 
functions required to model temporal seasonality are 
determined by cross validation using the statistics AIC 
(Akaike information criterion), BIC (Bayesian 
information criterion), MSE (mean squared error) and 
R2. A plot of these statistics (in the case of our Caribbean 
wind data) for an increasing number of basis functions is 
shown in Figure 7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Facet plot of cross validation statistics for number of 
basis functions 

 
 

In our case of strongly autocorrelated wind data 
together with persistent diurnal cyclicity (see the sample 
autocorrelation function in Figure 3), m = 5 temporal 
basis functions are used. A large number of basis 
functions is computationally impractical (particularly 
during cross validation) as parameter estimates are 
obtained by discrete optimisation routines. The basis 
functions are shown in Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Temporal basis functions 
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The coefficients βi(s) in Equation (1) are spatial fields 

which allow for varying seasonal behaviour among sites. 
A plot of β1(s) versus latitude (at observed locations) 
together with a line of best fit is shown in Figure 8; these 
values are mean wind speeds as the corresponding 
temporal basis function f1(t) ≡ 1. A similar plot of β1(s) 
versus longitude is shown in Figure 9. Figure 10 
indicates a small latitudinal trend (which physically 
corresponds to a small decrease in wind speed with 
distance from the South American coast). It illustrates a 
significant longitudinal trend which corresponds to a 
nontrivial increase in mean wind speed in the eastern 
direction. This longitudinal trend is present in the wind 
speed predictions shown in Figure 12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Longitudinal trend of spatial field   estimates at station 
locations (with   confidence intervals) together with a line of best 

fit 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 10. Latitudinal trend of spatial field estimates at station 
locations (with confidence intervals) together with a line of best fit 
 

A covariate structure of the form 
  (10) 
where s = (x,y) and x,y represent longitude and 

latitude indicates that the trend component of the spatial 
field β1(s) is modelled as a linear function. Similar plots 
of βi(s) (i = 2 … 5) versus both latitude and longitude are 
used to determine suitable covariate structures of the 
βi(s). The use of geographic covariates is called land use 
regression; see (Lindström et al., 2013). In this way, 
values of βi(s) at unobserved locations may be 
determined by universal kriging with longitude and 
latitude as spatial covariates and where the covariance 
functions cov(βi(s), βi(s + h)) are exponential. In our 
case, a nugget effect is assumed for the covariance 
models of βi(s).  

Initial parameter estimates for these covariance 
functions are required for an optimisation procedure 
which determines the parameters of the spatio-temporal 
model (1). A fitted spatio-temporal model may be used 
to either predict wind speeds at unobserved locations or 
to interpolate missing data at observed locations. The 
former necessitates an initial grid which specifies the 
space and time coordinates for which we require wind 
speed predictions.  

The spatio-temporal random field in the model (1) is 
assumed to be a zero mean Gaussian field which is 
spatially correlated but independent in time. It is used to 
model short-term random effects (not captured by the 
temporal basis functions) which affect medium to large 
spatial regions; see (Lindström et al., 2013). 

 

 

(11) 

In this paper, the covariance function c(h,τ) of v(s,t) 
is assumed to be exponential with a nugget effect, that is 

 
 

(12) 

where h ≡ s′ - s, τ ≡ t′ - t,  c0 is the magnitude of the 
discontinuity at the origin, δ is the Dirac delta function, b 
> 0 is a variance parameter and a > 0 is a scale parameter 
(Wikle, Zammit-Mangion and Cressie, 2019; 
Hristopulos, 2020). Note that right of Equation (12) is 
independent of τ as v(s,t) is assumed to be temporally 
uncorrelated. 
 
2.4 Implementation 
We briefly discuss the implementation of the model (1) 
to our data set in the programming language R. The CSV 
data for each weather station was converted to an xts 
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time series with POSIXct indices. xts objects are 
particularly useful and allow for the manipulation of 
irregularly spaced time series, interpolation of missing 
data, conversion of time zones, aggregation and merging 
of time series (Zhang, 2016). In our case, data from the 
various stations are collectively stored in a space-wide 
(Bivand et al., 2008) xts object which has some missing 
data (see Figure 3). This data was used to form a 
STdata object with longitude and latitude covariates 
originating from the weather station locations. The 
temporal basis functions fi(t) and corresponding spatial 
fields βi(s) were then determined from this 
STdata object. Plots of these spatial fields (see Figure 8 
for example) were used to specify their spatial 
covariates. A STmodel was then initialised from the 
wind STdata object, the covariance functions for the 
residual field v(s,t) and spatial fields βi(s) together with 
their spatial covariates. 

Initial values were then provided for the estimation of 
the parameters of the STmodel via optimisation. The 
fitted spatio-temporal model was used to predict wind 
speed on a three dimensional (two spatial and one 
temporal) grid which was constructed as a STdata object. 
In order to display these predictions, raster map tiles for 
the lower Caribbean were obtained from (Stamen Maps, 
2021) via the R package ggmap. The predictions are then 
superimposed as a contour plot on the Caribbean map 
using the geom_point and geom_contour functions. A 
flowchart of our procedure is shown in Figure 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Procedure for predicting and validating wind speeds 
using the model (1) 

3. Results 
3.1 Spatial Prediction 
Once the structure of the spatio-temporal model (1) is 
specified (see Section 2.3), its parameters are determined 
by likelihood estimation by calling the R function optim. 
The fitted model may then be used for spatial prediction, 
that is, the model may be used to predict at locations 
which have no measurement data. A 100 x 100 spatial 
grid of points was constructed within a bounding box 
between W57°, W67.2°, N5.8° and N15.7°. An hourly 
temporal sequence was also specified between midnight 
and noon of January 1 2015; note however that we may 
spatially predict at any time within the window of our 
measurement data. These spatial and temporal objects 
were combined into a STdata object (Lindström et al., 
2013) and the fitted model was used to predict wind 
speed at each point on this spatio-temporal grid. Contour 
plots of these predicted wind speeds at midnight and 
noon respectively are shown in Figure 12. The larger 
wind speeds at midnight are consistent with the diurnal 
cyclicity exhibited in Figure 2.  

The contour topology also agrees with the direction 
of the north east trade winds which decrease as they 
move over the South American continent. 

 
3.2 Imputation 
Classical imputation methods only use temporal 
information (Yang et al., 2018) to construct a time series 
model (such as ARIMA, support vector regression or 
hidden Markov models) which is then used to estimate 
missing values. Kriging utilises additional spatial 
information by taking a linear combination of nearby 
observations which is weighted according to covariance 
values (which depend on distance). Recall that our 
Caribbean wind observations have substantial missing 
data. As an example, we consider the Crown Point data 
set in late February 2015. These incomplete observations 
are plotted in red in Figure 13. 

Recall from Figure 3 that more data is available at 
nearby Point Salines and Grantley Adams. The 
estimation of the spatio-temporal model (1) determines a 
collection of daily temporal trends {fi(t): i = 1,…5} using 
data from all locations. These temporal trends are then 
weighted by the spatial fields {βi(s): i = 1,…5}. The 
evaluation of these spatial fields at the Crown Point 
location s = s0 = (x0, y0) determines the trend component 
of the predicted wind speed at Crown Point. The trend 
component for our Crown Point example is shown in 
green in Figure 13.  

The component v(s,t) of spatio-temporal model (1) 
interpolates the variation of wind speed observations 
from the trend component. The addition of the 
component v(s,t) to the trend component results in the 
imputed (i.e. predicted) wind speeds illustrated in black 
in Figure 13. The variances of these predictions are used  
to  form a   confidence  band  for the  predictions;  this  is 
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Figure 12. Facet plot of wind speeds in the lower Caribbean on January 1 2015.  
The left and right panes show wind speeds at midnight and noon respectively. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Imputation with validation of Crown Point logarithmic 
wind speed observations in late February 2015 

 

illustrated as the grey areas in Figure 13. 
 
3.3 Validation 
Cross-validation is a method of assessing the predictive 
ability of a model by partitioning the available 
observations into training sets (used to estimate the 
parameters of the model) and test sets. The estimated 
model is used to form predictions at the locations of the 
test sets and so predictions may be compared with actual 
observations. Our case study is assessed by the use of 
eight cross-validation groups where the ith group consists 
of all reference locations except location i. The spatio-
temporal model (1) is estimated using training data from 
the seven locations in the ith group and then used to 
predict wind speeds at location i. These predictions are 
then compared to the known test data at location i. 
Figure 13 shows results from three of the eight cross-
validation groups. As an example, the blue plot in the 
Crown Point panel indicates predictions using data from 
all locations except Crown Point. 

The red plot shows actual observations at Crown 
Point. As may be seen from this panel, the blue 
predictions are reasonable estimates which capture the 
cyclicity of the actual observations in red. However, 
there is a small bias caused by inaccurate estimation of 
the spatial coefficients βi(s) of the trend component. 

Let yt,ŷt denote the observed and predicted values of 
wind speed at a fixed location and time t. The residuals 
  (13) 
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are used to form accuracy measures of prediction models 
(Hyndman and Athanasopoulos, 2018). One such 
measure is the root mean squared error RMSE which is 
defined as 

 

 

(14) 

where N is the number of observations. Other accuracy 
measures include the mean error (ME), mean absolute 
error (MAE), Pearson correlation coefficient and percent 
bias (Zambrano-Bigiarini, 2014). The accuracy measures 
in Table 1 show (as expected) that the predictions at 
Crown Point are improved when local data is available. 
Note that these measures indicate that predictions at 
Crown Point are meaningful even if no local data is used. 
 

Table 1. Comparison of predictions with/without Crown Point 
(CP) data using goodness of fit measures 

Measures with CP data without CP data 
ME 0.0003 0.3155 

MAE 0.2513 0.3654 
RMSE 0.3302 0.4886 
Pearson 0.7301 0.6505 

Percent bias 0 13.4 
 
 

The validity of our wind speed predictions is 
dependent on the assumption that the residual field v(s,t) 
of our spatio-temporal model (1) is normally distributed. 
A check for normality of residuals may be done via a 
quantile-quantile (Q-Q) scatter plot which is obtained by 
plotting sample quantiles against theoretical quantiles of 
a normal distribution. For normal residuals, these points 
are expected to lie along a straight line. From the Q-Q 
plots in Figures 14 and 15, we see that the assumption of 
normal residuals is reasonable with or without the use of 
local Crown point data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Q-Q plot of residuals of prediction with Crown Point 
data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15. Q-Q plot of residuals of prediction without Crown 

Point data 
 
 
4. Conclusion and Future Work 
The particular kriging method used in this paper is 
suitable for imbalanced, trending data. Predictions are 
more accurate at locations which have some data points 
as these allow for better estimates of the local trend 
function. However, we have seen that estimates are still 
meaningful at locations with no data. 

Predictions obtained from our spatio-temporal model 
given in equation (1) may be possibly improved by the 
use of a more general model. 

 
 

(15) 

which now includes exogenous spatio-temporal 
covariates Ml(s,t) (see Lindström et al., 2013). It is 
feasible that pressure and temperature covariates may 
improve our wind speed predictions (Şen, 1997); note 
also that pressure and temperature data are typically 
available in METAR records. Surface roughness and 
elevation are other (non-temporal) covariates which may 
be used although roughness data is less readily available 
(Wever and Groen, 2009). The use of roughness and 
elevation data may necessitate the use of bridges 
between R and geographic information software (GIS) 
(Lovelace, Nowosad and Muenchow, 2019).  

Furthermore, the METAR data used in the paper may 
be supplemented with the ERA5-Land hourly dataset 
(CDS, 2021) which has a spatial horizontal resolution of 
9 km. Finally, as direction may be numerically specified 
in degrees, our kriging method may also estimate wind 
directions which can then be combined with wind speed 
estimates to obtain velocity predictions. 

. 
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Appendix A: R code for case study 
A.1 Data acquisition, processing and preliminary analysis 
Sys.setenv(TZ='UTC') 
library(pacman) 
pacman::p_load("rnoaa","readxl","dplyr","lubridate","stringr","
xts","zoo","tidyr","knitr") 
stations_near_Trinidad = isd_stations_search(lat = 10.6918, lon
 = -61.2225, radius = 600, bbox = NULL) 
knitr::kable(head(select(stations_near_Trinidad,usaf,wban,stati
on_name,icao,lat,lon))) 

usaf wban station_name icao lat lon 
999999 11610 WALLER 

BWI 
 10.617 -

61.217 
789700 99999 PIARCO TTPP 10.595 -

61.337 
789700 11634 PIARCO 

INTL AP 
TTPP 10.583 -

61.350 

749040 99999 TOCO  10.833 -
60.933 

749041 99999 CHICKLAND  10.400 -
61.400 

999999 11621 TRINIDAD 
BWI 

MCGU 10.683 -
61.617 

 
#first six rows of data frame of weather stations within 600 km 
of Trinidad 
#contains usaf and wban numbers for each station 
 
Piarco_noaa <- isd(usaf="789700", wban="11634", year=2015) 
# download Piarco weather data (for year 2015) from NOAA si
te 
write.csv(Piarco_noaa, file="Piarco1.csv") 
Piarco <- read.csv("Piarco1.csv", stringsAsFactors = FALSE,c
olClasses=c("NULL", "NULL", "NULL", "NULL",NA,NA,"N
ULL", "NULL","NULL", "NULL", "NULL", "NULL","NULL
",  NA,NA,NA,NA,NA,NA)) 
Piarco <- Piarco[c(1,2,3,4,6,7)] 
Piarco$time <- formatC(Piarco$time, flag = 0, width = 4) 
Piarco$date <- formatC(Piarco$date) 

http://maps.stamen.com/
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Piarco<-unite(Piarco, date_time, c(date,time), sep=":") 
Piarco$date_time<-as.POSIXct(strptime(Piarco$date_time,for
mat = "%Y%m%d:%H%M",tz="UTC")) 
Piarco$wind_direction[ Piarco$wind_direction == 999] <-NA 
# 999 represents NAs 
Piarco<-drop_na(Piarco) 
Piarco$wind_speed<-as.numeric(Piarco$wind_speed)*(2.237/1
0) 
# noaa wind speed is in m/s and scaled by 10 
Piarco_speed<-Piarco[c(1,4)] 
boxplot(Piarco_speed$wind_speed)$out 
outliers <- boxplot(Piarco_speed$wind_speed, plot=FALSE)$o
ut outliers<-outliers[outliers >30] 
# remove outliers 
Piarco_speed <- Piarco_speed[-which(Piarco_speed$wind_spe
ed  %in% outliers),] 
# convert Piarco_Speed from data frame to xts 
Piarco_speed_xts<-xts(Piarco_speed[,-1], order.by = as.POSIX
ct(Piarco_speed$date_time)) 
plot(Piarco_speed_xts["20150101/20150227"],main=NULL)   
 
 

 
 # plot of Piarco wind speeds for Jan 1 2015 to Feb 27 2015 
#similar data processing done for other stations and data from 
Iowa Mesonet 
 
# merge data from all stations into a single xts 
All_stations<-merge(Piarco_speed_xts,Crown_point_Tobago_
xts,Point_Salines_Grenada_xts,Grantley_Adams_Barbados_xts
,Arnos_Vale_St_Vincent_xts,Hewanorra_St_Lucia_xts,Maturi
n_VZ_xts,Cheddi_Jagan_xts, 
Simon_Bolivar_xts,Melville_Hall_xts,Le_Lamentin_xts,join="
outer") 
#remove the rows with duplicated indices  
All_stations<-All_stations[!duplicated(index(All_stations))] 
#remove rows with all NAs 
All_stations<-All_stations[rowSums(is.na(All_stations)) != nco
l(All_stations),] 
# saveRDS(All_stations, file = 'All_stations.Rds') 
Cbbn_wind <- readRDS('All_stations.Rds') 
Cbstart="2015-01-01 00:00:00";Cbend="2015-02-25 23:00:00" 
Cbbn_wind<-Cbbn_wind[paste(Cbstart,"/",Cbend,sep="")]   
#truncate dataset to first two months 
Cbbn_wind_2<-Cbbn_wind[seq(from=as.POSIXct(Cbstart, tz=
"UTC"), 
to=as.POSIXct(Cbend, tz="UTC"),by="hour" )]  
# remove observations that occurred at half hours as such obse
rvations 
# only occurred at Le Lamentin 
plot(Cbbn_wind_2["20150201/20150228"],ylim=c(3,32)) 
 

 
 
# plot of wind speeds from 11 stations from Feb 1 2015 to Feb 
28 2015 
 
# MISSING VALUES DIAGRAM 
Cbbn_wind<-Cbbn_wind[,c(1:6,10,11)]   
names(Cbbn_wind)<-c("Piarco", "Crown Point","Point Salines
","Grantley Adams", 
    "Arnos Vale","Hewanorra", "Melville Hall", "Le Lamentin") 
 Cbstart="2015-01-01 00:00:00";Cbend="2015-02-26 23:00:00
" 
 Cbbn_wind_2<-Cbbn_wind[seq(from=as.POSIXct(Cbstart, tz
="UTC"), 
                        to=as.POSIXct(Cbend, tz="UTC"),by="hour" )] 
 Cbbn_wind_3<-as.data.frame(Cbbn_wind_2) 
 
 mvals <- Cbbn_wind_3 %>% 
   gather(key = "key", value = "val") %>% 
   mutate(isna = is.na(val)) %>% 
   group_by(key) %>% 
   mutate(total = n()) %>% 
   group_by(key, total, isna) %>% 
   summarise(num.isna = n()) %>% 
   mutate(pct = num.isna / total * 100) 
 
 levels <- 
   (mvals  %>% filter(isna == T) %>% arrange(desc(pct)))$key 
 
  pplot<- mvals %>% 
   ggplot() + 
   geom_bar(aes(x = reorder(key, desc(pct)), 
                y = pct, fill=isna), 
            stat = 'identity', alpha=0.8) + 
    scale_x_discrete(limits = levels) +    scale_fill_manual(name
 = "", 
             values = c('steelblue', 'tomato3'), labels = c("Present", "
Missing")) + 
   coord_flip() + 
   labs(title = "", x = 
          'Location', y = "percentage of missing values") 
 pplot 
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# test for Heteroskedasticity  (Tsay page 406) 
MarchTest(as.matrix(na.spline(Cbbn_wind_2))) 
## Q(m) of squared series(LM test):   
## Test statistic:  593.7194  p-value:  0  
## Rank-based Test:   
## Test statistic:  1403.636  p-value:  0  
## Q_k(m) of squared series:   
## Test statistic:  21008  p-value:  0  
## Robust Test(5%) :  19562.9  p-value:  0 
 
# sample variogram 
Cbbn_wind <- readRDS('All_stations.Rds') 
Cbstart="2015-01-01 00:00:00";Cbend="2015-12-31 23:00:00"
Cbbn_wind<-Cbbn_wind[seq(from=as.POSIXct(Cbstart, tz="
UTC"), 
      to=as.POSIXct(Cbend, tz="UTC"),by="hour" )]  
Cbbn_wind <- Cbbn_wind[,1:7]  
Cbbn_df<- data.frame(time=index(Cbbn_wind), coredata(Cbbn
_wind)) 
stations <- c("Piarco", "Crown Point","Point Salines","Grantley
 Adams",              "Arnos Vale","Hewanorra","Maturin")  
lat<-c(10.583,11.150,12.004,13.067, 13.133,13.750,9.749) 
lon<-c(-61.350,-60.833,-61.786,-59.483,-61.200, -60.950, -63.1
53) 
Ccrds<-data.frame(stations,lon,lat) 
coordinates(Ccrds) = ~lon+lat 
proj4string(Ccrds) = "+proj=longlat +datum=WGS84" 
Cpts = coordinates(Ccrds)  
rownames(Cpts) = Ccrds$stations  
Cpts = SpatialPoints(Cpts, CRS("+proj=longlat +datum=WGS
84 +ellps=WGS84"))  
utm20 = CRS("+proj=utm +zone=20,21 +datum=WGS84 +ellp
s=WGS84")  
Cpts = spTransform(Cpts, utm20) 
Cwind.data = stConstruct(as.matrix(Cbbn_df[,2:8]), space = lis
t(values = 1:ncol(Cbbn_wind)), 
          time = Cbbn_df[,1], SpatialObj = Cpts, interval = TRUE) 
vargmCbbn<-variogramST(values~1,Cwind.data[, "20150101/
20150107"],tlags=0:100, cutoff=2000000,na.omit=TRUE) 
plot(vargmCbbn,wireframe=TRUE) 
 

 
 
# directional variogram  
time_samples = sample(dim(Cwind.data)[2], 400) 
lst2 = lapply(time_samples, function(i) { x = Cwind.data[,i]; x
$ti = i; rownames(x@coords) = NULL; x} ) 
pts2 = do.call(rbind, lst2) 
v1.dir = variogram(values~ti, pts2[!is.na(pts2$values),], dX=0,
width=50,cutoff=2000000,alpha = c(0, 45, 90, 135)) 
plot(v1.dir,as.table = TRUE,pch=19, col="deepskyblue3", cex=
1.3) 

 
 

A.2 Estimation, prediction and validation 
 
# use logs because of heteroskedasticity 
Cbbn_wind<-log(Cbbn_wind) 
# use two months of hourly data 
Cbstart="2015-01-01 00:00:00";Cbend="2015-02-25 23:00:00"
   
Cbbn_wind<-Cbbn_wind[paste(Cbstart,"/",Cbend,sep="")]   
#truncate dataset 
 
Cbbn_wind_2<-Cbbn_wind[seq(from=as.POSIXct(Cbstart, tz=
"UTC"), to=as.POSIXct(Cbend, tz="UTC"),by="hour" )]    
# remove observations that occurred at half hours as such obse
rvations 
# only occured at Le Lamentin 
 
Cbbn_wind_2_core <-coredata(Cbbn_wind_2) 
Cbbn_wind_daily_xts <- xts(Cbbn_wind_2_core,seq(as.Date("
2015-01-01"), length=nrow(Cbbn_wind_2), by="days")) 
Cbbn_wind_matrix2<-as.matrix(Cbbn_wind_daily_xts) 
Cbbn_STdata<- createSTdata(Cbbn_wind_matrix2, covars = C
crds) 
 
# facet plot of change in AIC, MSE, BIC, R^2 with n.basis 
D <- createDataMatrix(Cbbn_STdata) 
CV_facet<- SVDsmoothCV(D, 0:7) 
plot(CV_facet) 
 

 
 
# Piarco acf before trend removal 
plot(Cbbn_STdata, "acf", ID = "1") 
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Cbbn_STdata <- updateTrend(Cbbn_STdata, n.basis = 4) 
 
# Piarco acf after trend removal 
plot(Cbbn_STdata, "acf", ID = "1") 
 

 
#plot of five basis functions 
Cbbn_STdata_trend_xts <- xts(Cbbn_STdata$trend,seq(as.POS
IXct("2014-12-31 20:00:00"), length=nrow(Cbbn_STdata$tren
d), by="hour")) 
col_ones_xts<-xts(rep(1, nrow(Cbbn_STdata$trend)),seq(as.P
OSIXct("2014-12-31 20:00:00"), length=nrow(Cbbn_STdata$t
rend), by="hour")) 
Cbbn_STdata_trend_xts<-cbind(col_ones_xts,Cbbn_STdata_tr
end_xts) 
tt <- time(Cbbn_STdata_trend_xts)[seq(1, length(Cbbn_STdata
_trend_xts), by = 12)] 
cols <- c( "darkorange4" ,"darkorchid4","forestgreen","oranger
ed3","steelblue") 
plot(as.zoo(Cbbn_STdata_trend_xts["20150101/20150105",c(1
:5)]),col = cols,  
     screens = 1,ylim=c(-2.5,4.5),ylab="",xlab="",cex.axis=0.8,c
ex.lab=0.85,cex.main=0.95, 
     main="",xaxt="n",lwd=2 ,font.main = 1 ) 
grid() 
legend(x = "topleft", legend = c(TeX('$f_1(t)$'),TeX('$f_2(t)$')
, TeX('$f_3(t)$'),TeX('$f_4(t)$'), TeX('$f_5(t)$')),lty = 1,col = 
cols,pt.cex = 1,cex=0.9,bg="white",lwd=2 ) 
axis(1, tt,format(tt, '%d-%b'),las=1) 
 

 
beta_fields <- estimateBetaFields(Cbbn_STdata)   
row.names(beta_fields$beta) 
beta_fields$beta <- data.frame(beta_fields$beta) 

beta_fields$beta.sd <- data.frame(beta_fields$beta.sd) 
beta_fields$beta$ID <- row.names(beta_fields$beta) 
 
# using five basis funtions 
merged_beta <- cbind(beta_fields$beta[,1:5], beta_fields$beta$
ID,beta_fields$beta.sd[,1:5])  
#using first 4 columns of merged_beta etc 
colnames(merged_beta) <- c("alpha1", "alpha2", "alpha3", "alp
ha4", 
              "alpha5", "ID", 
              "alpha1_CI", "alpha2_CI", "alpha3_CI", "alpha4_CI", 
              "alpha5_CI" ) 
merged_beta <- left_join(merged_beta, Ccrds, by = "ID") 
 
 
ggplot(merged_beta) + geom_point(aes(x = lat, y = alpha1)) + 
     geom_smooth(aes(x = lat, y = alpha1),method = "lm", se = 
FALSE, linetype=2)+ 
  geom_errorbar(aes(x = lat, 
              ymin = alpha1 - 1.96*alpha1_CI, 
              ymax = alpha1 + 1.96*alpha1_CI)) + 
  ylab(expression(beta[1](s))) + 
  xlab("latitude (degrees)") + theme_bw() 
 
 

 
 
 
# beta1 essentially shows mean wind speed at each station  
lcbeta <- list(covf = "exp", nugget = TRUE)  
c_nu <- list(covf = "exp",nugget = ~1,random.effect = FALSE)
    _  
locations <- list(coords = c("lon", "lat")) 
 
# land_use in the case of four basis function (well five when co
nstant is included) 
land_use <- list(~lat + lon, ~lat, ~lat , ~1 , ~1) 
STmodel <- createSTmodel(Cbbn_STdata, LUR = land_use, co
v.beta = lcbeta,  
                  cov.nu = c_nu, locations = locations)  
# init_ in the case of four basis functions 
init_ <- matrix(1, 18, 1) 
SpatioTemporalfit1 <- estimate(STmodel, init_)  
pred_Cbbn <- predict(STmodel, SpatioTemporalfit1, pred.var=
TRUE) 
# LOOCV cross validation  
CV_groups <- createCV(STmodel, groups=8)    # this will crea
te 8 groups each omitting a single station 
init_ <- coef(SpatioTemporalfit1, pars="cov")[,c("init")]   
est.cv.STmodel <- estimateCV(STmodel, init_, CV_groups) 
pred.cv.STmodel <- predictCV(STmodel, est.cv.STmodel, LT
A=TRUE)  
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par(mfrow=c(1,1)) 
plot(pred_Cbbn, ID=5, main="", font.main=1, 
     xlab="", ylab="wind speed (log mph)", xaxt="n", 
     xlim=as.Date(c("2016-10-20","2017-01-12")), 
     ylim=c(0.95,6), pch=NA, pred.var=TRUE,STmodel=STmo
del, 
     lty=NA, col=c(1,1,"lightgrey")) 
plot(pred_Cbbn, ID=5, STmodel=STmodel, add=TRUE, 
     lty=c(1,1),lwd=c(2,1), pch=c(NA,16),  cex=c(1.2,1),col=c(1
,2,NA)) 
axis.Date(1, at=rev(seq(as.Date("2017-01-12"), length=4, by="
-24 days")),labels=c("Feb 23","Feb 24","Feb 25","Feb 26")) 
plot(pred_Cbbn, ID=5, STmodel=STmodel, add=TRUE, 
     pred.type = "EX.mu.beta", lwd=2, col="forestgreen") 
legend("topleft", c("Observations at Arnos Vale",  
              "Predictions with Arnos Vale data", 
              "Predictions with Arnos Vale data (trend component)", 
              "Predictions with no Arnos Vale data", 
              "95% confidence interval (with Arnos Vale data)"), bt
y="n", 
       lty=c(NA,1,1,1, NA), lwd=c(NA,2,2,2, NA), 
       pch=c(16,NA,NA,NA,15), pt.cex=c(1,1,NA,NA,2.5), 
       col=c("red", 1,"forestgreen","blue", "grey"),cex=0.7) 
plot(pred.cv.STmodel, ID="5",add=TRUE,col="blue",lwd=2)  
# blue curve obtained from LOOCV 
 

 
 
rmse(as.vector(pred_Cbbn[["EX"]][,2]),as.vector(Cbbn_wind_
daily_xts[,2]),na.rm=TRUE) 
#     package:  hydroGOF   
## [1] 0.3335035 
TEMP<- pred.cv.STmodel[["pred.obs"]][pred.cv.STmodel[["pr
ed.obs"]]$ID=="2",]  #restrict to ID=2 
rmse(as.vector(TEMP$EX),as.vector(TEMP$obs),na.rm=TRU
E)    
# actually no need for na.rm here as STDF stripped missing val
ues 
## [1] 0.4986291 
mae(as.vector(pred_Cbbn[["EX"]][,2]),as.vector(Cbbn_wind_d
aily_xts[,2]),na.rm=TRUE) 
mae(as.vector(TEMP$EX),as.vector(TEMP$obs),na.rm=TRUE
)  
 
me(as.vector(pred_Cbbn[["EX"]][,2]),as.vector(Cbbn_wind_da
ily_xts[,2]),na.rm=TRUE) 
me(as.vector(TEMP$EX),as.vector(TEMP$obs),na.rm=TRUE)
 rPearson(as.vector(pred_Cbbn[["EX"]][,2]),as.vector(Cbbn_wi

nd_daily_xts[,2]),na.rm=TRUE) 
rPearson(as.vector(TEMP$EX),as.vector(TEMP$obs),na.rm=T
RUE) 
 
# QQ plots for residuals 
 
qqnorm(TEMP$res,main="",cex.main=1.5,cex.lab=1.5,xlab=""
, ylab="")  #without Crown Point data 
qqline(TEMP$res, col = 2,lwd=2,lty=2) 
 

 
 
## Define space-time grid  
spat_pred_grid <- expand.grid(lon = seq(-67.2, -57, length = 10
0), 
                     lat = seq(5.8, 15.7, length = 100)) 
spat_pred_grid$id <- 1:nrow(spat_pred_grid) 
# spat_pred_grid is simply a data frame with lat lon coords.  
 
temp_pred_grid <- as.Date("2017-01-12") + seq(-11, 0, length 
= 12) 
#temp_pred_grid 
 
## Initialise data matrix 
obs_pred_wide <- matrix(0, nrow = 12, ncol = 10000) 
 
## Set row names and column names 
rownames(obs_pred_wide) <- as.character(temp_pred_grid) 
colnames(obs_pred_wide) <- spat_pred_grid$id 
covars_pred <- spat_pred_grid # covariates 
STdata_pred <- createSTdata(obs = obs_pred_wide, # ST objec
t 
                   covars = covars_pred) 
x.final <- coef(SpatioTemporalfit1, pars = "cov")$par 
# predict on a grid 
E <- predict(STmodel, x.final, STdata = STdata_pred) 
library(sp) 
library(spacetime) 
spat <- as.matrix(spat_pred_grid[,1:2]) 
colnames(spat) <- NULL 
spat <- SpatialPoints(spat) 
proj4string(spat) <- CRS("+proj=longlat +datum=WGS84") 
times <- as.Date(temp_pred_grid) 
ESX <-t(as.matrix(E$EX)) 
colnames(ESX) <- NULL 
pred.st <- STFDF(spat, times, data.frame(vals = as.vector(as.m
atrix(ESX)))) 
day1<-as.data.frame(pred.st[,1,1] )  
#extract day1 data from STFDF 
day12<-as.data.frame(pred.st[,12,1] )  # 12 hours later 
 
# exponentiate the logs 
day1$vals <- exp(day1$vals) 
day12$vals <- exp(day12$vals) 
vals <- attr(pred.st[,1,'vals'],'data') 
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library(rworldmap) 
library(rworldxtra) 
library(ggmap) 
library(scales) 
cbbn_stamen_toner <- get_stamenmap(bbox = cbbn_bb,mapty
pe = "toner-lite", zoom = 9) 
breaks <- seq(min(day1$vals, na.rm = TRUE) * 0.95, max(day
1$vals, na.rm = TRUE) * 1.05, length = 21) 
require('RColorBrewer') 
ColorScale <-c("azure","cadetblue3","darkseagreen2","gold1",
"darkorange","darkorange3","firebrick3", 
"firebrick1") 
 
Labs <- round(breaks, 2) 
iLabs <- floor(seq(1, length(Labs), length.out = 5)) 
iLabs[length(iLabs)] <- length(Labs) 
Labs <- as.character(Labs[iLabs]) 
Labs[Labs == "0"] <- " 0.00 " 
 
P <- ggmap(cbbn_stamen_toner) 
P <- P + geom_point(aes(x = coords.x1, y = coords.x2, col = va
ls), alpha = 0.15, 
         data = day1, na.rm = TRUE) 
P <- P + geom_contour(data = day1, aes(x = coords.x1, 
               y = coords.x2, z = vals), alpha = 0.5, colour = " gray4
8") 
P <- P + scale_colour_gradientn(name = "wind speed in mph", 
 colours =ColorScale , 
                breaks = breaks[iLabs], limits = range(breaks), labels
 = Labs) 
P <- P + theme(legend.position = "none") 

P <- P + labs(x = "midnight", y="") 
P 
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