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Abstract: Literature indicates rapid prototyping (RP) application has become more widespread in design and 
development of human anatomy models. Practitioners are facing challenges in deployment of RP tools for development 
of cost-effective medical models, because there are no proven decision support systems in the selection of parameters 
such as speed, accuracy, materials, and customisation of commercial software. This study aims at alleviating some of 
these issues by exploring the use of a Genetic Algorithm (GA) approach combined with computer-aided design (CAD) 
and fused deposition modeling (FDM) techniques. Experiments were conducted using response surface methodology 
(RSM) to facilitate the optimisation process with build time and model material volume as responses. The validation of 
the study has been performed with a patella model and the results verified the effectiveness of the proposed RSM-GA 
approach in the design and development of the anatomical model. The results showed a 27% savings on model material 
compared to a non-refined model and was deemed satisfactory for practical use as there was a reduction in irregularities 
from CT data. The study also reveals that the parameter hollow has the largest effect on the responses, followed by the 
smooth parameter and then the wrap parameter. 

Keywords:  Anatomical model, computer aided design approach, design optimisation, genetic algorithm, RSM, rapid 
prototyping, fused deposition modeling 

1. Introduction
Anatomical modelling is the process of using medical 
scanned data to fabricate accurate solid models of a 
patient’s anatomy (Mallepree and Bergers, 2009). In the 
past, reverse engineering (RE) and medical image-based 
modeling technologies were applied successfully for 
construction of three-dimensional (3D) anatomical 
models of human body from scanned data such as 
computerised tomography (CT) and magnetic resonance 
imaging (MRI). Further, the 3D printed anatomical 
models have several downstream applications such as 
surgical training, preoperative planning, surgical 
simulation, diagnosis and treatments (Yap et al., 2017).   

Sun and Liu (2018)’s review shows that 3D printed 
kidney models can replicate renal anatomical structures 
and renal tumors with high precision. The authors 
concluded that there is a need for further investigations of 
more cases and with an emphasis on production of cost-
effective 3D printed models as well as the ways to reduce 
the 3D model production time. Computer Aided Design 
(CAD) and Rapid Prototyping (RP) tools are proven 
beneficial in the contemporary medical profession. 
Further, these technologies can produce complex-shaped 
anatomical parts directly from scanned data (Negi et al., 

2014). RP models also serve as customised implants 
(Dhakshyani et al., 2011). This concurs with study of Sun 
and Liu (2018) on the usefulness of 3D printed models for 
improved patient’s understanding of renal anatomy and 
pathology, medical students’ understanding of renal 
malignant tumors, and surgical planning and procedures. 

On the other hand, the key issues surrounding the use 
of 3D printed models in the medical field are speed, cost, 
accuracy, materials, and ease of use (Gibson et al., 2006; 
Sun and Liu, 2018). The first critical limitation of RP 
technology is the investment of time and training required 
for data preparation.  As such, anatomical models cannot 
be generated as surgical aids in emergency situations. 
Another limitation of RP technology specific to 
anatomical modelling is the accuracy of the medical 
imaging data used for model segmentation, as most 
methods of medical imaging introduce inaccuracies due to 
noise and other sources of error that will prolong the 
model design as well as the fabrication process.  

The literature indicates that the model design and 
development time are the key performance measures 
which affect the selection of AM technology for 
development of anatomical models.  In particular, the 
slow building times of the 3D printing machines severely 
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increase the waiting time for fabrication of prototypes 
(Wu et al., 2018; Sun and Liu, 2018).  

Literature has been reviewed from the context of GA 
applications in the field of RP where user discretion is 
needed for parameter selection. Pandey et al. (2004) and 
Byun et al. (2005) obtained optimal part orientation while 
minimising build time in FDM process by considering two 
objective functions simultaneously using a non-
dominated sorting genetic algorithm-II (NSGA-II).  Panda 
et al. (2009) deployed a central composite design (CCD) 
approach to optimise FDM process parameters. 
Additionally, empirical models were developed using 
analysis of variance (ANOVA) technique and 
optimisation was accomplished using a bacterial foraging 
tool.  

The purpose of this study is to develop an improved 
methodology for design development of anatomical 
models to reduce costs and material usage, improve 
accuracy and build time whilst reducing the need for 
frequent user inputs. The proposed methodology includes 
the use of GA technique for optimisation of build time 
(BT) and model volume, as well as to develop a 
relationship     between    the    selected    medical    CAD  
operations  and  performance  measures.    The  proposed  

methodology is expected to provide fast, repeatable 
results. The effectiveness of the technique was verified by 
evaluating the process of modelling and prototyping a 
patella, also known as kneecap, located at the front of the 
knee joint, within the patellofemoral groove of the femur. 
 
2. Research Methodology  
Figure 1 shows the research methodology. The 
methodology consists of anatomical model design, 
optimisation and development stages. The associated 
operational details of each stage are explained in the 
following sections.  
 
2.1 Phase 1: Anatomical Model Design  
i) Data Acquisition  
The selected data was derived from a computer 
tomography (CT) imagery of a patient-specific human 
knee. Importation of the CT image files was performed by 
means of Mimics base software in DICOM V3.0 format 
to an appropriate number of image slices.  
 
ii) Windowing  
Windowing  is  a  tool  available  in  Mimics  software  to

  
Figure 1. Proposed Research Methodology for Design, Optimisation and Development of Anatomical Models 

 

i. Data Acquisition
(CT image capture) Import data to Mimics programme ii. Windowing

(Image contrast adjustment) 

iii. Thresholding 
(Image data selection)
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v. Multiple Slice Edit
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Is design criteria 
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adjust the image contrast. Windowing of the imported 
model was performed to increase visibility by adjusting 
the contrast of the selected CT image to the user 
requirements. Figure 2 shows the raw CT imagery. The 
right image was chosen due to its high quality.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Windowed Knee CT Scan 

 
iii) Thresholding 
The medical images coming from CT scanners normally 
include some noisy information. However, designers need 
to create models in terms of industry’s accepted gray 
values within these images (Materialise, 2010). Gray 
values are nothing but Hounsfield units in CT images and 
each gray value is a number associated with an image 
pixel defining the shade (white, gray, or black) of the 
pixel.  

In general, there is a relationship between material 
density of the scanned object and the gray value assigned 
to each pixel in the image data. By grouping together 
similar gray values, the CT image data can be segmented, 
and models created. This type of segmentation is called 
thresholding and yields accurate models. A lower 
threshold allows segmentation of soft tissue, whereas a 
higher threshold of +700 to +3000 is recommended for 
segmentation of bone (Bibb et al., 2014). 
 
iv) Region Growing 
Region Growing is a model calculation tool used in this 
research to produce an improved patella structure by 
removing floating pixels. However, the structures may 
still contain noise, in the form of residual pixels, at points 
where different structures connect. Therefore, this noise 
must be cleaned manually before completing the model 
segmentation process. Further, for enhancement of the 
segmentation process, various tools such as ‘Edit Mask’ 
and ‘Crop Mask’ were used to threshold the selected case 
mask. 
 
v) Multiple Slice Edit 
The Multiple Slice Edit tool of Mimics was used to reduce 
noise in experimental data. In addition, the Boolean 

operation tool was also utilised for visualisation of the 
selected combination of masks. 
 
vi) and vii) Design of Experiments 
The patella model obtained from the previous stage, was 
generated and exported as binary STL to the Materialise 
software to acquire parameter boundaries. As per Gibson 
et al. (2006), this activity was completed by executing 
various medical CAD operations such as wrap, smooth 
and hollow. Then it was noted that there were no gaps in 
the revisited exported model. Moreover, the lower limit 
for the wrap parameter was taken as the minimum wall 
thickness of 0.5 mm and the upper limit was set at the 
suggested maximum of 5 mm. The smooth parameter was 
set as 0 to 1mm. The hollow parameter was set from 10 
mm maximum wall thickness to the minimum wall 
thickness of 0.3 mm. From the acquired boundaries, using 
CCD approach, five parameter levels were generated (See 
Table 1). Figure 3 shows the solid patella model, 
highlighting the issues requiring CAD operations and it 
was chosen as a reference model for optimisation 
purposes. 
  

Table 1. Experimental Parameters and Levels as per CCD 
Approach 

Parameter Level 
-2 -1 0 1 2 

Wrap 0.5 1.25 2.5 3.75 5.0 
Smooth 0 0.25 0.5 0.75 1.0 
Hollow  0.3 2.5 5.0 7.5 10.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Patella STL Model Chosen as Reference for 
Optimisation 

 
2.2 Phase 2: Optimisation and Rapid Prototyping of 

Anatomical Models  
viii) Samples Printing and Analysis   
Twenty experimental models were derived from the 
patella reference STL model (see Figure 3) by means of 
the acquired parameter combinations as presented in 
Table 1. The selected objective criteria, model volume and 
build time (BT) were measured using Insight software.  
 

Sharp edge 

Horizontal ridges 
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ix) Development of Response Surface Models  
The Response Surface Methodology (RSM) technique 
was used to establish the mathematical relation between 
input parameters and the selected objective criteria. The 
acceptability of the two generated regression models in 
terms of BT and model volume was verified by means of 
ANOVA technique. The results show that all 
experimental values are well fitted in the two regression 
models. The results along with the associated regression 
model for BT and model volume are presented in Table 2 
and Table 3, respectively.   
  
x) Optimisation of Anatomical CAD Models 
The Multi-Objective Non-Sorting Genetic Algorithm (M-
NSGA) module available in MATLAB has been used to   
optimise    the   objective    criteria   (MathWorks, 2012).  

 
Using the decoded regression Equations (1) and (2), the 
fitness function was written in MATLAB software. 
Further, the GA settings for population size, crossover 
probability, mutation probability and number of 
generations were adapted from Panda et al. (2009). 
 
xi) Preparation of RP Samples  
The optimised STL model was printed using the Fortus 
400mc FDM machine. Polycarbonate (PC) was selected 
as model material and PC-10 as the support material. PC 
has high strength and gives sufficient representation of the 
actual color of bone. The preparation of samples for 
printing involved specification of the RP parameters 
including the layer height, infill, build orientation, support 
material and tool paths, in the machine control center. As  
 

 
Table 2. The Regression Equation for Build Time 

Predictor Term Coded Coefficient P Value 
Constant 

A 
B 
C 

A*A 
B*B 
C*C 
A*B 
A*C 
B*C 

167 
-0.7 

-16.7 
-79.2 
-11.9 
-70.2 
-59.9 
0.0 
0.0 
1.0 

0.000 
0.956 
0.237 
0.000 
0.553 
0.006 
0.014 
1.000 
1.000 
0.978 

Model Summary:    S =25.4706     R-Sq = 85.27% 
Analysis of Variance 
Source DF Adj SS Adj MS F P 
Regression 
Linear 
Square 
Interaction 
Residual Error 
Total 

9 
3 
3 
3 

10 
19 

37546.5 
25008.3 
11483.4 

0.5 
6487.5 

44034.0 

4171.8 
8336.1 
3827.8 

0.2 
648.8 

- 

6.43 
12.85 
5.90 
0.00 

- 
- 

0.004 
0.001 
0.014 
1.000 

- 
- 

Regression Equation for BT in terms of  
Wrap (A), Smooth (B), Hollow (C) 

BT = 114.0 + 12.7 A + 245 B + 9.7 C - 2.36 A*A - 280.8 B*B - 2.547 C*C + 0.4 B*C   
…Eq. (1) 

 
Table 3. The Regression Equation for Model Volume 

Predictor Term Coded Coefficient P Value 
Constant 
A 
B 
C 
A*A 
B*B 
C*C 
A*B 
A*C 
B*C 

28.797 
-0.039 
-0.835 
10.524 
-0.571 
-3.500 
-7.197 
-0.01 
-0.01 
0.03 

0.000 
0.946 
0.207 
0.000 
0.544 
0.004 
0.000 
0.993 
0.993 
0.985 

Model Summary:    S =1.1822    R-Sq = 97.57% 
Analysis of Variance 
Source DF Adj SS Adj MS F P 
Regression 
Linear 
Square 
Interaction 
Residual Error 
Total 

9 
3 
3 
3 

10 
19 

566.001 
426.587 
92.245 
0.001 

14.119 
580.12 

62.889 
142.196 
30.748 
0.000 
1.1412 

- 

44.54 
100.71 
21.78 
0.00 

167.08 
- 

0.000 
0.000 
0.000 
1.000 

- 
- 

Regression Equation for model volume in 
terms of Wrap (A), Smooth (B), Hollow (C)   

Model volume = 6.04 + 0.61 A + 12.30 B + 5.318 C - 0.113 A*A - 14.00 B*B - 0.3060 C*C 
- 0.01 A*B - 0.001 A*C + 0.013 B*C …Eq. (2) 
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Table 4. Objective Performance of the Experiments 
Model No. CCD Parameter combinations Model Volume 

(cm³) 
Support Volume 

(cm³) 
Build Time (BT) 

(minutes) Wrap (A) Smooth  (B) Hollow (C) 
1  0 0 0 28.487 8.996 173 
2  0 0 0 28.487 8.996 173 
3 -1 1 1 29.951 2.163 67 
4 -1 -1 -1 19.653 9.739 172 
5 -2  0 0 28.776 8.762 173 
6  1 -1 1 29.974 2.152 67 
7 -1 -1 1 29.974 2.152 67 
8 1 1 1 29.920 2.119 67 
9 2 0 0 28.740 8.71 173 
10 0 2 0 24.059 2.909 79 
11 0 0 0 28.738 8.711 173 
12 0 0 2 33.800 2.15 67 
13 0 0 0 28.738 8.711 173 
14 1 1 -1 19.583 9.913 171 
15 0 0 0 28.738 8.711 173 
16 -1 1 -1 19.583 9.913 171 
17 0 0 0 28.738 8.711 173 
18 0 0 -2 10.786 10.786 171 
19 0 -2 0 27.289 6.589 145 
20 1 -1 -1 19.653 9.731 172 
Reference model  35.10 2.157 65 

 
 

the influence of these RP parameters were not being 
investigated, they were kept constant for all experiments. 
 
3. Experimental Data and Analysis 
As per the previous section, three CAD parameters were 
selected for the optimisation of the developed anatomical 
CAD model. These parameters are wrap (A), smooth (B) 
and hollow (C), for which factor levels can be seen in 
Table 1. The factor levels have been determined by 
considering the capability of the Materialise 3-matic 
software (Materialise, 2010), and the experience of the 
authors in this domain. The experimental results for the 
twenty STL models, as well as the reference, are given in 
Table 4. The reference model possessed the lowest BT of 
65 minutes despite having the greatest model volume. 
This is due to the reduced supporting material and 
linearity of the tool path. By comparison, experiments 6, 
7, 8 and 12 obtained a BT of 67 minutes despite having a 
reduced model volume. This was expected due to the non-
linearity of generated tool path. It was noted that 
experiments with higher supporting material obtained 
much higher BTs. A sample screenshot of the simulated 
RP models is shown in Figure 4. 
 
4. Data Analysis  
For second-order experimental models such as FDM 
process optimisation, RSM is a commonly selected 
experimental design (Mohamed et al., 2015). For this 
study, the main effects and interaction plots provided 
sufficient evidence to identify the critical parameters. In 
this regard, the impact of each CAD operation (wrap, 
smooth and hollow) on the objectives was compared in the 
following sections. 
 

 
Figure 4. Simulated RP Models for (a) Experiment 10 and (b) 

Experiment 9 

 
i) Main Effects Plots 
Using the 3-matic design software, the wrap, smooth and 
hollow operations were performed on the extracted CT 
model. Figure 5(a) shows the main effects plots for model 
volume. The observed effects are, as follows: 

1) Wrap: Applying wrap parameter of 2.5 produces a 
maximum model volume of 29cm³, whereas at the 
upper and lower boundaries was slightly reduced by 
approximately 1cm3. 

2) Smooth: With a smooth parameter of 0, the model 
volume was 26cm³. As the smooth parameter 
increased to 0.5, the model volume increased to its 
maximum value of 29cm³.The lowest model volume 
of 24cm³ can be seen at a smooth parameter of 1. 
High smoothing thus provided reduced model 
volume.  

3) Hollow: Applying a hollow parameter of 0.3mm, the 
model volume was at its lowest value of 11cm³. As 
the hollow parameter increased to 10mm, model 
volume also increased to its maximum value of 
32.5cm³.  
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Figure 5. Main Effects Plot for (a) Model Volume and (b) Build Time; Interaction Plot for (c) Model Volume and (d) Build Time 

 
Figure 5(b) shows the main effects plots for BT, and 

several observations can be deduced. These are: 
1) Wrap: At wrap = 0.5, the BT was found as 155 

minutes and it increased to 170 minutes at wrap = 
2.5. Both high and low wrap suggest better 
performance in terms of BT.  

2) Smooth: With no smooth parameter, the sample 
requires a BT of 112 minutes. As the smooth 
parameter increases to 0.5, BT was increased to its 
maximum value of approximately 170 minutes. 
High smoothing provided the lowest BT of 
approximately 80 minutes. 

3) Hollow: With a hollow parameter of 0.3mm, BT was 
approximately 190 minutes. When the sample 
hollowness increased to 10mm, the model volume 
was decreased to its minimum value of 
approximately 12.5 minutes.  

 
ii) Analysis of Interaction Plots 
The interaction plots for model volume can be seen in 
Figure 5(c). The moderate interaction for the parameters 
smooth and hollow (B*C term) can be seen in the 
regression model (refer Eq. 2). This interaction supports 
the earlier observation of a significant decrease in model 
volume at the lower boundary of 0.3 and a rapid increase 
at a hollowing value of 5.15. The interaction plots for BT 
can be seen in Figure 5(d). The significant interaction for 
the parameters smooth and hollow (B*C) can be noted in 
the regression model for BT (refer Eq. 1).  
 

iii) Optimisation Using GA  
The regression models (Eq. 1 and Eq. 2) were used to 
optimise the three parameters (A, B and C) to improve the 
two selected performance measures. A summary of model 
parameters and performance criteria is shown in Table 5.  
 
5. Analysis of Pareto Front 
The GA optimised model parameters were used to 
generate final specifications of the anatomical models 
under consideration. The optimised models revealed a 
wide distribution of results which allow to take 
appropriate decisions. However, the results of the Pareto 
front showed two occurrences of negative BT values of -
69.50 minutes for solutions 2 and 9. These anomalous 
results (as shown in Figure 6) were due to insufficient 
constraints to the BT regression model, particularly with 
respect to a large hollow value.  

The distribution of the Pareto front shown in Figure 6 
suggested that all optimised samples showed a decrease in 
model volume from the reference model volume of 
35.10cm³. However, majority of the generated samples 
had BT values between 60 and 80 minutes. The selection 
criterion for deciding BT may be between 50 to 70 
minutes, providing a feasible solution set of four (4) 
optimised samples. 

 For further analysis, these optimised samples (6, 7, 14 
and 15) were modelled using the parameter values as 
shown in Table 5. Performance criteria were verified by 
means of a commercial RP software.  
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Table 5. Optimal Solution Set from GA Optimisation 
GA Solution  BT (minutes) Model Volume(cm³) Wrap (A) Smooth (B) Hollow (C) 
1 93.29 16.02 0.500 1 2.500 
2 -69.50 27.32 0.501 0.999 9.994 
3 18.56 27.32 0.501 0.999 7.424 
4 74.37 23.04 0.501 0.999 4.757 
5 29.63 26.94 0.501 0.999 7.009 
6 64.92 24.39 0.501 0.999 5.360 
7 69.61 23.78 0.500 1 5.075 
8 78.64 22.23 0.500 1 4.435 
9 -69.50 27.32 0.501 0.999 9.994 
10 41.90 26.33 0.501 1 6.504 
11 93.29 16.02 0.500 1 2.500 
12 87.32 19.85 0.504 0.999 3.603 
13 34.14 26.76 0.525 0.999 6.840 
14 51.72 25.79 0.527 0.997 6.102 
15 59.27 25.02 0.513 0.999 5.682 
16 91.75 17.55 0.501 1 2.917 

 
Table 6. Summary of Sample Parameters and Performance Criteria 

Design Features Original Reference 
Model 

Optimised Solution 
6 

Optimised Solution 
7 

Optimised Solution 
14 

Optimised Solution 
15 

Wrap 0 0.501 0.500 0.527 0.513 
Smooth 0 0.999 1 0.997 0.999 
Hollow 0 5.360 5.075 6.102 5.682 
Actual BT (minutes) 65 80 75 80 80 
Model Volume (cm³) 35.10 25.18 24.29 27.29 26.12 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. GA Optimisation Pareto Front 

 
From Table 6, sample 7 showed the most desirable 

performance criteria. For the sample 7 an STL file was 
created using the optimised parameter values and this was 
used to manufacture the patella model by means of Fortus 
FDM 400mc. A sample of screenshots that represents the 
fabricated RP model can be seen in Figure 7(a-c). 
 
6. Discussion  
This study recommends a methodology for mitigating the 
design issues faced in fabrication of RP models which is 
especially suited for medical applications: The 
methodology involves aa fair degree of automation. An 
important feature of this methodology was the use of the 
GA technique in optimisation of model parameters to 

   
 
 
 
 
 
 
 
 
 
 
Figure 7. Optimised STL Model; (a) Anterior View (b) Posterior 

View (c) RP Model 

 
overcome the resource constraints such as material, cost, 
and time.  

The parameters of the study were wrap, smooth and 
hollow. The wrapping operation creates a layer of pixels 
on the selected geometry for filtering minute inclusions 
and removing holes and surface deformities. The 
smoothing operation reduces noise in the STL model by 
resisting the mesh elements, thus increasing model 
accuracy and quality. The hollowing of medical samples 
is one design strategy used to decrease cost, material 
consumption and manufacturing speed. This observation 
concurred with a previous study suggesting that building 
efficiency can be enhanced by hollowing thin-shell 
prototypes (Zhengyu et al., 2004).  
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The proposed research methodology will be applicable 
for design and development of an anatomical model that 
has surface irregularities. Further, for fabrication of RP 
samples, the model material was selected as PC and the 
support material as PC-10 break-away. PC is very strong 
and commonly used in medical RP applications. 

Geometric errors in RP models can be attributed to the 
scanning process, pre-processing stages, and the actual 
process itself. Here a key design challenge is manipulation 
of the raw imaging data. This imaging data may possess 
errors including inaccuracies in artifacts. The application 
of Mimics 3-matic module operations and automated 
segmentation techniques may be an effective way for 
reduction of such errors. It was proven that the wrap and 
smooth operations of this module will reduce the imaging 
errors. Additionally, except two instances, it was observed 
from the RSM analysis that the BT and model volume 
regression equations have capability to predict model 
accuracies of 85.27% and 97.57%, respectively. 

Further, the CAD operations on the optimised model 
removed all visible indication of the horizontal ridges or 
sharp edges which were the major issues of the reference 
model. The 3-matic hollowing operation is a simple 
economic tool for reduction in material consumption and 
build time. However, the operation has some risk of 
degraded model strength. In this study, the savings in 
material cost was found as 27% of the reference model.  

RP models could be custom-built and could be 
produced in a shorter time compared to conventional 
methods. BT was one of the responses investigated in the 
study and it was found that the BT of the optimised model 
was 15% greater than that of the reference model. 
However, this increase in BT is permissible to overcome 
the degradation in model strength. 

The individual effect of the parameters is analyzed in 
the main effects plots as illustrated in Figure 5(a) and 5(b). 
The analysis reveals that hollowing is the highest 
contributor to the performance objectives, with 
smoothening being second and the lowest contributor 
being the wrap parameter. The interactive effect of the 
parameters were analysed in the interaction plots as 
illustrated in Figures 5(c) and 5(d). The RSM suggests that 
the interaction of terms does not contribute significantly 
to the regression model. Moreover, the analysis of these 
plots reveals that the interaction of smooth and hollow 
parameters results in the highest contributing interaction.  
 
6.1 Process Optimisation by Genetic Algorithm 

Technique 
A multi-objective GA approach was chosen from the 
literature due to its robustness, suitability and capability 
to produce a Pareto front, which is the necessary tool for 
establishing a solution set. As observed from the obtained 
solution set (refer to Table 5) the two parameters; smooth 
and hollow, gave optimal values of approximately 0.5 and 
1, respectively. The hollow parameter, however, was the 
populating variable for the Pareto front. In selecting the 

optimal model, a compromise of BT had to be made as 
none of the optimal solutions had an actual BT lower than 
the original model.  This may be due to the limited 
capabilities of the regression model as well as 
characteristics of STL file increased triangles which 
would result in a less linear tool path being generated and 
increase machine movement. This observation coincided 
with the study of Pandey et al. (2004).   
 
6.2 Validation of the Proposed Approach 
Validation of the proposed design methodology was 
conducted using a questionnaire. The survey sample 
consisted of 30 medical students. The participants were 
given images of the CT imagery and optimised model. 
The responses were measured on a Likert scale of 1-10, 
where 1 represented ‘not at all’, 5 represented ‘partially’ 
and 10 represented ‘completely’. The high responses 
indicate general end-user satisfaction. Table 7 gives a 
summary of the feedback. 
 

Table 7. Consolidated Responses of the End Users 
No. Question Mean  
1 To what extent do you believe that the design 

method is feasible for model production? 
8.5 

2 To what extent do you believe that the optimised 
model can be utilised during instruction or 
practice at your organization? 

8.0 

3 To what extent do you believe that the optimised 
model satisfies the end-user needs? 

8.0 

4 To what extent do you believe that the optimised 
model is an accurate representation of the 
intended anatomy? 

7.5 

5 To what extent do you believe that the models 
generated using this design method will save on 
resources and expenses at your organization? 

8.0 

 
7. Conclusion  
The study indicates that the application of RSM and RP 
principles to anatomical design has potential usefulness in 
the medical field. The high-fidelity anatomical models 
created using this method can be effective tools for 
training medical students, bringing awareness to patients 
and improving the overall surgeon-patient 
communication. To minimise the technological barrier, a 
design methodology for mitigating the design challenges 
in fabrication of RP anatomical models was investigated. 
Moreover, for development of anatomical models, the 
current study focuses on alleviating the issues of cost and 
model build time by exploring the use of GA approach 
combined with CAD and FDM techniques.  

Experiments were conducted using RSM approach to 
facilitate a multi-objective optimisation for the selected 
objective criteria BT and model volume. The multi-
objective optimisation was successful in producing a RP 
patella model which meets the objectives of the study. 
Due to deployment of RSM-GA based statistical tools, 
efficiency of the RP process was increased whilst 
maintaining anatomical model integrity. The results 
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showed a 27% savings on model material compared to a 
non-refined model, minimizing tedious user inputs and 
manipulation of complex RP machine parameters.  

Moreover, this study is an attempt at technical 
improvements in generating inherently sustainable 3D 
anatomical models, requiring less post-processing, and 
lowering 3D printing cost in terms of reducing model and 
support materials. Thus, these accurately replicated 
anatomical RP models will be incorporated into routine 
clinical diagnosis, pre-surgical planning and analysis of 
complex surgical procedures in the near future.  

Furthermore, the customised patient-specific RP 
models can be used as a decision support tool to develop 
acceptable CT scanning standards. Future research studies 
can incorporate more clinical cases to assess the impact of 
RP models on medical education, surgical planning and 
patients’ outcomes. 
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