FACULTY OF
Engineering
REGULATIONS & SYLLABUSES

2014/2015
CONTENTS

Mission Statement ... i
Message from the Dean .. ii
An Historical Note ... iii

SECTION 0 - Staff Listing ... 1
 Office of the Dean ... 1
 Department of Chemical Engineering .. 2
 Department of Civil and Environmental Engineering ... 5
 Department of Electrical and Computer Engineering ... 7
 Department of Geomatics Engineering and Land Management .. 8
 Department of Mechanical & Manufacturing Engineering .. 9

SECTION 1 - Postgraduate Studies in the Faculty of Engineering ... 12
 Department of Chemical Engineering ... 16
 Programmes in Chemical & Process Engineering ... 16
 Programmes in Food Science & Technology .. 20
 Programmes in Petroleum Studies ... 24
 Department of Civil & Environmental Engineering ... 31
 Programmes in Construction Management ... 32
 Programmes in Coastal Engineering & Management .. 36
 Programmes in Civil & Environmental Engineering .. 38
 MSc in Environmental Engineering .. 41
 Programmes in Water and Wastewater Services Management ... 45
 Department of Electrical & Computer Engineering ... 47
 Programmes in Electrical & Computer Engineering .. 47
 Department of Geomatics Engineering and Land Management .. 57
 MPhil/PhD Degrees in Surveying & Land Information, Geoinformatics or Urban and
 Regional Planning .. 57
 PGDip/MSc in Urban & Regional Planning .. 58
 Postgraduate Diploma in Land Administration .. 62
 PGDip/MSc in Geoinformatics ... 64
 Department of Mechanical & Manufacturing Engineering .. 67
 Master’s & Doctoral Programmes in Agricultural Engineering (Biosystems Engineering) 67
 Master’s & Doctoral Programmes in Mechanical, Manufacturing,
 Industrial Engineering, Engineering Management & Production Engineering and Management 69
 MSc Programmes in Production Engineering & Management, Production Management &
 Engineering Management .. 75
 MSc in Engineering Asset Management .. 77
 Office of the Dean .. 83
 MSc in Project Management ... 83
 MPhil/PhD in Project Management .. 87

SECTION 2 - Regulations
 Regulations for Postgraduate Diplomas ... 88
 Regulations for Master’s Degrees ... 88
 Regulations for MSc Programmes .. 89
 Regulations for Research Degrees ... 89
 Regulations for MPhil Qualifying Examinations ... 90
 Regulations for Part-time Postgraduate Students .. 90
 Regulations for Certificate Courses ... 91
 Guidelines for Postgraduate Programmes: MSc/Diploma ... 91
 Guidelines for Staff and Students on Plagiarism ... 92
MISSION STATEMENT

The Mission of the Faculty of Engineering is to be the provider of a world quality education in Engineering, Geoinformatics and Geosciences and research and development programmes in support of Caribbean business, industry and infrastructure, with its graduates, staff and facilities being at the forefront in propelling growth, development and innovation in the region.
MESSAGE FROM THE DEAN
Welcome to all new and returning Postgraduate students to the 2014/2015 Academic Year and thanks for making The University of the West Indies your choice for further study.

There are many reasons why students choose to continue on to postgraduate studies. Many do so for career advancement, particularly candidates for Master’s Degrees and Postgraduate Diplomas which do not have a substantial research component. Others do so simply for self-gratification. Yet others choose this path as it is a requirement for their career. For example, academic careers require a research degree such as a Master of Philosophy (MPhil) or Doctor of Philosophy (PhD). Non-research postgraduate degrees are, in many ways extensions to the undergraduate offering, and provide greater depth in selected areas and some breadth of learning as well. MPhil and PhD degrees require increasing levels of independent and individual research into the scientific unknown. They represent the peak of academia where new knowledge and understanding are discovered and shared, hopefully for the benefit of mankind.

It should also be noted that under our current system of accreditation, professional registration at the equivalent of a UK Chartered Engineer required by Boards of Engineering across the Caribbean, is now dependent on completion of an approved Masters’ level degree course. This route is currently offered in Chemical Engineering, Civil and Environmental Engineering and in Mechanical and Manufacturing Engineering.

By their very nature, all postgraduate options are quite demanding, particularly for the majority of our postgraduate students who are part-time and must balance their studies with the needs of the work place. This is why we suggest that students think carefully before proceeding unto postgraduate study. In particular, those who have just completed their undergraduate study should consider gaining at least a year’s experience in the world of work before registering for a postgraduate programme in their discipline. We are doing the best we can to facilitate your learning and your interest in furthering your qualifications. Just as you pride yourselves on the high quality of professional work that we know you are capable of, we pride ourselves on the continuing success and reputation of the UWI, built upon a solid foundation of quality input, quality delivery and quality output. Together, we must therefore work hard to maintain and even enhance this.

What you may have not considered is the vital contribution you are making to the development of your respective countries by virtue of your postgraduate registration. Indeed, an increase in the pool of appropriately trained and educated postgraduates would, if properly utilised, enhances any country’s ability to produce goods, negotiate and engage with external professionals, earn much needed income and support a healthier GDP. This is all the more reason why you should strive to do well in your chosen field of study.

We wish you the greatest success for the 2014/2015 Academic Year.

Brian Copeland
BSc (Eng), MSc (Toronto), PhD (USC)
Professor and Dean, Faculty of Engineering
AN HISTORICAL NOTE
The University of the West Indies was founded in 1948 at Mona, Jamaica as a College in special relationship with the University of London, to serve the British territories in the Caribbean area. It achieved full University status by Royal Charter in 1962, thereby becoming a degree-granting institution in its own right. As the Charter was revised in 1972, the Queen of England is still the official head of the University of the West Indies.

A second campus of the University was established in 1960 when the Imperial College of Tropical Agriculture (ICTA) at St. Augustine, Trinidad was incorporated into the University College. On August 25, 1959, a Plan of Operation was signed which provided for a United Nations Special Fund allocation and a Government counterpart contribution for the establishment of a Faculty of Engineering. The then Vice-Chancellor and Principal of the University College, Nobel Laureate Sir Arthur Lewis had the overall responsibility of securing funding for the financing of the Engineering buildings and for expediting the final decision to locate the Faculty of Engineering at St. Augustine.

The initial layout comprised five (5) blocks with a total of 5,400 square metres of floor space of which the laboratories occupied 3,030 square metres.

Construction commenced in 1961 and was completed by the end of 1962. During the 1961/62 Academic Year (the first year of teaching), the Faculty was housed in temporary accommodation on the campus. The formal opening of the new buildings of the Faculty took place on February 1, 1963.

Initially, undergraduate and graduate research degrees were offered in the main branches of Engineering - Chemical, Civil, Electrical and Mechanical. The Faculty steadily grew over the years with a major expansion of both physical infrastructure and academic programmes in the 1980s with additional disciplines at the BSc level and several specialist MSc degrees. Floor space now occupies close to 53,181 square metres of classrooms, laboratories and offices, with expansion continuing almost on a yearly basis.

The semester system was introduced on a phased basis in 1990 at the undergraduate level, followed by the MSc programmes at a later date.
SECTION 0
STAFF LISTING

OFFICE OF THE DEAN

DEAN

Copeland, Brian
BSc (Eng) (UWI), MSc (Toronto), PhD (USC)
Professor of Electrical & Computer Engineering
Exts. 82198/82199

DEPUTY DEANS

Undergraduate Student Affairs
Sutherland, Michael
Dip. C.S. (CAST, now UTEC), (Hons), M.Sc.E.,
PhD (New Brunswick), MISTT, MCIG
(Land Information Management)
Exts. 82061/82564

Research & Postgraduate Student Affairs
Riverol, Carmen
BSc, MSc (Chem Eng) (Simon Bolivar), PhD (Vigo),
(Process Design & Economics, Process Control)
Ext. 82677

Enterprise Development & Outreach
Dr. Boppana Chowdary
BTech, MTech, PhD
Programme Coordinator for MSc Manufacturing
Engineering & Management
(Product Design and Development, Manufacturing Technology,
CAD/CAM, Manufacturing Systems)
Ext. 83185

Physical Facilities & Administrative,
Technical and Service Staff
Sharma, Chandrabhan
BSc, MSc, PhD (Eng) (UWI), SMIEEE, FAPETT, SenMemISA,
MAWEA, REng
Leader, Energy Systems Group
(Industrial & Commercial Power Systems, Energy Systems)
Exts. 82058/83396

ENGINEERING INSTITUTE

Imbert, Clément
BSc (Eng) (UWI), MScTech (Brunel), PhD (UWI)
FAPETT, FASME
Honorary Professor
Ext. 83313

ADMINISTRATIVE STAFF

Ms. Charmain Subero
Administrative Officer
Exts. 82059/84156

Ms. Sabah Ali
Assistant to Administrative Officer
Ext. 84156

Ms. Melissa Dattoo
Senior Administrative Assistant
(Research & Postgraduate Student Matters)
Ext. 82065

Ms. Nancy Ayoung
Senior Administrative Assistant
(Human Resources)
Ext. 82200

Ms. Marlene Fletcher-Cockburn
Administrative Assistant
Enterprise Development & Outreach
Ext. 83919

Mrs. Margaret Richards
Secretary to Dean
Exts. 82198/82199

Ms. Sunita Koon Koon
 Secretary to Deputy Deans
Ext. 83396

Mrs. Margaret Sylvester-Lawrence
Senior Administrative Assistant
Project Management Programme
Ext. 83838

TECHNICAL SUPPORT

Mr. Dayanand Powdhar
Workshop Engineer
Ext. 83485

Mrs. Paula John
Manager, Systems Laboratory
Exts. 82375/82370

Mr. Raymond Ward
Assistant Manager, Classroom Technology Support Unit
Exts. 82369/84435

Ms. Candice Nicholls-Jones
Clerical Assistant, Systems Laboratory
Ext. 82370

Ms. Carol-Ann Persad-Ramlogan
Clerical Assistant, Classroom Technology Support Unit
Exts. 84435/84443/83397/83409

TEACHING STAFF

Ramsamooj, Neil R.
BSc (UWI), MA (Wisconsin-Madison), MA (Auburn),
PhD (Wisconsin-Madison)
Lecturer, Engineering Mathematics
(Abstract Algebra, Topology, Combinatorial Maths, Applied
Mathematics)
Office of the Dean
Ext. 83911
MSc PROJECT MANAGEMENT PROGRAMME
Ellis, Ruel
BSc (Eng)(UWI), MSc (Brunel), PhD (UWI)
MIEEE, Srn. MIE, MASEE
Programme Coordinator, Project Management Programme
Ext: 83169

PART-TIME LECTURERS
Suite, Winston H.E.
BSc (Sp Physics), BSc (Eng), MSc, PhD (UWI)
FAPETT, MASCE
Emeritus Professor, Part-time Lecturer, Project Management Programme
(Construction Engineering and Management, Project Management)
Ext. 83149

Burgess, Kenrick
BSc (Hons) (UWI), MBA (Brunel), DipCon. Eng. & Man, DipPA (UWI), DipMan (UK), MA (Project Management)
Part-time Lecturer, Project Management Programme
Ext. 83838

Jantzen, Manfred
BA and PhD (Economic History/Economics),
University of Wisconsin, USA
Part-time Lecturer, Project Management Programme
Ext. 83838

Lau, Stanley
BSc (Eng) (UWI), MEng (Cornell), MSc (Accounting) (UWI), CSE, MAPETT, MIEEE (Industrial Management, Engineering Economics & Finance)
Part-time Lecturer, Project Management Programme
Ext. 83838

Outridge, Derek
BSc, GDL(LPE), LPC, MPhil, MRICS, AClarb, FQSc, Pmp
(Quantity Surveying & Cost Engineering and Management, Project Management Professional)
Ext. 83436

DEPARTMENT OF CHEMICAL ENGINEERING
HEAD OF DEPARTMENT
Baccus-Taylor, Gail S.H.
BSc Agri (UWI), Dip, MSc Food Technology (UWI),
MSc Food Technology (Reading UK),
PhD Food Science (Wisconsin Madison, USA), MIFT,
Senior Lecturer
(Food Microbiology/Food Safety & Risk Assessment/Food Quality Assurance/Food Product Development)
Tel: 662-2002, Exts. 82169/82196

ADMINISTRATIVE ASSISTANT
Mrs. Veronica Corbie
Tel: 662-2002 Ext. 82168

SECRETARIES
Mrs. Natalie Thomas-Chance
(Department)
Tel: 662-2002 Exts. 82169/82196

Mrs. Nikeisha Plato-Robinson
(Food, Science and Technology and Petroleum Studies Unit)
Ext. 82190

Ms. June Bradshaw
(Petroleum Studies Unit)
Ext. 83686

CLERICAL ASSISTANT
Ms. Dianne Thomas (Acting)
Ext. 83412

ACADEMIC STAFF
PROFESSORS EMERITII
Dawe, Richard
BA, MA, DPhil (Oxford), Eur Eng, CEng, CSc, CGeol, FEI, CChem, FRSC, FGS
(Reservoir Engineering, Hydrocarbon Thermodynamics, Improved Oil Recovery)

McGaw, David R.
BSc, MSc (Wales), PhD (UWI), FIChemE, CEng, MAIChemE,
(Separation Processes, Particle Technology)
Ext. 83395

Mellowes, Winston A.
BSc (Eng), MSc, PhD (UWI), MIChemE, CEng,
MAIChemE, MCIC, FAPETT, REng
(Transport Phenomena, Sugar Technology, Biomass Utilisations)
Ext. 82513

Richards, George Maxwell (His Excellency)
CM, MSc (Manch), PhD (Cantab), ARIC, AMCST, FlnstPet,
MAPE, CEng,
President of the Republic of Trinidad and Tobago
(Process Design & Economics, Petroleum Technology)

PROFESSORS
Jupiter, Andrew
BSc (UWI), MSc (Penn State University)
Distinguished Fellow in Practice in Petroleum Studies
(Petroleum Engineering, Petroleum Taxation and Contractual Arrangement)
Ext. 83076
Wilson, Jeremy Brent
BSc, MSc, PhD (Wales), FGS
(Palaeontology, Stratigraphy and Sedimentology)
Ext. 83676

Sahoo, Manas R.
BSc (Utkal), MSc, MTech, PhD (IIT, Kharagpur)
(Structural Geology)
Ext. 83678

Smith, Jeffrey
BSc (Hons) (UWI), MASc (Toronto), MAPETT, AMIChemE
(Reaction Engineering, Transport Phenomena & Computer-aided Engineering)
Ext. 83074

Sobers, Lorraine
BS, MSc (Texas Tech University),
PhD Petroleum Engineering (Imperial College)
(Carbon Storage, Enhanced Oil Recovery)
Ext. 83284

Janes, David
BSc (Aston), PhD (Birmingham)
(Simulation, Automation, Optimisation Process Design)
Ext. 84430

Riverol, Carmen
BSc, MSc (Chem Eng) (Simon Bolivar), PhD (Vigo),
(Process Design & Economics, Process Control)
Ext. 82677

PART-TIME LECTURERS
Ameerai, Ronnie
BSc Pet. Geosci. (UWI), MSc Pet. Geophysics (Imperial)
(Advanced Geophysics)

Archie, Curtis
BSc (Geol) (Mona, UWI)
(Petroleum Geology)

Balkarasingh, Shivanti
BSc (Surveying and Land Information)
MPhil (Geodetic Surveying)

Baptiste, Brian
BSc (Mona), Dip Man Studies, MSc (Pet Eng) (UWI)
(Petroleum Development Geology)

Bertrand, Wayne
BSc (UWI), MSc (Brit Col)
Distinguished Fellow in Practice in Petroleum Studies (Petroleum Geoscience)
Exts. 83496/83686

Charles, Donald Gregory
BSc (Hons) (UWI), MSc (NExT)
Petrophysics & Formation Evaluation

Dookeran, Mark
BSc Environmental Studies (Chadwick University); MSc Science & Management of Tropical Environments; MSc Food Science & Technology; PhD Food Science & Technology (UWI)
(Food Microbiology, Sanitation in Food Processing, Commodity Preservation & Processing)
Farfan, Philip
BSc Geology (Edinburgh),
MSc Petroleum Geology (Imperial College)
(Geological Mapping)

Forde, Voldis
BSc, MSc (University of Winnipeg)
(Food Quality Assurance, Product Development)

Hosein, Natalie
MSc (Leeds), BSc (UWI)
(Geophysics)

Kalpee, Tyrone
BSc, MPhil, PhD (UWI)
(Health, Safety & Environment)

Lalla, Wilson
BSc (Geol) (Mona), MSc (Geol) (Tulsa)
(Petroleum Geology)

Legall, George
BSc, MSc, PhD (UWI)
(Biostatistics)

Marcelle-De Silva, Jill
BSc, MSc (UWI), Eng (Stanford)
(Natural Gas Engineering & Well Test Analysis)

Mathura, Rudra
BSc (Surveying and Land Information)
IHO (Class B Hydrographic Surveying)
(Geodetics)

Moonan, Xavier
BSc Geology, Geography (UWI, Mona),
MSc Structural Geology and Geophysics (Leeds)
(Structural Geology)

Persad, Krishna
BSc, PhD (Geology) (Mona)
(Petroleum Geology Management)

Ragbir, Samuel
BSc (UWI), MSc (Leeds)
(Geophysics)

Rajpaulsingh, Winston
BSc (Geology) (Mona), PG Dip (Man. Studies),
MPhil (Pet Eng) (UWI)
(Geology)

Ramroop, Clement
BSc, MSc (Rheinisch)
(Petroleum Geoscience)
Ext. 83684

Rodrigues, Kirton
BSc, PhD (Geology) (Mona), MSc (Env Studies) (Toronto)
(Geochemistry)

Russell, Allan
BSc (Maths) (UWI), Dip, MSc (Pet Eng)
(Petroleum Engineering Management, Petroleum Economics)

Vincent, Hasley
BSc (Mona), MSc (Imperial), PhD (Dalhousie)
(Sedimentology)

INSTRUCTORS
Costelloe, Ashley
Instructor I
Dipg. (Brescia College), MSc (Geoscience) (UCL)
(Micropaleontology)
Ext. 83686

Maharaj, Sharad
Instructor II
BSc (Chem. Eng) (UWI), PhD (Chem. Eng.), (UWI)
(Separation Processes, Transport Phenomena)

McLean, Annalize
Instructor II
BSc (Pet Geoscience) (UWI)
(Sedimentology)
Ext. 83686

GRADUATE ASSISTANTS
Baboolal, Anastasia
BSc (Major Physics, Minor Environmental Physics and Material Science), MPhil (Physics- Petrology) (UWI)

Benn-Ogeer, Shari
BSc (Major Environment and Natural Resource Management with Biology) (UWI), MSc (Environmental Eng.) (UWI)

Falloon, Oneil
BSc (Major Chemistry, Minor Food Chemistry) (UWI), MSc (Food Science and Technology) (UWI)

Joseph, Wayne
BSc (Chemistry and Environmental Natural Resources) (UWI); MSc (Food Science and Technology) (UWI)

Ramcharan, Tamitha
BAppSc (Petroleum Eng.) (UTT), MSc (Petroleum Eng.) (UTT)

Sum, Lai Shan
BSc (Petroleum Geoscience) (UWI)

INDUSTRY LIAISONS
Abder, Clyde
Society of Petroleum Engineers Trinidad and Tobago (SPETT)

Ali, Azim
BP T’dad and Tobago LLC (bpTT)
DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING

HEAD OF DEPARTMENT
Charles, Francis R.
BSc, MPhil (UWI), MAPETT, FIAT, FICE, REng
(Highway Engineering, Coastal Zone Engineering & Management)
Exts: 82501/82502/82507

ADMINISTRATIVE ASSISTANT
Ms. Keisha Jordan
Ext. 82605

SECRETARIES
Ms. Alisa Valentine (Acting)
(Department)
Ext. 82501

Ms. Rohanna Rafeek
(Construction Engineering & Management)
Ext. 82504

CLERICAL ASSISTANT
Ms Antwinnette Williams
(MSc Coastal Engineering and Management
(MSc Environmental Engineering Programme)
(MSc Water and Wastewater Service Management)
Ext. 84416

ACADEMIC STAFF
PROFESSORS EMERITII
Phelps, Harry O.
CMT, BSc (Wales), PhD (Manch), DIC, FIVE, CEng, FAPETT
(Water Resources, Environmental Engineering)
Ext. 83447

Suite, Winston, H. E.
BSc (Eng.), MSc, PhD, FASCE, FAPE
(Construction Engineering and Management)
Ext. 83147

PROFESSORS
Banerjee, Goutam
BE (Civil-India); M.Tech (Env.Eng. - IIT, India); Ph.D (Civil Eng-IIT, India)
MIPHE(I); MASCE-IS; MIAEM; MIWWA, MBRSI
(Environmental Engineering; Water Resources Development & Management)
Ext. 82503

Shrivastava, Gyan S.
BTEch, M.Tech (IIT), MSc (Lond), DIC, PhD (UWI), CEng, MICE
(Hydraulic Engineering)
Ext. 83448
SENIOR LECTURERS

Charles, Francis R.
BSc, MPhil (UWI), MAPETT, FIAT, FICE, REng
(Highway Engineering, Coastal Zone Engineering & Management)
Ext. 82507

LECTURERS

Banerjee, Kailas Sekhar
BSc, MSc (India), Ph.D (IIT Kharagpur, National Doctoral Fellow)
(Environmental Geology and Geophysics, Environmental Radioactivity and Radon Emission)
Ext. 82506

Clarke, Richard
BSc, MPhil (UWI), MIFS, CQE, REng
(Structural Engineering)
Ext. 83438

Cooper, Vincent
BSc (UWI), MEng (McGill), MASc (Nova Scotia), PhD (McGill)
(Environmental/Water Resources Engineering)
Ext. 83427

Gay, Derek
BSc (Eng) (UWI), DIC, MSc (Lond), PhD (Texas), MAPETT
(Geotechnical Engineering, Coastal Engineering)
Ext. 83429

Khan-Kernahan, Ian
BSc, MSc (Maths) (Lond), BSc, PhD (UWI), MAPETT
(Structural Analysis & Design, Information Technology)
Ext. 83432

Martin, Hector
BSc, MSc (UWI)
(Construction Engineering and Management)
Ext. 83435

Mwasha, Abrahams
BSc, MSc (Kharkov), PhD (Wolverhampton)
(Structural Engineering)
Ext. 83434

Narinesingh, Pramenath
BSc (UWI), MSc (Delft), PhD (Delaware)
(Environmental/Water Resources Engineering)
Ext. 82504

O’Brien-Delpesh, Charmaine
BSc, MSc (Waterloo)
(Construction Engineering and Management)
Ext. 83428

Peters, Everson
BSc (UWI), MSc (Guelph), PhD (Lincoln, NZ)
(Water Resources & Environmental Engineering)
Ext. 83439

Raymond, Mark
AA Dipl (Arch), TTIA, BOATT, RIBA, ARB
(Architecture)
Ext: 82501

Villarroel-Lamb, Deborah
BSc (Eng), PhD, (UWI)
(Structural Engineering)
Ext. 82500

Williams, Rupert
BSc (UWI), MSc (Br. Col.), PhD (Miami)
(Structural Engineering)
Ext. 83433

Wilson, William
BSc (UG), MSc, PhD, DIC (Lond)
(Structural Engineering)
Ext. 83430

ASSISTANT LECTURER

Ellis, Leighton
Dip, BSc, MSc, PMI, ICE
(Structural Engineering, Construction Engineering Management)
Ext. 83426

PART TIME LECTURER

Outridge, Derek
BSc, GDL(LPE), LPC, MPhil, MRICS, ACiarb, FQSc, Pmp
(Quantity Surveying & Cost Engineering and Management, Project Management Professional)
Ext. 83436

HONORARY FELLOW

Lee Young, Selwyn
BSc (Eng), PhD (Liverpool)
(Professional Practice)

INDUSTRY LIAISONS

Abel, Andrea
Trintoplan Consultants Limited

Chin, Cecil
Super Pave Limited

Gabriel, Winston
Ministry of Works
Grenada

Gibbs, Tony
Consulting Engineers Partnership Limited
Barbados

Mellowes, Sean
CEP Limited
DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

HEAD OF DEPARTMENT
Gift, Stephan J.G.
BSc (Eng), PhD (UWI), FAPETT, SMIEEE, MCAS, REng
Professor of Electrical Engineering
Leader, Control Systems Group; Electronic Systems Group
(Electronics & Control Systems)
Ext. 82167

ADMINISTRATIVE ASSISTANT
Ms. Camille Renaud
Ext. 82083

SECRETARIES
Ms. Gail Antoine
Ext. 82166
Ms. Necole Blake
Ext. 83184

ACADEMIC STAFF
PROFESSORS EMERITII
Julien, Kenneth S.
CMT, BSc (Nott), PhD (UBC), FIEEE, FIEE
Professor Emeritus in Energy Systems
Ext. 82062

King, St. Clair A.
BSc, MSc (MIT) (Eng), PhD (Glas)
Professor Emeritus in Control Systems
Ext. 83182

PROFESSORS
Copeland, Brian
BSc (Eng) (UWI), MSc (Toronto), PhD (USC)
Professor of Electrical and Computer Engineering
(Control Systems, Digital Electronics, Microprocessors)
Dean of Faculty
Exts. 82064/82198/82199

Sharma, Chandrabhan
BSc, MSc, PhD (Eng) (UWI), SMIEEE, MAPETT, SenMemISA, MAWEA, REng
Leader, Energy Systems Group
(Industrial & Commercial Power Systems, Energy Systems)
Ext. 83141

SENIOR LECTURERS
Joshi, Ajay
Dip, BS, PhD
Leader, Computer Systems Engineering Group
(Embedded Systems, Advanced Computer Architecture)
Ext. 83144

Mallalieu, Kim
BSEE (MIT), M.Sc. (Rochester), PhD (Lond), MSPIE,
Leader, Communication Systems Group
(Communications, Optics)
Ext. 83191

LECTURERS
Adams, Richelle
BSc, MSc (Eng) (UWI/Lucent), PhD (Georgia Tech)
(Telecommunication and Data Communication Systems)
Ext. 83920

Bahadoorsingh, Sanjay
BSc (UWI), MSc (UMIST), PhD (Manchester), MIET, MIEEE
(Asset Management, Electrical Insulation, Energy Systems, Power Engineering)
Ext. 83142

De Four, Ronald
BSc, MPhil (Eng), PhD (UWI), MIEEE
(Electronics, Power Systems, Power Electronics, Energy Systems)
Ext. 82514

Muddeen, Fasil
BSc, MSc (Eng) (UWI), PhD (UWI)
(Signal Processing, Instrumentation Systems, Digital Systems)
Ext. 83151

Pooransingh, Akash
BSc, MSc (UWI)
(Digital Signal Processing, Image Processing,
Computer Systems)
Ext. 82636

Radix, Cathy-Ann
BSc (Eng) (UWI), PhD (Plymouth), MIEEE
(Robotics, Embedded Systems)
Ext. 83157

Rocke, Sean
BSc (Eng) (UWI), MSc (Coventry) PhD (WPI)
(Communications Systems)
Ext. 82638

Sastry, Musti
BTech, MTech, PhD (India)
(Computer, Energy Systems)
Programme Coordinator (MASc)
Ext. 83159

Singh, Arvind
BSc (UWI), MASc (Vancouver), PhD (Vancouver)
(Energy Systems)
Ext. 85467
ASSISTANT LECTURERS

Ganness, Marcus
BSc, (UWI), MASC (Toronto)
(Control Systems, Electromagnetic Field Theory)
Ext: 83140

INSTRUCTORS

Abdool, Azim
BSc (Eng), (UWI)
(Computers)
Ext. 82073

Balgobin, Andrew
BSc (Eng), (UWI)
(Energy)
Ext. 83491

Blackwell, Crystal
BSc (Eng), (UWI)
(Controls)
Ext. 82676

Brown, Alvin
BSc (Eng), (UWI)
(Controls)
Exts. 83603/83604

Gordon, Itanie
BSc, MPhil (Eng), (UWI)
(Electronics)
Ext. 83641

Mohammed, Crista
BA, Dip Ed (UWI),
Dip Tech Comm. (University of Sheffield Hallam)
(Technical Communications)
Ext. 83160

DEPARTMENT OF GEOMATICS ENGINEERING & LAND MANAGEMENT

HEAD OF DEPARTMENT
Ramlal, Bheshem
BSc (UWI), PGDip, MSc (ITC Netherlands), PhD (Maine), Cert. Ed. (UBC), MISTT, MRICS
(Cartography, Geographic Information Systems, Surveying)
(Cartography, Geoinformatics, Geomatics)
Exts. 82108/82109, 83312

ADMINISTRATIVE ASSISTANT
Ms. Olawande Ojoade
Ext. 83698

SECRETARY
Ms. Monique Joseph
Exts. 82108/82109

ACADEMIC STAFF

PROFESSOR
Opadeyi, Jacob A. (On-leave)
BSc, MSc (Lagos), MEng, PhD (New Brunswick), MBA (UWI), FRICS
(Engineering Surveying, Geographic Information Systems, Land Administration)
Ext. 83313

SENIOR LECTURERS
Al-Tahir, Raid (On-leave)
BSc (Baghdad), MSc, PhD (Ohio State), MASPRS (USA),
(Photogrammetry, Spatial Analysis, Remote Sensing)
Ext. 83316

Miller, Keith
BSc (CNA), PhD (CNA)
(Geodesy, Hydrography, Adjustment)
Ext. 83314

Mycoo, Michelle
BA (Hons) (UWI), MSc (Hong Kong), PhD (McGill), MTTSP,
MISOCARP
(Land Use & Natural Resources Management,
Coastal Zone Planning, Planning Law and Administration,
Urban and Regional Planning, Planning Analysis)
Ext. 82519

LECTURERS
Davis, Dexter
BSc (Hons) (UWI), PhD (Newcastle-upon-Tyne),
MISTT (Surveying, Digital Photogrammetry, Geodesy,
Adjustment, GNSS)
Ext. 83311

Edwards, Earl
Dip. (CAST), BSc (Hons) (UWI), M.Phil (Cambridge),
PhD (Nottingham)
(GIS and Remote Sensing, Geospatial Information Sciences)
Ext. 83634

Griffith-Charles, Charisse
BSc, MPhil (UWI), PhD (Univ of Florida), MISTT, MRICS, TTLS
(Cadastral Systems Surveying, Cartography, Land Administration)
Ext. 82520

Mohammed, Asad
BSc (Hons) (Waterloo), MRP, PhD (Cornell),
MTTSP (Planning & Development, Human Settlements,
Land Administration)
Ext. 82565

Sutherland, Michael
Dip. C.S. (CAST, now UTEC), (Hons), M.Sc.E.,
PhD (New Brunswick), MISTT, MCIG
(Land Information Management)
Ext. 82564
ASSISTANT LECTURERS

Hosein, Tarick
BSc (Hons), MSc (UWI), MSc (Univ. of Twente)
(Photogrammetry, Remote Sensing)
Ext. 83316

PART-TIME LECTURERS

Blaize, Colvin
BSc (UWI), LLB (Univ of London)
(Land Law)

Boynes-Bardouille, D’ena
BSc (UWI), DipEd (UWI) PG Certificate-Education Studies (UWI)
(Statistics)

Charles, Ainsley
Cert. Hydrography (Royal Naval School of Hydrographic Surveying),
BSc (UWI), TTLS (T&T)
(Land Surveying)

Grant, Ian
BSc (UWI), TTLS
(Engineering Surveying)

Khan, Kameel
BSc (Polytechnic, London), FRICS

Persad, Rameez
BSc (Hons.), (UWI)
(Hydrographic Surveying)

Ramos, Ria
BSc (Hons.), (UWI), MSc (Southbank Univ.)
(Valuation Methods and Projects)

Sultani-Maharaj, Shelly
BSc, MSc (UWI)
(Planning)

Thomas, Deborah Heather-Dawn
BA, MSc (Oxford Polytechnic), PhD (Cambridge)
(Planning & Development)

SECRETARIES

Ms. Nalinie Ragoonanan
(Department)
Ext. 82071

Mrs. June Charles-Noray
Production Engineering and Management Office
(Postgraduate Office)
Ext. 82067

Ms. Nalini Chatelal
Production Engineering and Management Office
(Postgraduate Office)
Ext. 82071

DEPARTMENT OF MECHANICAL & MANUFACTURING ENGINEERING

HEAD OF DEPARTMENT
Ekwue, Edwin Ikenna
Professor
BEng (Nigeria), MSc, PhD (Cranfield), MASAE, MNSAE
Programme Coordinator
BSc Mechanical Engineering with a minor in Bio-systems
(Soil & Water Engineering, Farm Structures & Environment)
Exts. 82170/82171

Administrative Assistant
Mrs. Ria Caliste
Ext. 83165

CLERICAL ASSISTANT
Wahtuse, Nimba
Ext: 84157

SUBJECT GROUPS AND ACADEMIC STAFF MEMBERSHIP

Agricultural Engineering, Agricultural Mechanisation,
Crop Processing & Post-harvest Technology, Soil & Water
Engineering
Professor E. Ekwue
Professor C.K. Sankat

Industrial Engineering & Engineering Management
Dr. B.V. Chowdary
Dr. R. Ellis
Dr. Graham King
Professor W.G. Lewis
Professor Kit-Fai Pun
Professor Chanan S. Syan

Industrial Automation & AI Applications
Dr. J. Bridge
Dr. B.V. Chowdary
Dr. Graham King
Professor Chanan S. Syan

Materials & Manufacturing (Technology & Systems)
Dr. A. Bryan
Dr. B.V. Chowdary
Professor W.G. Lewis
Dr. C. Maharaj
Professor Chanan S. Syan

Theoretical & Applied Mechanics
Dr. J. Bridge

Thermodynamics, Heat Transfer & Renewable Energy
Resources
Dr. S. Haldar
Professor G.S. Kochhar
Dr. K. Manohar
ACADEMIC STAFF

PROFESSORS

Kochhar, Gurmohan S.
BE (Baroda), MS (Wisconsin), PhD (UWI), MASME, MASHRAE, FASME
Programme Coordinator - BSc Mechanical Engineering (Applied Thermodynamics, Energy)
Ext. 82060

Lewis, Winston G.
BSc (Eng), MPhil (UWI), PhD (Tuns), FAPETT, FASME, REng
Professor of Industrial Systems Engineering (Manufacturing Technology, Plant Layout & Ergonomics)
Ext. 83181

Pun, Kit-Fai
MSc (Stirling), MEd (Manchester), MPhil (City Univ, Hong Kong), MSc, PhD (Middlesex), CEng, EurIng, CPEng, REng, FIET, FIEAust, FHKIE, FHKSQ, FAPETT
Chartered Marketer
Programme Coordinator - BSc Industrial Engineering (Industrial Engineering & Management)
Exts. 82068/82069

Sankat, Clement K.
BSc (Eng), MSc (UWI), PhD (Guelph), FiAgrE, CEng, MASAE, FAPETT
Campus Principal and PVC
(Post-harvest & Food Process Engineering, Engineering Graphics & Design)

Syan, Chanan S.
BEng, PhD (Hull), FIMechE, CEng, MIET, MBCS, MAPETT
Programme Coordinator for MSc Production Engineering and Management
Exts. 82074/82067

LECTURERS

Bridge, Jacqueline
BSc (Eng)(UWI), PhD (Cornell), DipEd (Utech), MASME (Applied Mechanics, Vibrations)
Ext. 83166

Bryan, April M.
BSc (Tuskegee University), MSc, PhD (University of Michigan)
Lecturer - Mechanical Engineering (Engineering Drawing, CAD, Machine Design, Manufacturing)
Ext. 83167

Ellis, Ruel
BSc (Eng)(UWI), MSc (Brunel), PhD (UWI)
(Industrial Engineering)
Ext. 83169

Haldar, Subhas C.
BEng (Calcutta), MTech (IIT, Madras), PhD (IIT, Kharagpur)
(Thermal Science)
Ext. 83192

King, Graham S.
BEng, MSc, EngD (Warwick), MIMechE, CEng
(Control Systems)
Ext. 83187

Lalla, Terrence R.M.
BSc (Eng) (UWI), MPhil, PhD (UWI)
(Engineering Management, Production Management)
Ext. 83186

Maharaj, Chris S.
BSc (Eng)(UWI), MSc (UWI), PhD (Imperial), CEng, REng (TT), MIMechE, MASME, MAPETT
Lecturer in Materials and Manufacturing Design
Ext. 84158

TEMPORARY LECTURERS

Ali, Fahraz
BSc (Eng) (UWI), MPhil (Eng) (UWI)

Harnarinesingh, Randy
BSc (Eng) (UWI)

PART-TIME LECTURERS

Arlen-Benjamin, Anna-Lisa
BSc, MSc (UWI)
Industrial Marketing
Arumugadasan, Nagamuttu S.
BSc, MSc, MPhil (Eng) (UWI)
CEng, FI MechE
(Systems Optimisation and Asset Management)

Drakes, Arnim
BSc (Eng) (UWI), MSc (Bir)
(Maintenance & Safety)

Jhagroo, Kishore
BSc, MSc (Eng) (UWI)
(Maintenance Engineering & Management)

Sealy, Lennox
BSc (Agric), Dip (Tech) (UWI), Dip (French Lang & Civ),
MS (France), PhD (Biochem & Physiology) (France)
Dip Mang Stud (UWI), EMBA (UWI)
(Human Resource Management)

Smart, Rodney Lawrence Arthur
BSc (UWI), Dip Security Mgt (UWI)
Part-time Lecturer
(Industrial Management, Behavioural Science in Management)

Sankar, Franklin
BSc, MSc (UWI)
(Project Management)

Williams, Jason
BSc (Ind Eng) (UWI), MBA (Concordia)
(Engineering Economics, Accounting & Financial Management)

INSTRUCTORS
Birch, Robert
BSc (Eng), MPhil UWI
(Biosystems Engineering)
Ext. 83176

DEVELOPMENT ENGINEERS
Harnarine, Rodney
BSc (Eng) UWI, MSc (Prod. Eng) Loughborough, REng
(Mechanical Engineering)
Ext. 83170

Matabadal, Sennen
BSc, MSc (UWI)
Thermal Power & Utilities Engineering
& Management Consultant

Murray, Renique
BSc (Eng) (UWI), MPhil (UWI), PhD (UTT)

FULL-TIME DEMONSTRATORS
Ebede, Ernest
BEng (Materials Eng)

Bharat, Carlotta
BSc (Eng) (UWI)

GRADUATE/RESEARCH ASSISTANTS
Ramsoobag, Geeta
BSc (Eng) (UWI)

Singh, Devin
BSc (Eng) (UWI)

Sumadh, Dennis
BSc Metallurgy, PG Dip (Nottingham Trent)
(Total Quality Management)

INDUSTRY LIAISON COMMITTEE
Ali, Tony
General Manager
S. M. Jaleel Distributors Limited

Goyal, Arun
Former General Manager
TCL Group

Khan, Zaid
CEO
In-Corr-Tech Ltd.

Jhagroo, Kishore
Head, Reliability Engineering,
Petrotrin

Quan-Vie, Valerie
Manager, Health Safety and Environment
Petrotrin

Redwood, Garnet
Divisional Manager
Engineering & Maintenance Services
SECTION 1
POSTGRADUATE STUDIES IN THE FACULTY OF ENGINEERING

1.1 INTRODUCTION

1.1.1 It is generally accepted that a Bachelor’s degree is only the first step in the learning process that a professional person should continue throughout his/her career.

1.1.2 A first degree is an indication of a basic ability to understand and apply the concepts underlying that discipline. It does not indicate competence as a practitioner of the associated profession. That can only come with experience and training within the profession itself.

1.2 FURTHERING KNOWLEDGE - MPhil, PhD

1.2.1 One important element of any profession is that one should be devoted to furthering the knowledge and understanding contained within the concepts that define the discipline.

1.2.2 The task of furthering the frontiers of knowledge normally falls upon those in academic fields and specifically upon those undertaking postgraduate studies towards research degrees.

1.2.3 It is therefore critical to both industry and the University that graduates pursue research studies; this is reflected in continuing active enrolment for the MPhil and PhD research degree programmes.

1.2.4 The Faculty of Engineering offers MPhil and PhD research degrees in the following subjects:
 i. Agricultural Engineering
 ii. Chemical & Process Engineering
 iii. Civil Engineering
 iv. Civil with Environmental Engineering
 v. Construction Engineering
 vi. Construction Engineering & Management
 vii. Construction Management
 viii. Electrical & Computer Engineering
 ix. Food Science & Technology
 x. Geoinformatics
 xi. Geoscience
 xii. Industrial Engineering
 xiii. Mechanical Engineering
 xiv. Petroleum Engineering
 xv. Petroleum Geoscience
 xvi. Surveying & Land Information
 xvii. Urban and Regional Planning

1.2.5 It should be noted that these research degrees are not normally considered to be qualifications for professional practice in the broader sense, as they may not necessarily allow for registration as a professional engineer.

1.2.6 As a consequence, the Faculty of Engineering may allow suitably qualified non-engineering graduates, who obtained their degrees at the Honours level, to register for higher degrees by research.

1.2.7 However, such students may be required to take a qualifying examination within the Department concerned, on topics that would enhance the student’s academic competence in the area of the proposed research.

1.2.8 Applicants wishing to register for the PhD who do not already have a Master’s degree by research will be required to register for the MPhil first and may be allowed to upgrade their registration to the PhD upon satisfying the appropriate regulations.

1.2.9 Candidates who have obtained a Master of Science (MSc) degree with distinction maybe allowed to register for the PhD provided a substantial part of the MSc project has been carried out in the relevant area.

1.3 In Career Training - Diploma, MSc, MASc

1.3.1 It has often been demonstrated that the emphasis of the work undertaken by professional engineers changes as their careers progress. Normally their work becomes either more specifically technical within a closely defined subject area, or it becomes more oriented towards management responsibilities rather than technical ones. Sometimes it involves both.

1.3.2 As a result, professionals often require retraining or further training during the course of their careers. For this purpose, it is important to industry that there is a wide ranging and active programme of postgraduate studies available at the University.

1.3.3 To this end, the Faculty of Engineering offers a range of MSc, MASc and Postgraduate Diploma courses which are primarily taught courses. The details of these are included in this booklet.

1.3.4 The Faculty of Engineering currently offers the following Postgraduate Diploma programmes through examination by written papers and a project:

 i. Coastal Engineering & Management
 ii. Construction Management (with a major in Operations)
 iii. Construction Management (with a major in Building)
 iv. Environmental Engineering
 v. Land Administration
 vi. Petroleum Engineering
 vii. Geoinformatics
 viii. Water and Wastewater Services Management
1.3.5 The Faculty of Engineering currently offers the following MSc degree programmes through examination by written papers and a project:-

- Chemical & Process Engineering
- Chemical & Process Engineering with Management
- Chemical & Process Engineering with Environmental Engineering
- Civil Engineering
- Civil with Environmental Engineering
- Coastal Engineering & Management
- Construction Management (with a Major in Operations)
- Construction Management (with a Major in Building)
- Electrical & Computer Engineering (MASc)
- Engineering Asset Management
- Engineering Management
- Environmental Engineering
- Food Science & Technology
- Geoinformatics
- Manufacturing Engineering & Management
- Petroleum Engineering
- Production Engineering & Management
- Production Management
- Project Management
- Reservoir Engineering
- Urban and Regional Planning
- Water and Wastewater Services Management

1.3.6 Normally, entry to such programmes is available to those who have a Lower Second Class honours degree or its equivalent in the specified subject area or in a related area with a record of experience in the subject area.

1.3.7 Students with Third Class or Pass degrees or equivalent in the relevant field of study shall only be accepted for admission to an MSc/Diploma programme provided they have obtained at least two years experience in the field and have a satisfactory confidential reference from their employer.

1.4 Course of Study - MSc/MASc/Diploma

1.4.1 The courses of advanced study for a postgraduate Diploma or a Master’s degree by examination by written papers include, in addition to the courses of instruction, supervised research development or industry-oriented work culminating in the submission of a Project Report. Guidelines for submission of Project Reports are indicated under the relevant programmes.

1.4.2 Full-time MSc/MASc/Diploma students must normally submit their Project Reports nine (9) months after completion of the written examinations, while part-time MSc/MASc/Diploma students are required to do so within twelve (12) months. Candidates who fail to submit their Reports in good time shall be removed from the Register of Postgraduate Students.

1.4.3 A proportion of the marks which make up the final result of a particular course examined by a written Paper may be derived from the candidate’s performance in course work assignments, in course tests, etc. All such assignments must be completed and submitted to the examiners before the date of the written examination.

1.4.4 Candidates whose work is at any time reported by their Supervisors to be unsatisfactory or who do not satisfy the Examiners on Courses or Project Reports that form part of the postgraduate programme may be removed from the Register of Postgraduate Students.

1.4.5 Such students shall not normally be readmitted for at least two years thereafter. Students readmitted to MSc/MASc/Diploma programmes shall be eligible for credits for those courses passed creditably during their previous registration, provided that not more than five years have elapsed since the applicants withdrew from the University and that the course content has not changed significantly in the interval.

1.5 Distinctions - MSc/MASc/Diploma

1.5.1 A Distinction may be awarded for a Postgraduate Diploma, MASc or MSc degree provided that the candidate obtains 70% or more in EACH component of the course of study, i.e., (i) Written Papers and (ii) Research Project.

1.5.2 Candidates who repeat the examination in any course shall not be eligible for the award of a diploma or degree with distinction.
1.6 Completion Time - MPhil/PhD

1.6.1 A candidate for the MPhil degree shall submit a thesis for examination within three (3) calendar years of initial registration for full-time studies, or five (5) calendar years for part-time studies.

1.6.2 A candidate for the PhD degree shall submit a thesis for examination within five (5) calendar years of initial registration for full-time studies, or seven (7) calendar years for part-time studies.

1.7 Research Seminars

1.7.1 All students registered for an MPhil degree must satisfactorily complete at least two (2) research seminars, prior to submission of the MPhil thesis. Students registered for the PhD degree must satisfactorily complete three (3) such seminars. Assessment of the students’ seminars must be included in their Progress Reports.

1.7.2 This seminar is assessed normally by the Supervisor of the student’s studies and is reported as being satisfactory or unsatisfactory on the student’s annual Progress Report. It is intended to:
 i. provide a forum for the critical appraisal of the objectives, methodology, direction and progress of the research being undertaken.
 ii. create a wider awareness in the University community of the research activities within the Faculty.
 iii. provide additional means of monitoring the progress of postgraduate students doing research theses.
 iv. create and foster an appropriate research culture within the Faculty.

1.8 Procedural Guidelines for the Upgrading of an MPhil to PhD

1.8.1 Postgraduate students who are registered for the MPhil Degree and who are contemplating the upgrading of their registration status to that of the PhD are required to do so within two (2) or three (3) years of first registration.

1.8.2 The following are the procedural guidelines for upgrading of one’s registration status:
 i. The student should consult with his Supervisor(s) on this matter.
 ii. The student will apply through his Supervisor(s) to the Head of Department, formally seeking upgrading, copying both the Assistant Registrar (Graduate Studies and Research) and the Chairman, Faculty Sub-committee on Graduate Studies.
 iii. The Head of Department, if in agreement, consults with the Supervisor and Chairman, Faculty Sub-Committee on Graduate Studies and Research and establishes an Upgrading Assessment Committee.
 iv. The Upgrading Assessment Committee should normally comprise the Supervisor(s) plus two Independent Assessors.
 v. Assessors should be chosen on the basis of their knowledge and experience at the appropriate level in the area of the student’s research and may be drawn from outside of The University of the West Indies.
 vi. The Chairman, Faculty Sub-Committee requests from the student, a copy of his Proposal for upgrading for each of the Assessors, and a mutually agreed date is set for the oral presentation by the student of his:
 (i) Report on work done under MPhil registration,
 and
 (ii) Research proposal to upgrade the work to PhD.
 vii. The Chairman, Faculty Sub-Committee chairs the oral presentation by the student of his Research proposal and later receives from each Assessor, a report with a recommendation regarding the requested upgrading.
 viii. The Chairman, Faculty Sub-Committee reviews the Reports and forwards a recommendation on upgrading to the Campus Committee on Higher Degrees, through the Faculty Board.

1.9 Theses and Project Reports

1.9.1 The form of presentation of Theses and Project Reports must conform to the University’s General Regulations governing Higher Degrees. Students should consult the University Library on this matter as well as the University’s publication “Theses and Research Papers.”

1.9.2 The maximum length of Theses /Project Reports shall be as follows:
 - PhD - 500 pages including Appendices.
 - MPhil - 250 pages including Appendices.
 - MSc./MASc./ Diploma Project Reports 125 pages including Appendices.
 - PG Diploma Project Reports 100 pages including Appendices

14
1.9.3 Essential, elements/components/constituents of the proposed MSc Project Report should include the following:
• Introduction
• Background
• Motivation
• Scope and limitations
• Underlying principles/literature review/theory and fundamentals
• Methods/approach adopted/used and why
• Results
• Discussion of results/review of methodology
• Conclusions and recommendations
• Closure/comment on the significance of the findings from work, its contribution to knowledge in the area, and the lessons that should be learned from the project experience

The above items are listed in typical sequence. The sequence itself is not fixed, and may be adjusted to some extent as appropriate to each particular case.

1.10 Prizes
1.10.1 Prizes are awarded for excellent performance in Postgraduate Programmes as follows:

Coastal Engineering Programme
Highest mark in Coastal Processes and Hazards CZEM6100
National Energy Corporation Prize
Highest Mark in Research Project CZEM6108
Most Outstanding Student (highest GPA)
Highest mark in Design of Coastal Structures CZEM6106

Food Science & Technology
Associated Brands Industries Limited Prize ($1,000)
Highest mark in Food Microbiology
Kiss Baking Company ($1,000)
Highest Mark in Food Quality Assurance
National Agricultural Marketing & Development Corporation (NAMDEVCO) ($1,000)
Highest Mark in Food Chemistry
Universal Foods Limited Prize ($1,000)
Highest mark in Food Process Engineering

Project Management
Global Competitive Strategies Limited Prize ($2,000)
For the best Year 2 student in the MSc Project Management Programme
Project Management Institute (PMI) Southern Caribbean Chapter Prize ($1,200)
For the best Research Project in the MSc Project Management Programme
PROMASERV Prize ($2,000)
For the student obtaining the highest mark in the course Risk Management for Project Managers
Joint Consultative Council (JCC) for the Construction Industry Prize ($2,000)
For the best overall Year 1 student in the MSc Project Management Programme
Joint Consultative Council (JCC) for the Construction Industry Prize ($2,500)
For the best overall Final Year student including the Research Project in the MSc Project Management Programme
UWI Project Management Alumni Prize ($1,500)
For the highest average mark in the Project and Programme Management and Strategic Project Planning Courses
DEPARTMENT OF CHEMICAL ENGINEERING

Research

The Department of Chemical Engineering is part of the single campus Faculty of Engineering with a commitment to providing national and regional service to the process industries. These industries include the full spectrum available in the Caribbean including petroleum and petrochemicals, bauxite, sugar and food-processing. The Units of Food Science & Technology and Petroleum Studies are included in the Department of Chemical Engineering with specific remits to serve those industries.

The Department recognises the need to promote industrial linkages, applied research, fundamental research and the continuing education of persons in the relevant disciplines. The research efforts are essentially geared to the solving of problems relevant to the region as a whole.

Research in the Department of Chemical Engineering is aimed at the development of the indigenous resources of the Caribbean region. The broad areas of research in the Department are as follows:

- Agricultural Crop Processing
- Biochemical Engineering
- Desalination
- Electrochemistry, Petrochemicals, Molecular Modeling
- Enhanced Oil Recovery
- Food Science & Technology
- Food Safety & Risk Assessment
- Food Product Development
- Food Dehydration
- Food Fermentations
- Gas Hydrates
- Heavy Oil Recovery
- Industrial Pollution Control
- Mineral Processing
- Natural Gas Engineering
- Palaeontology
- Petroleum Processing Technology
- Process Design, Optimisation and Control
- Reaction Engineering
- Reservoir Engineering
- Separation & Extraction Processes
- Stratigraphy and Sedimentology
- Utilisation of Biomass

The Department offers programmes of study by research leading to the MPhil and PhD degrees in Chemical Engineering.

PROGRAMMES IN CHEMICAL & PROCESS ENGINEERING

MSc (Eng) in Chemical and Process Engineering
MSc (Eng) in Chemical and Process Engineering with Management
MSc (Eng) in Chemical and Process Engineering with Environmental Engineering

The Aims and Objectives

Technical deepening and broadening beyond the level covered by the BSc Honours Degree:

(a) To allow students to engage in creative and innovative development of Engineering technology.

(b) To gain experience in team-working while broadening the knowledge base through research and experimentation.

(c) To meet the full requisites of UK SPEC for eventual registration of our graduates as Chartered Engineers.

Structure of Programmes

Offered Full-time and Part-time. However, at this point in time it is offered on a part-time basis only.

Duration of Study

A minimum of 12 months and a maximum of 36 months.

No. of Credits Required

No of Credits - 40

ENTRY REQUIREMENTS

Admission of Applicants with an Honours Degree

The minimum requirement for admission to the taught Master's programme is normally a Lower Second Class Honours degree in Chemical and Process Engineering. Final approval of applications is subject to the Department's approval. The minimum admission requirement for MPhil and PhD programmes is normally an Upper Second Class Honours degree or its equivalent. Further information on direct admission to MPhil and PhD programmes is available in Section 1 Regulations 6 - 8 of the Regulations for Graduate Diplomas and Degrees.

Admission of Applicants with a Pass Degree

The admission of applicants with a Pass degree requires a statement from the Department on the suitability of the applicant to pursue graduate studies at the University of the West Indies. Candidates admitted with a Pass degree may be required to register for such supplementary courses as the Department stipulates.
COURSE LISTING

SEMESTER 1 15 CREDITS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNG 6001</td>
<td>Advanced Process Dynamics & Controls</td>
<td>C4</td>
</tr>
<tr>
<td>CHNG 6102</td>
<td>Advanced Chemical Reaction Engineering</td>
<td>E4</td>
</tr>
<tr>
<td>MENG 6506</td>
<td>Project Management</td>
<td>E3</td>
</tr>
<tr>
<td>CHNG 6003</td>
<td>Process Synthesis, Analysis & Optimisation</td>
<td>E4</td>
</tr>
<tr>
<td>*CHNG 6302</td>
<td>Chemical Engineering MSc Project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 1: Project Proposal (Literature Review &</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theory where applicable)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 2: (Experimental; Practical; Computational)</td>
<td>C9</td>
</tr>
</tbody>
</table>

SEMESTER 2 13 CREDITS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNG 6101</td>
<td>Advanced Chemical Engineering</td>
<td>E3</td>
</tr>
<tr>
<td>CHNG 6203</td>
<td>Desalination</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 6507</td>
<td>Entrepreneurship & Innovation</td>
<td>E3</td>
</tr>
<tr>
<td>PENG 6007</td>
<td>Reservoir Engineering</td>
<td>E4</td>
</tr>
<tr>
<td>PENG 6012</td>
<td>Natural Gas Engineering</td>
<td>E4</td>
</tr>
<tr>
<td>PENG 6015</td>
<td>Production Engineering</td>
<td>E4</td>
</tr>
<tr>
<td>ENGR 6701</td>
<td>Management and Leadership Seminars</td>
<td>C3</td>
</tr>
<tr>
<td>*CHNG 6302</td>
<td>Chemical Engineering MSc Project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 1: Project Proposal (Literature Review &</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theory where applicable)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 2: (Experimental; Practical; Computational)</td>
<td>C9</td>
</tr>
</tbody>
</table>

Together with two (2) optional courses to be chosen from one (1) of the three (3) streams:

Chemical & Process Engineering Stream

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNG 6201</td>
<td>Biochemical Engineering II</td>
<td>E3</td>
</tr>
<tr>
<td>CHNG 6203</td>
<td>Petroleum Processing Technology</td>
<td>E3</td>
</tr>
<tr>
<td>CHNG 6204</td>
<td>Utilities Engineering</td>
<td>E3</td>
</tr>
<tr>
<td>CHNG 6303</td>
<td>Desalination</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 6507</td>
<td>Entrepreneurship & Innovation</td>
<td>E3</td>
</tr>
<tr>
<td>PENG 6007</td>
<td>Reservoir Engineering</td>
<td>E4</td>
</tr>
<tr>
<td>PENG 6012</td>
<td>Natural Gas Engineering</td>
<td>E4</td>
</tr>
<tr>
<td>PENG 6015</td>
<td>Production Engineering</td>
<td>E4</td>
</tr>
<tr>
<td>ENGR 6701</td>
<td>Management and Leadership Seminars</td>
<td>C3</td>
</tr>
</tbody>
</table>

Management Stream

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6402</td>
<td>Human Resource Management I</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 6405</td>
<td>Total Quality Management</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 6502</td>
<td>Financial Management</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 6507</td>
<td>Entrepreneurship & Innovation</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR 6701</td>
<td>Management and Leadership Seminars</td>
<td>C3</td>
</tr>
</tbody>
</table>

Environmental Engineering Stream

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 6005</td>
<td>Pollution Prevention, Cleaner</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR 6006</td>
<td>Water & Wastewater Engineering</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR 6007</td>
<td>Air Pollution Control</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR 6018</td>
<td>Energy & The Environment</td>
<td>E3</td>
</tr>
<tr>
<td>MENG 6507</td>
<td>Entrepreneurship & Innovation</td>
<td>E3</td>
</tr>
</tbody>
</table>

In addition, existing graduate courses in the Faculty can be taken but approval has to be obtained from the Department and Faculty prior to doing so.

*CHNG 6302: the student needs to complete ALL courses and receive the authorization from the Coordinator before he/she can register for this course.

SYLLABUSES IN CHEMICAL ENGINEERING

SEMESTER: 1

COURSE CODE: CHNG 6001
COURSE TITLE: ADVANCED PROCESS DYNAMICS & CONTROLS
NO. OF CREDITS: 4

PREREQUISITES:
SYLLABUS: Analysis and design of advanced control systems, control systems with multiple loops, feed forward and cascade control, design of control systems for multivariable processes, synthesis of alternative control configurations for multiple-input, multiple-output (MIMO) processes, interaction of control loops, plantwide control, application of artificial intelligence in process control, fuzzy logic and neural networks, modeling and simulation using HYSYS and MATLAB.

SEMESTER: 1

COURSE CODE: CHNG 6002
COURSE TITLE: NUMERICAL METHODS & COMPUTING
NO. OF CREDITS: 4

PREREQUISITES:
SYLLABUS: Solution of linear and non-linear equations, solving sets of equations, interpolating polynomials, numerical differentiation and numerical integration, numerical solution of ordinary differential equations, boundary-value problems, numerical solution of elliptic, parabolic and hyperbolic differential equations, applications in heat transfer, fluid mechanics and reactor design.

SEMESTER: 1

COURSE CODE: CHNG 6003
COURSE TITLE: PROCESS SYNTHESIS, ANALYSIS & OPTIMISATION
NO. OF CREDITS: 4

PREREQUISITES:

SEMESTER: 1

COURSE CODE: MENG 6506
COURSE TITLE: PROJECT MANAGEMENT
NO. OF CREDITS: 3

PREREQUISITES:
SYLLABUS: Project identification in context of investment programme at national and sectorial level, pre-investment studies, detailed project preparation, development and evaluational project organisation, project analysis and evaluation (technical, economic, financial, social and environmental). Project implementation (procurement/contracts programming and control); ex-post evaluation.
SEMESTER: 2
COURSE CODE: ENGR 6018
COURSE TITLE: ENERGY & THE ENVIRONMENT
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER: 2
COURSE CODE: CHNG 6101
COURSE TITLE: ADVANCED CHEMICAL ENGINEERING THERMODYNAMICS
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER: 2
COURSE CODE: CHNG 6102
COURSE TITLE: ADVANCED CHEMICAL REACTION ENGINEERING
NO. OF CREDITS: 4
PREREQUISITES:

SEMESTER: 2
COURSE CODE: CHNG 6201
COURSE TITLE: BIOCHEMICAL ENGINEERING II
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Application and analysis of advanced biological systems, biochemical engineering for graduate level students, selected bioprocesses - bioremediation, introduction to bioprocess control - use of bio-sensors, design and implementation of bio-processes, advances in biochemical engineering, bioprocess laboratory project/research paper, management of bio-processes.

SEMESTER: 2
COURSE CODE: CHNG 6203
COURSE TITLE: PETROLEUM PROCESSING TECHNOLOGY
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER: 2
COURSE CODE: CHNG 6204
COURSE TITLE: UTILITY ENGINEERING
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Introduction to plant operation, plant start up prime movers, steam engines, steam turbines, internal combustion engines, gas turbines, air compression C.S.A.B. - 52 lubrication. Heating and air-conditioning systems and accessories, refrigeration systems. ASME Code Section 1, calculations of cylindrical components, tubing, piping, stayed and unstayed surfaces, openings and compensation, safety valves. Water treatment impurities, internal and external treatment, analytical methods, industrial waste treatment, gas turbines, types, components, applications. Fuels, furnaces, design, ash handling, fluid gas treatment, draft, fan types, fan control, draft calculations, steam turbines, principles of operation, construction, control, maintenance, commissioning, condensing equipment, alternators, pressure vessels and components inspection, safety, hazards. Operation and maintenance, piping, support, expansion, methods of connecting. Pumps, types, construction compressors, types, accessories, operation, maintenance, applications.
SEMESTER: 2
COURSE CODE: ENGR 6006
COURSE TITLE: WATER & WASTEWATER ENGINEERING
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER: 2
COURSE CODE: ENGR 6007
COURSE TITLE: AIR POLLUTION CONTROL
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Introduction/sources of air pollution, air pollution, effects, air pollution control laws and regulations, air pollution control philosophies, air pollution measurements, emission estimates, meteorology for air pollution control engineers, air pollutant concentration models, general ideas in air pollution control, the nature of particulate pollutants, control of primary particulates, control of volatile organic compounds (VOCs), control of sulphur oxides, control of nitrogen oxides, the motor vehicle problem, air pollution and the global climate. Control devices and strategies.

SEMESTER: 2
COURSE CODE: CHNG 6303
COURSE TITLE: DESALINATION
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER: 2
COURSE CODE: MENG 6402
COURSE TITLE: HUMAN RESOURCE MANAGEMENT I
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Formal and informal organisation, the bureaucratic model, the organisational environment, modern organisation theory, the individual in the organisation, SKAO, theories of motivation and leadership industrial relations, IRA, RSBA, communication in organisations, performance appraisal systems.

SEMESTER: 2
COURSE CODE: MENG 6405
COURSE TITLE: TOTAL QUALITY MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Philosophy and principles of total quality management, customer satisfaction, quality systems, quality tools, continuous improvement, employee involvement and empowerment, supplier partnerships, benchmarking, quality function deployment, statistical process control, Taguchi's quality engineering, experimental design.

SEMESTER: 2
COURSE CODE: MENG 6502
COURSE TITLE: FINANCIAL MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Analysis of financial statements, financial forecasting and planning, risk, return and valuation, capital budgeting, financial structure and leverage, cost of capital, financing mix decisions, current asset management, cash, marketable securities, accounts receivables, inventory and short-term financing, long-term financing, common stock, debt, preferred stock, term loans and leasing, dividend policy.

SEMESTER: 2
COURSE CODE: MENG 6507
COURSE TITLE: ENTREPRENEURSHIP & INNOVATION
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER: 3
COURSE CODE: ENGR 6701
COURSE TITLE: MANAGEMENT & LEADERSHIP SEMINARS
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Active participation in seminars and discussions on topics including: Project management, case studies in human resource management, business processes and marketing, new venture and product development, supply chain management, HSE and other related areas.
PROGRAMMES IN FOOD SCIENCE & TECHNOLOGY
MSc in Food Science & Technology
MPHil in Food Science & Technology
PhD in Food Science & Technology

The Aims and Objectives
a. To accommodate the useful application of knowledge to the developmental needs of the food industry in the Caribbean, to the real world of commerce, and to the public need.
b. To foster scholastic achievement in academics and in the conduct of research by both applied and theoretical methods, thus producing individuals equipped for research, innovation and production in the food industry, in government institutions, in other universities and research institutions, in development agencies, in other teaching and technical establishments, and in libraries and information centres.

FOOD SCIENCE & TECHNOLOGY UNIT REGULATIONS
MSc in Food Science & Technology
The Regulations for the MSc in Food Science & Technology are the same as the General Regulations for the MSc (Eng) in the Faculty of Engineering, except that candidates applying for registration should normally have either:
a. A Bachelor's Degree in Food Science & Technology, Natural Science or Nutrition (with Mathematics and/or Statistics and Chemistry at the Preliminary and Introductory Level) or Agriculture, or Chemical Engineering or Agricultural Engineering; or
b. An equivalent academic or professional qualification acceptable to the Faculty of Engineering.

MPhil in Food Science & Technology
The Regulations for the MPhil in Food Science & Technology are the same as the General Regulations for the MPhil except that candidates applying for registration should normally have either:
a. A Bachelor's Degree in Food Science & Technology or related discipline, and
b. A Master's Degree in Food Science & Technology, or
An equivalent academic or professional qualification acceptable to the Faculty of Engineering.

PhD in Food Science & Technology
The Regulations for the PhD in Food Science & Technology are the same as the University and Faculty of Engineering regulations for the degree of Doctor of Philosophy except that candidates applying for registration should normally have either:
a. A Master of Philosophy Degree in Food Science & Technology of The University of the West Indies, or
b. An equivalent academic or professional qualification acceptable to the Faculty of Engineering or a Master of Philosophy in Food Science and Technology with a Distinction.

ENTRY REQUIREMENTS
Candidates for registration in this programme must first hold a degree in any of the following subjects:
- Food Science
- Food Technology
- Food Science & Technology;
- Chemistry or Applied Chemistry;
- Natural Sciences;
- Chemical, Biochemical or Agricultural Engineering;
- Agriculture;
- Nutrition;
- Home Economics with a major in Nutrition or Food Technology or other relevant qualifications acceptable to the Faculty of Engineering.

STRUCTURE OF PROGRAMMES
Offered part-time and full-time
a. Part-time students: - must normally submit their Project Reports twelve (12) months after completion of all written examinations
b. Full-time students: - must normally submit their Project Reports nine (9) months after completion of all written examinations

Candidates who fail to submit their Reports in good time shall be removed from the Register of Postgraduate students.

MSC PROGRAMME - COURSE OF STUDY
Following the pattern established by the Institute of Food Technologists in the United States of America and the Institute of Food Science & Technology in the United Kingdom, students will be required to pursue an appropriate course of study as determined by the School for Graduate Studies and Research, UWI, St. Augustine and the Food Science & Technology Unit, Department of Chemical Engineering.

Total No. of Credits Required: 41
No. of course credits - 35
FOST 6019 MSc Research Project - 6 credits
*PENG 6023 is now compulsory for all students.
Students should demonstrate proficiency in Food Science & Technology by satisfactory completion of at least 35 credits of coursework, twenty-one (21) of which must be the following core courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOST 6001</td>
<td>Sanitation in Food Processing</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6002</td>
<td>Food Packaging</td>
<td>2</td>
</tr>
<tr>
<td>FOST 6004</td>
<td>Food Processing Laboratories</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6007</td>
<td>Preservation & Processing of Meat & Poultry</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6008</td>
<td>Preservation & Processing of Fruits and Vegetables</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6009</td>
<td>Food Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6101</td>
<td>Dairy Chemistry & Dairy Products Technology</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6102</td>
<td>Beverage Processing</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6103</td>
<td>Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6104</td>
<td>Chemistry of Food Colours</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6105</td>
<td>Chemistry & Processing of Fats & Oils</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6106</td>
<td>Principles of Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6107</td>
<td>Preservation & Processing of Seafood</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6108</td>
<td>Sensory Evaluation of Food</td>
<td>3</td>
</tr>
</tbody>
</table>

The remaining credits may be selected from the following options depending on the availability of teaching staff for that academic year:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOST 6003</td>
<td>Food Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6005</td>
<td>Food Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>FOST 6006</td>
<td>Food Quality Assurance</td>
<td>4</td>
</tr>
<tr>
<td>FOST 6000</td>
<td>Fundamentals of Food Process Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6023</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>FOST 6018</td>
<td>Literature Survey</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE LISTING

SYLLABUSES IN FOOD SCIENCE & TECHNOLOGY

SEMESTER: 2
COURSE CODE: FOST 6000
COURSE TITLE: FUNDAMENTALS OF FOOD PROCESS ENGINEERING
NO. OF CREDITS: 4
PREREQUISITES: PHYSICS, CHEMISTRY, ALGEBRA AND BASIC CALCULUS
SYLLABUS: The basic engineering concepts of fluid flow, heat transfer and mass transfer in food processing operations and quantitative problem-solving in unit operations likely to be encountered in the food industry. Topics include: Material and Energy Balances, Fluid flow in pipes and pressure drop, Bernoulli equation, Modes of heat transfer, heat exchangers, Pasteurization, Canning and Sterilization, Process time calculations, Psychrometry, Drying kinetics, Refrigeration and freezing systems.

SEMESTER: 1
COURSE CODE: FOST 6001
COURSE TITLE: SANITATION IN FOOD PROCESSING
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER: 2
COURSE CODE: FOST 6002
COURSE TITLE: FOOD PACKAGING
NO. OF CREDITS: 2
PREREQUISITES:
SEMMSTER: 1
COURSE CODE: FOST 6003
COURSE TITLE: FOOD CHEMISTRY
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Chemistry and physics of the major food constituents. Composition and structure of foods. Chemical reactions involved in food processing, storage and handling.

SEMMTESTER: 2
COURSE CODE: FOST 6004
COURSE TITLE: FOOD PROCESSING LABORATORIES
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Laboratory exercises in the preservation and processing of meat, poultry, seafood, dairy products and fruits, vegetables, root crops and tubers. Processes will include thermal processing (canning), batch and high temperature short time (HTST) pasteurization of milk, fruit juices and beverages. Production of soya products such as soy milk and tofu. Production of jams, jellies and marmalades. Oven, spray, drum and freeze drying. Meat curing and smoking. Production of fermented foods, e.g. yoghurt.

SEMMSTER: 1
COURSE CODE: FOST 6005
COURSE TITLE: FOOD MICROBIOLOGY
NO. OF CREDITS: 4
PREREQUISITES:

SEMMTER: 2
COURSE CODE: FOST 6006
COURSE TITLE: FOOD QUALITY ASSURANCE
NO. OF CREDITS: 4
PREREQUISITES:

SEMMSTER: 1
COURSE CODE: FOST 6007
COURSE TITLE: PRESERVATION & PROCESSING OF MEAT & POULTRY
NO. OF CREDITS: 3
PREREQUISITES:

SEMMTESTER: 2
COURSE CODE: FOST 6008
COURSE TITLE: PRESERVATION & PROCESSING FRUITS & VEGETABLES
NO. OF CREDITS: 3
PREREQUISITES:

SEMMTER:
COURSE CODE: FOST 6009
COURSE TITLE: FOOD ANALYSIS
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Principles and application of the chemical, physical and instrumental methods used to determine the constituents of foods. Separation techniques using GC and HPLC, and spectroscopic techniques including UV/Vis and IR methods. Special consideration applicable to the analysis of certain foods. Legal and governmental regulations.

SEMMSTER:
COURSE CODE: FOST 6010
COURSE TITLE: DAIRY CHEMISTRY & DAIRY PRODUCTS TECHNOLOGY
NO. OF CREDITS: 3
PREREQUISITES:

SEMMTER:
COURSE CODE: FOST 6011
COURSE TITLE: BEVERAGE PROCESSING
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Processing technology of the three major beverage groups - carbonated, non-alcoholic (soft drinks); carbonated mildly alcoholic (beer); non-alcoholic, non-carbonated, stimulating (coffee, tea). Raw material ingredients. Manufacturing processes. Standards of identity and standards for grades. Nutritive, public health and safety concerns.
SEMESTER: 1ST & 2ND SEMESTERS
COURSE CODE: FOST 6018
COURSE TITLE: LITERATURE SURVEY
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: To undertake a literature review of a specific topic in Food Science & Technology, to document and to present the findings at a seminar. The topic should be very closely related to the area of research to be undertaken for the Food Science MSc. Research Project.

COURSE CODE: PENG 6023
COURSE TITLE: RESEARCH METHODS
NO. OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: Introduction to research methods. Research process from conceptualisation to analysis and conclusions. Types of research, defining a research topic, originality and thinking of research, identifying issues and objectives for research, developing research methodology, literature review, finding research material, data collection, referencing and citation, executing the research, hypothesis testing, data analysis, reporting the findings of the research, dealing with supervisors.

COURSE CODE: FOST 6019
COURSE TITLE: FOOD SCIENCE MSC RESEARCH PROJECT
NO. OF CREDITS: 6
PREREQUISITES:
SYLLABUS: To undertake relevant research in the areas of food safety and risk assessment, food fermentations, cocoa, food dehydration, root crops, and underutilized fruits and vegetables.
PROGRAMMES IN PETROLEUM STUDIES
MSc in Petroleum Engineering
MSc in Reservoir Engineering

OVERVIEW
The Subject
Petroleum engineering involves the application of earth and physical sciences to the evaluation and exploitation of natural hydrocarbon resources. The dominant problems of the petroleum engineer are those of flow and equilibrium in porous media, in vertical and horizontal well bores, in surface pipelines and in primary process equipment. The complexity of the hydrocarbon fluids, and the geological strata involved in flow in reservoirs and production systems raises problems requiring sophisticated numerical techniques for their solution. In the practical field, drilling and production engineering continually pose new engineering problems requiring engineered solutions.

Industrial Contact
We have strong links with both industry and government maintained by the growing awareness of the need for an interchange of advice and ideas. Industry also provides us with financial support for certain academic posts and scholarships. Visiting lecturers from the industry and government establishments make an important contribution to the more specialised teaching of the MSc programme.

Cooperation with Industry
- Many past students are now in responsible positions in industry.
- Lectures on some courses are given by personnel from industry.
- Regular seminars are given by engineers and managers from oil companies.
- Most companies regard the course as a good source of potential recruits.
- Industry support through scholarships and secondment.
- Majority of project topics are proposed and partly supervised by industry.
- Industry welcomes our students on visits.

Society of Petroleum Engineers (SPE)
Strong interaction with the Society of Petroleum Engineers, an international learned society looking after petroleum engineering. The aim of the SPE is to disseminate frontier knowledge from fundamental to field experience, including cost benefit. Over the years, the SPE has been most generous in its support to Petroleum Engineering at UWI, including scholarship support, running a student paper and welcoming students to their meetings and conferences.

MSc in Petroleum Engineering

Overview
The Petroleum Engineering MSc Programme consists of eight (8) taught courses, a Research Methods course and an Independent Project. It is a conversion programme from other engineering and science-based degree foundations into the specialities of petroleum engineering.

The Aims and Objectives
To provide the necessary background for employment in the oil and gas industry, or springboard for a research degree, as well as serving as a refresher for those already working in industry.

Regulations and Entry Requirements
1. The Regulations for the MSc (Eng) in Petroleum Engineering, Reservoir Engineering, (subject to approval) Petroleum Engineering & Management and Petroleum Management are the same as the General Regulations for the MSc (Eng) in the Faculty of Engineering, except that the candidates applying for registration should have at least:
 a. a Second Class Honours degree in Engineering/Natural Sciences (Physics & Chemistry majors)/Earth Sciences;
 or
 b. an equivalent qualification, in respect of either Engineering and/or Management.
2. A candidate applying for registration with a Pass degree may be considered for entry provided the candidate has acceptable industrial experience.

Structure of Programme
Offered both Part-time and Full-time
a. Part-time students: Normally required to complete the written examinations within two (2) years of registration
 - Project should be started at the commencement of the semester following the completion of the written examinations and completed within nine (9) months
b. Full-time students: Normally required to complete the written examinations within one (1) year of registration
 - Project should be started at the commencement of the semester following the completion of the written examinations and completed within six (6) months.

NB The normal load for a part-time student is half that of a full-time student.

Duration of Study
This is dependent on whether the student is part-time or full-time.

a) Part-time students: Five (5) years.

b) Full-time students: Three (3) years.

No. of Credits Required: 44

<table>
<thead>
<tr>
<th>No. of Credits</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>12</td>
</tr>
</tbody>
</table>
Other information
Credits for Diploma Courses towards the MSc Degree
Holders of the Postgraduate Diploma in Petroleum Engineering, Petroleum Engineering and Management or Petroleum Management will be granted credit for courses completed in the programme if they are subsequently admitted to the MSc degree, provided that not more than five (5) years have elapsed since the date on which such courses were passed.

Examination
As follows:

a. Evaluation in all courses will normally be by coursework and final examination. Candidates will be required to pass both the coursework and examination.

b. MSc Petroleum Project - evaluation will be on the report. Candidates may also be orally examined.

Students will, in addition, be required to present a Paper at a seminar.

Short Courses and Seminars
The programme in Petroleum Engineering and Management also includes short courses and seminars on topics of interest to supervisors, engineers and managers in the petroleum industry. These are on subjects of topical interest and are organised frequently in response to the identified needs and problems. For further details on these short courses or general advice on the programme, you are invited to contact the Head, Department of Chemical Engineering.

COURSE LISTING
An MSc (Eng) candidate in Petroleum Engineering will be required to pursue a course of study approved by the Board of the Faculty of Engineering. Such a course of study will normally be made up of eight (8) of the following courses a Research Methods course and an Independent Project.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENG 6000</td>
<td>Petroleum Geoscience</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6001</td>
<td>Advanced Petroleum Geology & Geophysics</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6002</td>
<td>Drilling Engineering & Completions</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6003</td>
<td>Advanced Drilling Engineering & Well Completions</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6004</td>
<td>Advanced Production Engineering & Technology</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6005</td>
<td>Reservoir Evaluation</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6006</td>
<td>Advanced Well Test Analysis</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6007</td>
<td>Reservoir Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6008</td>
<td>Advanced Reservoir Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6010</td>
<td>Improved Oil Recovery</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6012</td>
<td>Natural Gas Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6014</td>
<td>Offshore Structures & Systems</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6015</td>
<td>Production Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6016</td>
<td>Petroleum Economics & Management</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6017</td>
<td>Selected Topics</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6025</td>
<td>Group Field Project</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6026</td>
<td>Directed Reading</td>
<td>4</td>
</tr>
</tbody>
</table>

Each candidate will also be required to undertake PENG 6023 – Research Methods (subject to availability) or Faculty Equivalent COEM 6020 – Research Methods (Semester II); GINF 6024 – Research Methodology (Semester I) or MENG 6508 – Research Methods (Semester II) (COEM 6020, GINF 6024 and MENG 6508 subject to availability of space); followed by PENG 6024 – Research Project

Note that not all courses listed will be offered in any given year.

N.B. Students who have already registered for PENG 6019 should continue to register for PENG 6019. All other students should register for PENG 6023 or Faculty Equivalent and PENG 6024. There may be field work on a Saturday and/or on a Sunday.

MSc in Reservoir Engineering
Overview
Reservoir Engineering is a sub-set of Petroleum Engineering where understanding of the reservoir is studied in more detail. Reservoir Engineers seek to economically optimise the exploration of the reservoir.

Regulations and Entry Requirements
1. The regulations for the MSc (Eng) in Reservoir Engineering are the same as the General Regulations for the MSc (Eng) in the Faculty of Engineering, except that the candidates applying for registration should be in possession of at least:
 - a Second Class Honours degree from an approved university, in Engineering or Natural Sciences (Physics, Chemistry, or Mathematics majors) or Earth Sciences, and preferably at least one (1) year of relevant industry experience.

2. A candidate applying for registration with a Pass degree may be considered for entry provided the candidate has acceptable industrial experience.

3. A candidate for admission may be required to sit a qualifying examination. Candidates may be restricted by the Department to certain subject areas in the course of study. In particular, graduates must be numerate and have had some exposure to the fields of geology/geophysics, natural sciences and engineering. Candidates other than those that have had an exposure of petroleum engineering may be required to take qualifying examinations to become eligible for entry into the programme, unless such a graduate possesses adequate and practical experience in industry.

4. Examinations follow the same form as the MSc in Petroleum Engineering.

Structure of Programme
Part-time/Full-time

No. of credits Required: 44

No. of Credits Courses: 32
Project (Research Methods - 3 credits; Project - 9 credits) 12
Information on Project
Each candidate will also be required to pass a Research Methods course and submit a Project Report PENG 6024. This project would be a choice of:

(i) A traditional research project or
(ii) A professional, industry-based project.

In both cases, the students will be examined by a written and, where possible, an oral presentation.

COURSE LISTING
An MSc (Eng) candidate in Reservoir Engineering will be required to pursue a course of study approved by the Board of the Faculty of Engineering. Such a course of study will normally be made up of eight (8) of the following courses, a Research Methods course and an Independent Project.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENG 6000</td>
<td>Petroleum Geoscience</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6001</td>
<td>Advanced Petroleum Geology & Geophysics</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6005*</td>
<td>Reservoir Evaluation</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6006</td>
<td>Advanced Well Test Analysis</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6007*</td>
<td>Reservoir Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6008</td>
<td>Advanced Reservoir Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6010*</td>
<td>Improved Oil Recovery</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6012*</td>
<td>Natural Gas Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6017*</td>
<td>Selected Topics (Field Project)</td>
<td>4</td>
</tr>
</tbody>
</table>

* Currently offered in the Petroleum Engineering MSc.

A candidate for admission to the Postgraduate Diploma may be required to sit a qualifying examination. Candidates may be restricted by the Department to certain subject areas in the course of study.

Examination
As follows:

a. Evaluation in all courses will normally be by coursework and final examination. Candidates will be required to pass both the coursework and the examination.

Structure of Programmes
Offered both Part-time and Full-time

a) Part-time students: Normally required to complete the written examinations within two (2) years of registration
 • Project should be started at the commencement of the semester following the completion of the written examinations and completed within nine (9) months

b) Full-time students: Normally required to complete the written examinations within one (1) year of registration
 • Project should be started at the commencement of the semester following the completion of the written examinations and completed within six (6) months

Duration of Study

a) Part-time students: Five (5) years.
b) Full-time students: Three (3) years.

No. of Credits: 24

Course Load: The normal load for a part-time student is half that of a full-time student

COURSE LISTING
POSTGRADUATE DIPLOMA IN PETROLEUM ENGINEERING
Candidates will be required to pursue three (3) of the following courses, plus a Research Methods course (PENG 6023 – Research Methods (subject to availability) or Faculty Equivalent COEM 6020 - Research Methodology (Semester I) or MENG 6508 - Research Methods (Semester II) (COEM 6020, GINF 6024 and MENG 6508 subject to availability of space); followed by PENG 6024 - Research Project

Alternatively, candidates may pursue six (6) of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENG 6000</td>
<td>Petroleum Geoscience</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6001</td>
<td>Advanced Petroleum Geology & Geophysics</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6002</td>
<td>Drilling Engineering & Completions</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6003</td>
<td>Advanced Drilling Engineering & Well Completions</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6004</td>
<td>Advanced Production Engineering & Technology</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6005</td>
<td>Reservoir Evaluation</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6006</td>
<td>Advanced Well Test Analysis</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6007</td>
<td>Reservoir Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6008</td>
<td>Advanced Reservoir Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6010</td>
<td>Improved Oil Recovery</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6012</td>
<td>Natural Gas Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6015</td>
<td>Production Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6016</td>
<td>Petroleum Economics & Management</td>
<td>4</td>
</tr>
<tr>
<td>PENG 6017</td>
<td>Selected Topics</td>
<td>4</td>
</tr>
</tbody>
</table>

Note that not all courses listed will be offered in any given year.
Postgraduate Diploma in Petroleum Engineering & Management

Candidates will be required to pursue three (3) of the following courses, plus a Research Methods course (PENG 6023 - Research Methods (subject to availability) or Faculty Equivalent COEM 6020 - Research Methods (Semester II); GINF 6024 - Research Methodology (Semester I) or MENG 6508 - Research Methods (Semester II) (COEM 6020, GINF 6024 and MENG 6508 subject to availability of space); and undertake an Independent Project PENG 6024.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Number</th>
<th>Title of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENG 6002</td>
<td>4</td>
<td>Drilling Engineering & Completions</td>
</tr>
<tr>
<td>PENG 6003</td>
<td>4</td>
<td>Advanced Drilling Engineering & Well Completions</td>
</tr>
<tr>
<td>PENG 6006</td>
<td>4</td>
<td>Advanced Well Test Analysis</td>
</tr>
<tr>
<td>PENG 6007</td>
<td>4</td>
<td>Reservoir Engineering</td>
</tr>
<tr>
<td>PENG 6008</td>
<td>4</td>
<td>Advanced Reservoir Engineering</td>
</tr>
<tr>
<td>PENG 6009</td>
<td>4</td>
<td>Strategic Petroleum Management & Organisations</td>
</tr>
<tr>
<td>PENG 6010</td>
<td>4</td>
<td>Improved Oil Recovery</td>
</tr>
<tr>
<td>PENG 6011</td>
<td>4</td>
<td>Petroleum Economics, Law & Contract Administration</td>
</tr>
<tr>
<td>PENG 6012</td>
<td>4</td>
<td>Natural Gas Engineering</td>
</tr>
<tr>
<td>PENG 6015</td>
<td>4</td>
<td>Production Engineering</td>
</tr>
<tr>
<td>PENG 6020</td>
<td>4</td>
<td>Economic & Quantitative Aids to Decision-Making</td>
</tr>
</tbody>
</table>

Alternatively, candidates may pursue six (6) of the above-mentioned courses:

Postgraduate Diploma in Petroleum Management

Candidates will be required to pursue three (3) of the following courses, plus a Research Methods course (PENG 6023 - Research Methods (subject to availability) or Faculty Equivalent COEM 6020 - Research Methods (Semester II); GINF 6024 - Research Methodology (Semester I) or MENG 6508 - Research Methods (Semester II) (COEM 6020, GINF 6024 and MENG 6508 subject to availability of space); and undertake an Independent Project PENG 6024.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENG 6009</td>
<td>4</td>
<td>Strategic Petroleum Management & Organisations</td>
</tr>
<tr>
<td>PENG 6011</td>
<td>4</td>
<td>Petroleum Economics Law & Contract Administration</td>
</tr>
<tr>
<td>PENG 6013</td>
<td>4</td>
<td>Financial Management & Accounting</td>
</tr>
<tr>
<td>PENG 6018</td>
<td>4</td>
<td>Petroleum Engineering Research Project</td>
</tr>
<tr>
<td>PENG 6020</td>
<td>4</td>
<td>Economic & Quantitative Aids to Decision-Making</td>
</tr>
<tr>
<td>PENG 6021</td>
<td>4</td>
<td>Production Planning & Control</td>
</tr>
<tr>
<td>PENG 6022</td>
<td>4</td>
<td>Maintenance & Safety Management</td>
</tr>
</tbody>
</table>

Alternatively, candidates may pursue six (6) of the above-mentioned courses:

MPHIL PROGRAMMES

MPhil in Petroleum Engineering
MPhil in Petroleum Geoscience
MPhil in Geoscience

Regulations and Entry Requirements
The Regulations for the MPhil in Petroleum Engineering, Petroleum Geoscience or Geoscience are the same as the General Regulations for MPhil, except that candidates applying for registration should normally have either:

a. a Bachelor’s degree in Petroleum Engineering or an equivalent qualification

b. a Diploma in Petroleum Engineering with a Pass with Credit (at least 60%) of The University of the West Indies

Graduates in the fields of geology/geophysics, natural sciences, and engineering (other than petroleum engineering) may be required to do qualifying examinations to become eligible for entry into the programme unless such a graduate possesses adequate and practical experience in industry, in which case only Departmental examinations will be required.

PHD PROGRAMMES

PhD in Petroleum Engineering
PhD in Petroleum Geoscience
PhD in Geoscience

Regulations and Entry Requirements
1. The appropriate University and Faculty of Engineering Regulations for the degree of Doctor of Philosophy shall apply.
2. Candidates applying should normally have either:
 a. a Master’s degree in Petroleum Engineering of The University of the West Indies or an approved University or an equivalent qualification
SYLLABUSES IN PETROLEUM ENGINEERING AND RESERVOIR ENGINEERING

SEMESTER:
COURSE CODE: PENG 6000
COURSE TITLE: PETROLEUM GEOSCIENCE
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Introduction to Geology, Earth Structure, Plate Tectonics, Geological Time and History; Minerals and Rocks; Rock Forming Processes with Environments of Deposition; Sedimentary basins; Structural Geology and Hydrocarbon Traps; Origin, Migration and Accumulation of Petroleum; Composition of Hydrocarbons and Reservoir Characteristics. The petroleum reservoir; Geophysical exploration techniques. Mapping - Surface and Subsurface; Geological Laboratory. Field Trip. Petroleum Engineering vocabulary; Units. Pressures. Routine core analysis, laboratory procedures. Characteristics of reservoir rocks; pore space representation. Porosity; saturation; Volumetric representation of hydrocarbon in place. Permeability, Darcy and non-Darcy Flow; linear and radial flow; datum correction; Saturation effects; capillary pressure, relative permeability essentials.

SEMESTER:
COURSE CODE: PENG 6001
COURSE TITLE: ADVANCED PETROLEUM GEOLOGY & GEOPHYSICS
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Interpretation of geological and geophysical data; Geological history of Trinidad & Tobago; Structural and stratigraphic setting of hydrocarbon occurrences; Hydrocarbon prospects; Evaluation of prospects; Seismic acquisition; Processing and interpretation of 2-D and 3-D data; Case studies.

SEMESTER:
COURSE CODE: PENG 6002
COURSE TITLE: DRILLING ENGINEERING & COMPLETIONS
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Rotary drilling rigs. Rig components, Drilling bits and bottom-hole assemblies; Coring. Drilling fluid systems. Mud engineering; Subsurface control and safety; Blowout prevention and wellhead equipment; Bore hold stability; Pressure losses; Rig hydraulics; Deviated drilling; Directional drilling; Horizontal well drilling; Hole problems and solutions; Fishing and stuck pipe; Drill string and casing string design; Solids removal; Pore pressure prediction and fracture hydraulics; completion techniques; Casing strings and setting depths. Subsea completions; Computer modelling; AFE; Offshore drilling and equipment. Drilling Safety. Drilling practice in Trinidad. Well completion design. Casing, Tubing & Wellhead Equipment; Packers; Downhole Tubulars; Subsurface control and safety; Cementing; Perforating; Completion/Workover fluids; Sand control; wireline operations; Coiled Tubing; Stimulation; Horizontal wells; Workover Programmes; Case studies.

SEMESTER:
COURSE CODE: PENG 6003
COURSE TITLE: ADVANCED DRILLING ENGINEERING & WELL COMPLETION
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Drilling fluids; Surface chemistry; Non-Newtonian flow and pressure losses in the circulating system; Surge and swab pressures; Solids removal; Pore pressure prediction and fracture hydraulics; Blowout prevention and wellhead equipment; Bore hold stability; Deviated drilling; Hole problems and solutions; Drill string and casing string design; Offshore drilling and equipment; Cementing, completion techniques; Completion/workover fluids; Subsea completions; Rig selection and evaluation; Bid evaluation; Sand control; Stimulation; Computer modelling; Case studies.

SEMESTER:
COURSE CODE: PENG 6004
COURSE TITLE: ADVANCED PRODUCTION ENGINEERING & TECHNOLOGY
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Concept of nodes in the total production system; Inflow performance relationships; Single and multiphase flow; Nodal analysis; Natural and artificial lift methods and equipment; Production processes at surface; Control and instrumentation; Production logging; Pressure and rate measurement; Subsurface control and safety; Wellhead systems; Production economics.

SEMESTER:
COURSE CODE: PENG 6005
COURSE TITLE: RESERVOIR EVALUATION
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Well logging: Logging methods and interpretation techniques; Conditions around the wellbore, effects on measurements of mud filtrate invasion, formation contents etc. The terminology of well logging, Sw, Sxo, Rt, Rxo etc. Formation and fluid properties; The physical principles involved in geophysical well logging: electrical logs; sonic log; radioactivity logs; dipmeter log. The Archie Equations in clean formations. Discussion of the uncertainties involved. Estimation of porosity in different lithologies. Cross-plots for porosity and lithology, uncertainties. Estimation of water saturation. Gas effects. Differentiation between gas and oil hydrocarbon saturation. Effects of shaliness and modified equations. Shale estimation. Computed logs; Local field examples.

Well testing: Principles of Pressure Transient Test Analysis; Diffusivity Equation; Analysis of Buildup and Drawdown Tests; Multi-rate testing; Type-curve Analysis; Determination of skin; wellbore storage, drainage radius and stabilisation time; Gas well-testing; Real gas potential application; Other well tests. Gas well-testing; computer logging packages. Local field examples.

Well testing: Principles of Pressure Transient Test Analysis; Diffusivity Equation; Analysis of Buildup and Drawdown Tests; Multi-rate testing; Type-curve Analysis; Determination of skin; wellbore storage, drainage radius and stabilisation time; Gas well-testing; Real gas potential application; Other well tests. Gas well-testing; computer logging packages. Local field examples.

Well testing: Principles of Pressure Transient Test Analysis; Diffusivity Equation; Analysis of Buildup and Drawdown Tests; Multi-rate testing; Type-curve Analysis; Determination of skin; wellbore storage, drainage radius and stabilisation time; Gas well-testing; Real gas potential application; Other well tests. Gas well-testing; computer logging packages. Local field examples.

Well testing: Principles of Pressure Transient Test Analysis; Diffusivity Equation; Analysis of Buildup and Drawdown Tests; Multi-rate testing; Type-curve Analysis; Determination of skin; wellbore storage, drainage radius and stabilisation time; Gas well-testing; Real gas potential application; Other well tests. Gas well-testing; computer logging packages. Local field examples.

Well testing: Principles of Pressure Transient Test Analysis; Diffusivity Equation; Analysis of Buildup and Drawdown Tests; Multi-rate testing; Type-curve Analysis; Determination of skin; wellbore storage, drainage radius and stabilisation time; Gas well-testing; Real gas potential application; Other well tests. Gas well-testing; computer logging packages. Local field examples.

Well testing: Principles of Pressure Transient Test Analysis; Diffusivity Equation; Analysis of Buildup and Drawdown Tests; Multi-rate testing; Type-curve Analysis; Determination of skin; wellbore storage, drainage radius and stabilisation time; Gas well-testing; Real gas potential application; Other well tests. Gas well-testing; computer logging packages. Local field examples.

Well testing: Principles of Pressure Transient Test Analysis; Diffusivity Equation; Analysis of Buildup and Drawdown Tests; Multi-rate testing; Type-curve Analysis; Determination of skin; wellbore storage, drainage radius and stabilisation time; Gas well-testing; Real gas potential application; Other well tests. Gas well-testing; computer logging packages. Local field examples.

Well testing: Principles of Pressure Transient Test Analysis; Diffusivity Equation; Analysis of Buildup and Drawdown Tests; Multi-rate testing; Type-curve Analysis; Determination of skin; wellbore storage, drainage radius and stabilisation time; Gas well-testing; Real gas potential application; Other well tests. Gas well-testing; computer logging packages. Local field examples.

Well testing: Principles of Pressure Transient Test Analysis; Diffusivity Equation; Analysis of Buildup and Drawdown Tests; Multi-rate testing; Type-curve Analysis; Determination of skin; wellbore storage, drainage radius and stabilisation time; Gas well-testing; Real gas potential application; Other well tests. Gas well-testing; computer logging packages. Local field examples.

Well testing: Principles of Pressure Transient Test Analysis; Diffusivity Equation; Analysis of Buildup and Drawdown Tests; Multi-rate testing; Type-curve Analysis; Determination of skin; wellbore storage, drainage radius and stabilisation time; Gas well-testing; Real gas potential application; Other well tests. Gas well-testing; computer logging packages. Local field examples.

Well testing: Principles of Pressure Transient Test Analysis; Diffusivity Equation; Analysis of Buildup and Drawdown Tests; Multi-rate testing; Type-curve Analysis; Determination of skin; wellbore storage, drainage radius and stabilisation time; Gas well-testing; Real gas potential application; Other well tests. Gas well-testing; computer logging packages. Local field examples.
SEMESTER:
COURSE CODE: PENG 6006
COURSE TITLE: ADVANCED WELL TEST ANALYSIS
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Diffusivity equation; Constant rate and constant pressure; Solutions; Effects of total skin and wellbore storage; Type-curve analysis; Varying wellbore storage; Determination of average pressure; Radius of drainage and stabilisation time; Multiphase flow; Real gas potential application; Multi-rate, interference, pulse and vertical permeability testing; Layered systems; Fractured reservoirs; Faults; Channel sands; Use of pressure and its time derivative in type curve matching; Gas well-testing; Real gas potential application; gas flow tests with non-Darcy flow; extended well testing. Computerised methods of analysis. Local field examples.

SEMESTER:
COURSE CODE: PENG 6007
COURSE TITLE: RESERVOIR ENGINEERING
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Hydrocarbon Composition; Properties of reservoir rocks and fluids; Phase behaviour; Vapour-liquid Equilibria; Oil and gas reservoirs; Drive mechanisms; Pore Volume Compressibility; Reservoir mechanics: PVT Analysis, General material balance; Natural water influx.

SEMESTER:
COURSE CODE: PENG 6008
COURSE TITLE: ADVANCED RESERVOIR ENGINEERING
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Dry gas, gas-condensate and oil reservoirs; Material balance and applications; Turner’s method; Natural water influx; Immiscible flooding; Reservoir simulation - single and multi-phase; Compositional simulators; Computer simulation exercises.

SEMESTER:
COURSE CODE: PENG 6009
COURSE TITLE: STRATEGIC PETROLEUM MANAGEMENT & ORGANISATIONS
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: The nature and role of strategy in petroleum operations; Involvement of strategy in organisations; Structuring change; Leadership styles; Life cycles; Range of strategic planning and organisational behaviour; Learning and Development; Communicating strategy; Corporate cultures; Analysis of the corporate environment; Response to challenges.

SEMESTER:
COURSE CODE: PENG 6010
COURSE TITLE: IMPROVED OIL RECOVERY
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Microscopic Displacement; Macroscopic Displacement; Waterflooding; Problems of waterflooding; Models - Buckley Leverett Stiles. Miscible and Immiscible Fluid Displacements; Carbon dioxide flooding; Terary Diagrams; Minimum Miscible Pressure; Enhanced Oil Recovery Methods; Thermal methods of oil recovery; Steam flood models- Marx Langenheim, Boberg and Lantz; Heavy oil problems relevant to Trinidad. Well completion types for thermal processes; Other IOR processes. Screening Criteria; Reservoir simulation - single and multi-phase; Computer exercises.

SEMESTER:
COURSE CODE: PENG 6011
COURSE TITLE: PETROLEUM ECONOMICS, LAW & CONTRACT ADMINISTRATION
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: World energy supply/demand; Oil pricing; Petroleum leasing/contracts; Petroleum taxation; Comparison of petroleum natural gas; Managing petroleum resources; Petroleum act and regulations; Petroleum taxes act; Income tax in aid of industry act; Contractual arrangements; Drilling contracts; Natural gas contracts; Service (rental) contracts; Services contracts; Oil sales/ purchase contracts.

SEMESTER:
COURSE CODE: PENG 6012
COURSE TITLE: NATURAL GAS ENGINEERING
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Properties of Natural Gas Systems; Gas Volumes; Reserve estimates; Pressure Transient Testing of Gas Wells; Deliverability Testing of Gas Wells; Gas Flow Measurement; Compression of Natural Gas; Gas Conditioning and Processing; Uses of natural gas; LNG; Field Development/Management; Gas Transmission/Pipeline Design Considerations; Offshore Operations; Gas Contracts.

SEMESTER:
COURSE CODE: PENG 6013
COURSE TITLE: FINANCIAL MANAGEMENT & ACCOUNTING
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Basic principles of financial management; Financial reporting and the local regulatory framework; Financial ratio analysis; Corporate report analysis; International differences in petroleum finance; Budgeting and budgetary control; Short-term decision analysis; Long-term decision analysis; Introduction to strategic financial management; Balance sheets; Profit and loss accounts; Management of working capital; Preparation of management accounting statements; Investment appraisal techniques.
SEMESTER:
COURSE CODE: PENG 6014
COURSE TITLE: OFFSHORE STRUCTURES & SYSTEMS
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Oil and gas production facilities; Dynamics of floating structures; Floating production systems; Offshore loading; Offshore storage facilities; Articulated columns; Submerged production systems.

SEMESTER:
COURSE CODE: PENG 6015
COURSE TITLE: PRODUCTION ENGINEERING
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Productivity Index (PI) and the Inflow Performance Relationships (IPR) for oil and gas wells. Single and multiphase flow; tubing sizing; Nodal analysis; Natural and artificial lift methods and equipment; Typical production profiles (plateau and exponential decline). Control and instrumentation; Pressure and rate measurement; Production logging; Surface operations; Wellhead systems; Surface facilities - onshore, offshore. Design and operation of crude oil separation, Emulsion breaking; liquid recovery. Gas production. Sand control; Wax and asphaltine problems; Hydrate prevention; Stimulation – acidisation and fracturing. HSE in production. Local field examples.

SEMESTER:
COURSE CODE: PENG 6016
COURSE TITLE: PETROLEUM ECONOMICS & MANAGEMENT
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: World energy supply/demand; Oil pricing; Petroleum taxation systems and comparisons; Cash flow, profit and profitability; Uncertainty and risk; Incremental investments; Contractual arrangements; Economic issues in natural gas; Managing petroleum resources.

SEMESTER:
COURSE CODE: PENG 6017
COURSE TITLE: SELECTED TOPICS
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: A series of lectures on topics of relevance to petroleum engineering but not covered in other courses. Assessment: Coursework only.

SEMESTER:
COURSE CODE: PENG 6018
COURSE TITLE: HUMAN RESOURCE MANAGEMENT
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Social environment of the petroleum industry; Managing change and creating effectiveness; Management structures; Diagnosis of change; Conflict management; Leadership; The strategy; Human resource planning; Organisations and culture; Communication; Labour markets; Trade unions and the collective bargaining process in petroleum industries; Work design and motivation; Management development; Evaluation and reward.

SEMESTER:
COURSE CODE: PENG 6020
COURSE TITLE: ECONOMIC & QUANTITATIVE AIDS TO DECISION-MAKING
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Linear programming; Non-linear programming; Network planning techniques; Simulation in petroleum industry situations; Demand and supply of key commodities in the petroleum industry; Demand analysis; Energy market structures; Pricing practices; The role of the state in the market economy; Decision-making under uncertainty, time value of capital, correlation and regression analysis, analysis of time-series data, stochastic decision-making and Markov Analysis; Other decision-making models.

SEMESTER:
COURSE CODE: PENG 6021
COURSE TITLE: PETROLEUM PRODUCTION PLANNING & CONTROL
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Decision theory; Forecasting techniques in petroleum production operations; Processing and capacity planning; Inventory management; Material requirement planning; Sequencing and line balancing; Scheduling operations; Resource allocation; Project management techniques.

SEMESTER:
COURSE CODE: PENG 6022
COURSE TITLE: MAINTENANCE & SAFETY MANAGEMENT
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Maintenance activities; Types of maintenance; Trouble-shooting; Production equipment; Drilling equipment and maintenance; Scheduling planning activities for maintenance; Repair and programming design and evaluation; Health safety and welfare; Provision and role of the management in safety and awareness; Management of health; Occupational safety; Accidents and their causes; Financial implications of accidents; Protective devices; Legislation for safety and environmental issues.

SEMESTER:
COURSE CODE: PENG 6023
COURSE TITLE: RESEARCH METHODS
NO. OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: Introduction to research methods. Research process from conceptualisation to analysis and conclusions. Types of research, defining a research topic, originality and thinking of research, identifying issues and objectives for research, developing research methodology, literature review, finding research material, data collection, referencing and citation, executing the research, hypothesis testing, data analysis, reporting the findings of the research, dealing with supervisors.

SEMESTER:
COURSE CODE: PENG 6024
COURSE TITLE: PROJECT
NO. OF CREDITS: 9
PREREQUISITES: NONE
SYLLABUS: Each candidate will also be required to submit a Project Report of an individual analysis of a problem.
COURSE CODE: PENG6017
COURSE TITLE: SELECTED TOPICS
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: A series of lectures on topics of relevance to petroleum engineering but not covered in other courses.

COURSE CODE: PENG6025
COURSE TITLE: GROUP FIELD PROJECT
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: The group field design project is a reservoir evaluation/development exercise of part of a licence block and the preparation of recommendations for development of a gas and/or oil field through to abandonment carried out by groups of three/six students. Active participation by all the group members is essential. The initial data are made available at the start of the semester. The group projects will be assessed initially by presentation to section staff, and selected groups may make further presentations to an invited audience from the industry.

COURSE CODE: PENG6026
COURSE TITLE: DIRECTED READING
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: An in-depth critical review by the student of the current literature in a special topic of importance to Petroleum Engineering. The student will prepare a report and present the findings at a seminar.

DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING

Research
Civil Engineering is intimately concerned with what is called the 'Built Environment'. In this regard, it is directed at the provision of facilities that can be used beneficially by the community. Clearly, such facilities condition the process of social and economic development and to a large extent, mirror them. The civil engineering industry is therefore of strategic national and regional importance in the Caribbean. An important aspect of research in the Department is the role of the construction sector in the local national economies.

Because civil engineering works are essentially ‘resource hungry’, that is to say, they consume large quantities of materials in their creation, there is a considerable potential for cost savings in the use of materials for construction. One way of achieving this is through more imaginative use of traditional materials. Another is to develop entirely new materials from indigenous sources. Materials research is therefore an area accorded high priority by the Department.

Other areas of priority take account of the special conditions under which civil engineering works are carried out in the Caribbean. This is true of the organisation and management of labour, the techniques of construction, operation and maintenance of facilities, no less than of the design of systems and the specification of materials. Additional focus is also placed on Hazard Resistant Construction and Coastal Engineering.

The research interests of the Department are thus related directly to the critical needs and interests of the wider community. Towards this end, it seeks to cultivate links with organisations and interest groups outside the University. Research funded by the National Institute of Higher Education Research, Science and Technology (NIHERST), TANTEAK, IDRC and the EU are typical examples. Funds are also obtained from international sources such as the British Council. The facilities provided are good and constantly being improved.

There are eight laboratories: Structures, Concrete, Fluid Mechanics, Environmental Engineering, Soil Mechanics, Highway Materials, Geology and Transportation, to which has recently been added a new computing facility.

The main areas of research can be listed as follows:
- Civil Engineering Economics
- Civil Engineering Project Management
- Coastal Engineering and Management
- Computer-aided Engineering & Design
- Disaster Mitigation & Management
- Environmental Engineering
- Materials Engineering
- The Analysis & Design of Foundations
- The Analysis & Design of Hydraulic Systems
- The Analysis & Design of Structures
- Transport Engineering
- Other areas of research related to the Construction programme are indicated in Section 3.5.4.
The Department offers programmes of study by research leading to the MPhil and PhD degrees in Civil Engineering in all its areas of specialty.

Programmes in Construction Management

Overview

The practice of civil engineering involves a series of decisions having to be made on choices from a diverse and complex set of alternatives. Such choices are often interrelated and are usually urgent. These decisions have to be made throughout the life of a project from the basis of the initial conception through the design phase, and material and procedure selection to the construction and commissioning of the completed structure. At any stage, the effectiveness of the whole process can be compromised by poor decision-making.

As a result, a heavy demand is placed upon both the managerial and technical skills of the engineers involved. There has been a continuing tendency for civil engineering projects to become both increasingly large and increasingly complex. This has naturally resulted in the technical and managerial functions not only becoming more difficult but also becoming more important. As a result, there is a continuing need to provide training programmes that upgrade the skills and capabilities of engineers and other construction professionals in modern engineering and managerial techniques. An important secondary objective of the MSc/Diploma programme is to provide this service.

By allowing a wider perspective of engineering technology and economy to be taken, it is anticipated that the quality of engineering management should thereby improve. Emphasis is placed upon the publication and presentation of the results of this research to the widest possible national and international audience. Clearly the spin-off benefits of this programme include enhancing the initiative, creativity and purposeful thinking that are generated in those who participate.

The Aims and Objectives

a) To provide instruction in a range of engineering, economic and managerial subjects that should enable engineers and construction professionals to be better able to deal with the problems that can occur on a construction project.

b) To improve the decision-making capabilities of engineers and other construction professionals in the region, with a view to improving the efficiency and effectiveness of the whole construction process.

c) To equip engineers and construction professionals to apply modern knowledge effectively in the real, competitive world of industry, and hence to assist the nations of the regions in their bid for modernization and development.

d) To foster the advancement of knowledge through the promotion of research into the problems and opportunities that face the construction sector.

Postgraduate Diploma in: Construction Management (option to major in building or operations)

Regulations and Entry Requirements

Before registration as a student of the University proceeding to the Postgraduate Diploma in Construction Management or Construction Engineering & Management, a candidate must have a minimum of one year’s appropriate practical experience as well as the following:

i. A first degree or equivalent qualification in Civil, Structural, Construction, Building or Architectural Engineering;

ii. A first degree or equivalent qualification in Architecture or Quantity Surveying or Surveying & Land Information or

iii. An equivalent qualification acceptable to the Faculty of Engineering.

Any candidate for the Diploma may be required to sit an entrance examination and/or complete an introductory/qualifying course before being granted permission to read for the Diploma. In addition, candidates seeking admission under (ii) or (iii) may be restricted to certain subject areas in the Course of Study.

Structure of Programmes

Offered both part-time and full-time, the candidate must pass four courses – 3 compulsory plus one elective – the Practical Team Project and the Independent Investigative Project. The Diploma requires a minimum of 26 credits.

Duration of Study

Full-time: Not less than one (1) academic year

Part-time: Not less than two (2) academic years

COURSE LISTING

CONSTRUCTION MANAGEMENT (OPTION TO MAJOR IN BUILDING OR OPERATIONS)

The courses offered are:

CORE COURSES

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COEM 6006</td>
<td>Construction Accounting & Finance</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6009</td>
<td>Contracts Management & Construction Law</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6013</td>
<td>Materials Technology</td>
<td>E4</td>
</tr>
<tr>
<td></td>
<td>(core to building major)</td>
<td></td>
</tr>
<tr>
<td>COEM6016</td>
<td>Natural Hazards Management</td>
<td>E4</td>
</tr>
<tr>
<td></td>
<td>(core to operations major)</td>
<td></td>
</tr>
</tbody>
</table>
SEMESTER 2
Course Code Course Title Number of Credits
COEM 6020 Research Methods C3
COEM 6005 Construction Project Management E4 (suggested option)
COEM 6015 Maintenance & Facilities Management E4 (suggested option)
OR One option from the list below or other approved by the Department

ELECTIVES

SEMESTER 1
Course Code Course Title Number of Credits
COEM 6003 Organization & Management of Construction E4

SEMESTER 2
Course Code Course Title Number of Credits
CIEN 6000 Advanced Environmental Engineering Systems Design E4
CIEN 6001 Advanced Structural Engineering E4
CIEN 6002 Road Network Conservation E4
COEM 6012 Geotechnics in Construction E4

MSc (ENG) in Construction Management

MSc (NON-TECHNICAL)

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

See www.jbm.org.uk for further information.

Regulations and Entry Requirements

Candidates applying for registration should normally have a minimum of one year’s appropriate practical experience as well as either:

i. A Bachelor’s Degree in Civil, Structural, Construction, Building Engineering, Quantity Surveying, Land Surveying,

or

ii. An equivalent qualification.

COURSE LISTING - MSc

IN CONSTRUCTION MANAGEMENT

An MSc candidate in MSc in Construction Management will be required to follow and sit examinations in six (6) core courses as well as one (1) other elective, in addition to the two projects:

CORE COURSES

SEMESTER 1
Course Code Course Title Number of Credits
COEM 6003 Organization & Management of Construction E4
COEM 6006 Construction Accounting & Finance E4
COEM 6009 Contracts Management & Construction Law E4
COEM 6013 Materials Technology (for those interested in building) E4
COEM 6016 Natural Hazards Management (for those interested in operations) E4

SEMESTER 2
Course Code Course Title Number of Credits
COEM 6005 Construction Project Management E4
COEM 6020 Research Methods C3

The above six (6) courses are compulsory core courses; the candidate will also be required to complete one (1) elective course (see options below) and a Practical Team Project (COEM6025) and an Independent Research Project (COEM 6018).

ELECTIVES

SEMESTER 1
Course Code Course Title Number of Credits
COEM 6003 Organization & Management of Construction E4

SEMESTER 2
Course Code Course Title Number of Credits
CIEN 6000 Advanced Environmental Engineering Systems Design E4
CIEN 6001 Advanced Structural Engineering E4
CIEN 6002 Road Network Conservation E4
COEM 6012 Geotechnics in Construction E4
COEM 6005 Construction Project Management (suggested option) E4
COEM 6015 Maintenance & Facilities Management (suggested option) E4
Other information
1. Students in both programmes must submit a Practical Team Project (COEM 60025) carrying 5 credits and an Independent Research Project (COEM 6018) that has a nine (9) credit value.
2. A minimum of 44 credits are required for the MSc.
3. Students will be expected normally to complete their Independent Research Projects within 3 months of finishing examinations.
4. Full-time students will be required normally to complete altogether within one (1) calendar year.
5. Part-time students will be required normally to complete altogether within two (2) calendar years.
6. Candidates registered for an MSc (Eng) may be awarded a Postgraduate Diploma if they follow and pass examinations in courses carrying a minimum of 26 credits at the graduate level, as well as the prescribed coursework.

Short Courses and Seminars
1. The Programme in Construction Management may also include Short Courses and/or Seminars on topics of interest to the sector. These are on subjects of topical interest and are organized at various times in response to identified needs and problems.
2. Details of Short Courses and Seminars are advertised widely and notified to appropriate individuals as and when details are finalized.
3. For further details of the courses and the programme syllabus, or general advice on the programme, please contact the Head, Department of Civil & Environmental Engineering, or the Leader of the Programme.

SYLLABUSES IN CONSTRUCTION MANAGEMENT

SEMIESTER: 2+
COURSE CODE: COEM 6018
COURSE TITLE: THE INDEPENDENT RESEARCH PROJECT
NO. OF CREDITS: 9
PREREQUISITES: SUCCESSFUL COMPLETION OF ALL REQUIRED CORE AND OPTIONAL COURSES
SYLLABUS: The research project takes the form of an investigation into a topic of significance to the construction sector, and is intended to ensure the capacity of the student to apply skills acquired within the prescribed courses. It is executed under the direction of one or more supervisors approved by the Department, and is examined by the submission of a written report, which is required to conform to the general standards for MSc projects within the Faculty of Engineering. The project shall be formally assigned as soon as practicable after the results of the written examinations are available, and in any case not normally later than July 1 in any year. The project shall normally be completed within three (3) months of being assigned, i.e., by the end of September of the year in question. Any project not completed at the end of December of the year of assignment shall require formal approval of extension of time.

SEMIESTER: 1
COURSE CODE: COEM 6003
COURSE TITLE: ORGANISATION & MANAGEMENT OF CONSTRUCTION
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: The functions of managers; planning, organizing, controlling and leading. The role of managers; interpersonal, informational and decision-making. The evolution of management thought, from the Industrial Revolution to now. Professional ethics and the engineer/manager. Problem-solving and decision-making. Initiative and creativity. Information Technology (IT) and management information systems (MIS), and the role of computers in information management. The management of quality; TQM and ISO 9000.

SEMIESTER: 1
COURSE CODE: COEM 6005
COURSE TITLE: CONSTRUCTION PROJECT MANAGEMENT
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: This course addresses the culture, principles and techniques of project and programme management. The following are covered: What is a project? What is project management? The project life cycles for different industries, project context: planning the project (project selection - tools and techniques), scope management defining the project. Project planning, work breakdown structures, Gantt Chart, PERT Chart, CPM, preparing the master plan, project budgeting, responsibility matrix, communication plan, project criterion for success, project control (project baseline, status reporting, control cycle, monitoring and control tools, resource grading, change control, resource leveling, variance reporting tools, project audit). Implementation, project finalization and close-out. Project cost, risk and quality management. What is programme management, benefits of programme management, programme management organization /programme planning, benefits management, stakeholder management, programme management processes, effective project and programme teams. The project support office, audit, applications of project management software, e-business programme management.

SEMIESTER: 1
COURSE CODE: COEM 6006
COURSE TITLE: CONSTRUCTION ACCOUNTING & FINANCE
NO. OF CREDITS: 4
PREREQUISITES: NONE
SEMESTER: 1
COURSE CODE: COEM 6009
COURSE TITLE: CONTRACT MANAGEMENT & CONSTRUCTION LAW
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: An introduction to the different legal systems. The impact of law on the delivery of engineering goods and services; Law and the construction sector. The making of law and the courts; litigation. The elements of contract law and relation with the construction sector. Types of contracts; Different procurement systems; Standard form building contracts (specifications codes of practice; Standards, statutes and local government regulations); The elements of the Law of Tort, disputes and conflict resolution methods; Professional associations, codes of ethics, professional liability; Construction claims; Different forms of business organizations; Business law and the company act; Health and safety legislation; Environmental law; Introduction to intellectual property; Confidentiality of information; Warranties and indemnity. Introduction to international law.

SEMESTER: 1
COURSE CODE: COEM 6013
COURSE TITLE: MATERIALS TECHNOLOGY
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Factors affecting the choice and use of materials in construction. The general properties and behaviour of the major types of construction materials. Factors affecting the production of the construction materials in major use in the Caribbean. Specifications, standards and testing of materials. Methods of improving the properties and performance of materials. Major-project patterns in the Caribbean (e.g., marine projects) and the resultant demands for materials performance. Materials procurement, handling, storage, and extraction control.

SEMESTER: 2
COURSE CODE: COEM 6015
COURSE TITLE: MAINTENANCE & FACILITIES MANAGEMENT
NO. OF CREDITS: 4
PREREQUISITES: NONE

SEMESTER: 1
COURSE CODE: COEM 6016
COURSE TITLE: NATURAL HAZARDS MANAGEMENT
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: The course deals with the genesis and nature of natural hazards, their physical and theoretical basis as well as their operation and propagation. It deals with their economic and social impact; vulnerability of structures; policy and legislation; planning response; engineering and physical response; the development of site-specific disaster plans; international, regional and local response agencies; evacuation and evacuation drills and simulations; search and rescue; recovery, emergency relief shelter management and risk analysis.

SEMESTER: II
COURSE CODE: COEM 6020
COURSE TITLE: RESEARCH METHODS
NUMBER OF CREDITS: 3
SYLLABUS: The topics covered in the unit will include: Principles of research, information sources, research design, research methodology, data collection, data analysis, presenting research proposals and writing research reports.

SEMESTER: II
COURSE CODE: COEM 6025
COURSE TITLE: PRACTICAL TEAM PROJECT
NUMBER OF CREDITS: 5
SYLLABUS: The projects are based upon real schemes and involve information gathering, planning, organization, co-ordination, detailed assessment of ideas, reporting and presentation.

MPhil, PhD in Construction Engineering & Management and Construction Management
The Construction Engineering & Management Programme also offers programmes of study by research leading to the MPhil and PhD Degrees in Construction Engineering & Management and Construction Management.

Regulations and Entry Requirements
The regulations for the MPhil in Construction Engineering & Management or Construction Management would require:

1. A good honours degree (Upper Second Class) in one of the construction-related professions, e.g., Civil Engineering, Building Engineering, Architecture, Quantity Surveying, Planning, Land Surveying, etc.
2. At least one (1) year of relevant industrial experience.
3. Before completion must have passed a course in Research Methodology.
For the Construction Management or Construction Engineering & Management Programme, the applicant must possess:

1. A first degree with Honours (Upper Second Class) in Civil or Structural Engineering, Construction, Building or Architectural Engineering or
2. An equivalent acceptable qualification and
3. At least one (1) year of relevant industrial experience.

A candidate may be required to sit an entrance examination and/or complete introductory/qualifying courses before being allowed to read for the MPhil or PhD degree.

The Principal Areas of Research
The principal areas of research are as follows:
- Caribbean Construction Firms
- Construction Finance
- Construction Management & Administration
- Construction Materials
- Construction Public Policy
- Construction Technology
- Contract Procurement Systems
- Expert Systems in Construction
- Infrastructure Technology in Construction Management
- Macro & Micro Economic Issues in Construction
- Management of Quality in Construction
- Productivity in Construction
- Resource Management

Programmes in Coastal Engineering & Management
Integrated coastal zone management in the wider Caribbean is recognized as the approach for ensuring the survival and sustainable development of the coastal resources of the region. The Coastal Zone Manager needs to have a pool of knowledge and skills that support reliable decision-making for the preservation, enhancement and sustainable development of the coastal zone.

The Graduate Programme in Coastal Engineering and Management has two (2) degree offerings:
- Postgraduate Diploma in Coastal Engineering and Management, and
- MSc in Coastal Engineering and Management

Aims of the Programme
1. To provide advanced and specialized knowledge in the field of coastal engineering and management associated with the natural and man-made coastal zone infrastructure.
2. To equip the graduate with the knowledge of coastal processes and coastal engineering techniques required for the assessment of coastal defence systems and the design of coastal engineering schemes, with particular emphasis on Caribbean conditions.

3. To produce a graduate capable of developing coastal management plans and management systems.
4. To produce a graduate capable of implementing and managing new research initiatives.

Course Delivery
The course is designed to be delivered either as a distance learning course or through weekly face to face sessions. All course notes are available on the My-eLearning platform, which enables the distance mode delivery and encourages participation across all Caribbean Islands. To provide distance mode students with some face to face contact, both with staff and fellow students, the course includes three one-week intensive sessions for group activities, field trips and group design exercises. For students who are based in Trinidad, the face to face lecturing option is available.

Regulations and Entry Requirements
1. A first degree (lower second class honours minimum) from an approved University in the Natural Sciences, Planning, Civil Engineering, Environmental Engineering, Surveying, Land Information, or
2. An accredited BTech or HND/Associate Degree in Civil Engineering plus five (5) years related postgraduate experience.

Postgraduate Diploma in Coastal Engineering and Management

Structure of Programme
Offered both Part-time and Full-time

Duration of Study (for taught component): Minimum of two (2) semesters or a maximum of four (4) semesters

Number of credits required: 28

COURSE LISTING

SEMESTER I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZEM 6100</td>
<td>Coastal Processes & Hazards</td>
<td>E4</td>
</tr>
<tr>
<td>CZEM 6101</td>
<td>Coastal Geomorphology</td>
<td>E4</td>
</tr>
<tr>
<td>CZEM 6130</td>
<td>Principles of Coastal Defence,</td>
<td>E4</td>
</tr>
<tr>
<td></td>
<td>Management and Environmental</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment</td>
<td></td>
</tr>
<tr>
<td>COEM 6016</td>
<td>Natural Hazards Management</td>
<td>E4</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZEM 6102</td>
<td>Coastal Zone Metrics</td>
<td>C4</td>
</tr>
<tr>
<td>COEM 6106</td>
<td>Design of Coastal Structures</td>
<td>C4</td>
</tr>
<tr>
<td>CZEM 6112</td>
<td>Coastal Zone Modelling</td>
<td>C4</td>
</tr>
</tbody>
</table>
MSc in Coastal Engineering & Management

Structure of Programme
Offered Part-time and Full-time

Duration of Study (for taught component):
Minimum of two (2) semesters or a maximum of four (4) semesters

Number of Credits Required: 40

COURSE LISTING

SEMESTER I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZEM 6100</td>
<td>Coastal Processes & Hazards</td>
<td>E4</td>
</tr>
<tr>
<td>CZEM 6101</td>
<td>Coastal Geomorphology</td>
<td>E4</td>
</tr>
<tr>
<td>CZEM 6130</td>
<td>Principles of Coastal Defence, Management and Environmental Assessment</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6016</td>
<td>Natural Hazards Management</td>
<td>E4</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZEM 6102</td>
<td>Coastal Zone Metrics</td>
<td>C4</td>
</tr>
<tr>
<td>CZEM 6106</td>
<td>Design of Coastal Structures</td>
<td>C4</td>
</tr>
<tr>
<td>CZEM 6112</td>
<td>Coastal Zone Modelling</td>
<td>C4</td>
</tr>
<tr>
<td>COEM 6020</td>
<td>Research Methods</td>
<td>C3</td>
</tr>
</tbody>
</table>

SEMESTER III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZEM 6108</td>
<td>Research Project</td>
<td>C9</td>
</tr>
</tbody>
</table>

SYLLABUSES IN COASTAL ENGINEERING AND MANAGEMENT

SEMESTER: 1

COURSE CODE: CZEM 6100
COURSE TITLE: COASTAL PROCESSES & HAZARDS
NO. OF CREDITS: 4
PREREQUISITES: NONE

SYLLABUS: Description and calculation procedures for tides; currents (Caribbean), storm surges; global wind systems, hurricanes, linear wave theory, wave transformation and attenuation processes, random waves, short and long term wave statistics, design wave specification, wave prediction from wind records, wave-induced longshore currents; coastal sediment transport, sediment budgets, assessing site functionality and vulnerability to coastal disasters.

SEMESTER: 1

COURSE CODE: CZEM 6101
COURSE TITLE: COASTAL GEOMORPHOLOGY
NO. OF CREDITS: 4
PREREQUISITES: NONE

SYLLABUS: Coastal classification and morphology, volcanic coasts, reefs, corals, estuaries and wetlands, continental shelf; coastal morphodynamics, coastal inlets, morphodynamics and shoreface processes; geotechnical investigations; slope and embankment stability; soil liquefaction, stabilisation, compaction, bearing capacity and settlement.

SEMESTER: 1

COURSE CODE: CZEM 6130
COURSE TITLE: PRINCIPLES OF COASTAL DEFENCE MANAGEMENT AND ENVIRONMENTAL ASSESSMENT
NO. OF CREDITS: 4
PREREQUISITES: NONE

SYLLABUS: The functional performance of coastal defence techniques including artificial headlands, offshore breakwaters, groynes, beach nourishment, sea walls and revetments, managed retreat. Identification of their environmental impacts and opportunities. Introduction to shoreline management plans and coastal zone plan development. Objectives of EIA, legal context, scope of impacts of coastal developments, watershed impacts; mitigation and remedial measures, control measures, consequences of infringement, monitoring and management.

SEMESTER: 2

COURSE CODE: CZEM 6102
COURSE TITLE: COASTAL ZONE METRICS
NO. OF CREDITS: 4
PREREQUISITES: NONE

SYLLABUS: Descriptive statistics; nearshore and upland sampling, measurements and monitoring techniques for storms, beach profiling, tidal, wind and wave measurements, currents and sediments; aqueous sampling techniques; coastal resources, hazards, classification and configuration, coastal hazard vulnerability tools; database development; spatial techniques and web-based solutions
SEMESTER: 2
COURSE CODE: CZEM 6106
COURSE TITLE: DESIGN OF COASTAL STRUCTURES
NO. OF CREDITS: 4
PREREQUISITES: NONE

SEMESTER: 2
COURSE CODE: COEM 6020
COURSE TITLE: RESEARCH METHODS
NO. OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: Principles of research, information sources, research design, research methodology, data collection, data analysis, presenting research proposals, writing research reports.

SEMESTER: 2
COURSE CODE: CZEM 6112
COURSE TITLE: COASTAL ZONE MODELLING
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Introduction to modelling concepts, types and time scales including process-based numerical models and scaled physical models, behaviour-based numerical models, Geomorphological analysis and parametric equilibrium models. Concepts of computational fluid dynamics; Navier Stokes equations, numerical solution techniques, practical application of models. Wave model types and applicability. Coastal morphodynamic model types and applications. Circulation models. Physical models. Case studies; wave and current models and morphodynamic models.

SEMESTER: 3
COURSE CODE: CZEM 6108
COURSE TITLE: RESEARCH PROJECT
NO. OF CREDITS: 9
PREREQUISITES: NONE
SYLLABUS: Indicative Syllabus
1. The material covered will be a reflection of the student’s own requirements. In general, all projects will demand: - problem identification and definition of objectives; - planning and execution within time and cost constraints; - information search and its interpretation; - evaluation resulting in the making of conclusions.
2. The project may be suggested by a member of staff, by the individual student or an industrial concern. Industry generated projects must be approved by academic staff as being suitable before being accepted.
3. Project allocation procedures provide each student to: - select a preferred area, based upon a taught programme or upon previous experience; - discuss projects with prospective supervisors; - agree on a particular project, supervisor and outline project terms of reference.

4. Each project will be supervised by a member of academic staff who will monitor progress, offer guidance and encourage the student to take the active lead role in researching and the development of the project. The need to plan the objective and outcomes against a time scale will be stressed.

PROGRAMMES IN CIVIL AND ENVIRONMENTAL ENGINEERING

MSc (TECHNICAL)
This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

There are two (2) Degrees offered in this programme:-
(i) MSc in Civil Engineering
(ii) MSc in Civil with Environmental Engineering

The Aims and Objectives
a) To extend existing engineering and science knowledge beyond the level covered at the BSc Honours Degree level and to move to a professional, Master’s output.
b) To widen existing engineering and science knowledge and to include areas not covered in the BSc Honours Degree level.
c) To develop the skills required for team-working (and, for CEng, leadership), social and business awareness, through further studies, such as law, finance, management, risk assessment and environmental issues.
d) To gain experience of team-working, ideally with cross-disciplinary elements, integrating topics covered in the BSc level and centered on real professional and business issues.

Regulations and Entry Requirements
There are two routes offered for admission to the programmes:
1. Route 1 provides for 4 continuous years of study leading to the award of the BSc Honours and the MSc Degrees. Applicants must have successfully completed the 3-year BSc Honours Degree programme in three (3) years, attaining a minimum of 55 % weighted average across the three (3) years (GPA of 2.5).
2. Route 2 provides for successful completion of the BSc Honours Degree and pursuit of the MSc Degree after one (1) year of Initial Professional Development in the workplace. This would give the student an opportunity to better understand the learning outcomes of BSc Honours Degree before proceeding to the MSc.
An MSc candidate in Civil Engineering must normally have a BSc Civil Engineering Honours Degree and those for the MSc Civil with Environmental Engineering Degree must normally have a BSc Civil with Environmental Engineering Honours Degree, or an equivalent qualification.

A candidate for any MSc degree must normally pass a course in Research Methodology.

Structure of Programmes
Offered part-time
It is an evening programme with lectures and tutorials being delivered face-to-face between 4:00 pm and 8:00 pm on weekdays.

Duration of Study
Minimum of three (3) semesters or a maximum of six (6) semesters.

Students failing to complete all course requirements for the MSc programme within the specified period but have obtained 28 or more credits may be granted a Post Graduate Diploma in Civil Engineering or Civil with Environmental Engineering upon request. Students who are awarded the post graduate diploma shall not be able to apply any of these credits for earning the MSc in Civil Engineering and/or MSc in Civil with Environmental Engineering.

Credits for the post graduate diploma shall comprise the following:
1. Twenty-eight (28) credits from the core courses; AND
2. At least three (3) or four (4) other credits from the list of optional courses (or any other course approved by the Head of Department).

No. of Credits required: 40 or 41
The credits required to complete the programme are dependent on the electives chosen. The semester 1 workload is 16 credits, semester 2 has 15 or 16 credits and semester 3 (May to July) has 9 credits.

MSc in Civil Engineering
COURSE LISTING
Candidates are required to select one (1) optional subject in semester 2.

SEMESTER 1
The core subjects are:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6001</td>
<td>Advanced Structural Engineering</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6006</td>
<td>Construction Accounting & Finance</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6009</td>
<td>Contracts Management & Construction Law</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6012</td>
<td>Geotechnics in Construction</td>
<td>E4</td>
</tr>
</tbody>
</table>

SEMESTER 2
The core subjects are:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6005</td>
<td>Civil Engineering Design Project</td>
<td>C9</td>
</tr>
<tr>
<td>COEM 6020</td>
<td>Research Methods</td>
<td>E3</td>
</tr>
</tbody>
</table>

The optional subjects are:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6002</td>
<td>Road Network Conservation</td>
<td>C3</td>
</tr>
<tr>
<td>CZEM 6106</td>
<td>Design of Coastal Structures</td>
<td>C4</td>
</tr>
<tr>
<td>COEM 6005</td>
<td>Construction Project Management</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6013</td>
<td>Materials Technology</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6015</td>
<td>Maintenance and Facilities Management</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6016</td>
<td>Natural Hazards Management</td>
<td>E4</td>
</tr>
<tr>
<td>CIEN 6030</td>
<td>Performance Based Seismic Design</td>
<td>E4</td>
</tr>
</tbody>
</table>

In addition to the listed courses, the Department may approve any other course as an optional subject.

SEMESTER 3 (May-July)
Course Code | Course Title | Number of Credits |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COEM 6018</td>
<td>Research Project</td>
<td>C9</td>
</tr>
</tbody>
</table>

MSc in Civil with Environmental Engineering
COURSE LISTING
Candidates are required to select one (1) optional subject in Semester 2.

SEMESTER 1
The core subjects are:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6000</td>
<td>Advanced Environmental Engineering</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6006</td>
<td>Construction Accounting & Finance</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6009</td>
<td>Contracts Management & Construction Law</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6012</td>
<td>Geotechnics in Construction</td>
<td>E4</td>
</tr>
</tbody>
</table>

SEMESTER 2
The core subjects are:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6005</td>
<td>Civil Engineering Design Project</td>
<td>C9</td>
</tr>
<tr>
<td>COEM 6020</td>
<td>Research Methods</td>
<td>E3</td>
</tr>
</tbody>
</table>

The optional subjects are:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6002</td>
<td>Road Network Conservation</td>
<td>C3</td>
</tr>
<tr>
<td>CZEM 6106</td>
<td>Design of Coastal Structures</td>
<td>C4</td>
</tr>
<tr>
<td>COEM 6005</td>
<td>Construction Project Management</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6013</td>
<td>Materials Technology</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6015</td>
<td>Maintenance and Facilities Management</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6016</td>
<td>Natural Hazards Management</td>
<td>E4</td>
</tr>
</tbody>
</table>

In addition to the listed courses, the Department can approve any other course as an optional subject.

SEMESTER 3 (May-July)
Course Code | Course Title | Number of Credits |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COEM 6018</td>
<td>Research Project</td>
<td>C9</td>
</tr>
</tbody>
</table>
SYLLABUSES IN CIVIL & ENVIRONMENTAL ENGINEERING

(To be read in conjunction with syllabuses from other departments and programmes where applicable)

SEMESTER: 1
COURSE CODE: CIEN 6000
COURSE TITLE: ADVANCED ENVIRONMENTAL ENGINEERING SYSTEMS DESIGN
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Water supply and treatment systems; Wastewater collection and treatment; Solid waste management; urban drainage systems; Air and noise pollution prevention and mitigation in built environment.

SEMESTER: 1
COURSE CODE: CIEN 6001
COURSE TITLE: ADVANCED STRUCTURAL ENGINEERING
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Flexibility and stiffness methods; numerical methods in Structural Engineering, non-linear analysis; computer aided analysis and design.

SEMESTER: 2
COURSE CODE: CIEN 6002
COURSE TITLE: ROAD NETWORK CONSERVATION
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Road networks, classes, function and configuration; Pavement Maintenance Management Systems; Roadway characteristics, vehicle fleet costs and performance; Maintenance and rehabilitation strategies and policies; Pavement design and performance prediction models; Road pricing, sustainable maintenance budgeting and financing, optimization and programme development.

(Coursework)

SEMESTER: 2
COURSE CODE: CIEN 6005
COURSE TITLE: PROJECT: CIVIL ENGINEERING DESIGN IV
NO. OF CREDITS: 9
PREREQUISITES: COMPLETION OF ALL REQUIRED CORE AND OPTIONAL COURSES
SYLLABUS: This course is a capstone project designed to generate a learning atmosphere that is close as possible to the experience of working on the design of a real engineering project. The project work engenders a sense of leadership in the student, and draws on the first three years of learning in the programme. The emphasis is on self-learning, creativity, design, understanding, project team-working and communication skills, as well as engineering judgment and problem solving. The projects are interdisciplinary, with the involvement of students from other departments, experienced practicing professional engineers in addition to the UWI supervisors and tutors, as well as other Engineering Departments in the Faculty. Students may also pursue internship/industry projects that are approved by the Department. This course applies to the Civil Engineering programme.

SEMESTER: 2
COURSE CODE: CIEN 6030
COURSE TITLE: PERFORMANCE BASED SEISMIC DESIGN
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Introduction to the principles of Performance Based Earthquake Engineering and Consequence-Based Earthquake Engineering; The Seismic Rehabilitation Design Process and Objectives; Capacity Spectrum NSP Analysis; Coefficient Method NSP Analysis; Acceptance Criteria for Systems analyzed by Linear Methods and Nonlinear Methods; Retrofit and Management Strategies and Systems; SAC-FEMA Reliability Analysis Method; Vulnerability Analysis Methods; Software for Pushover Analysis and NDP Analysis; Regional Seismic Risk Assessment; Introduction to HAZUS.

PROGRAMMES IN ENVIRONMENTAL ENGINEERING

INTRODUCTION

Environmental Engineering in the Caribbean is concerned primarily with the provision of an adequate supply of safe and potable water, the prevention of pollution of land, water and air, the collection, treatment and disposal of solid and hazardous wastes, urban and land drainage, forest and soil conservation, management and mitigation of natural and industrial disasters, safety, management of resources in the coastal zone, the protection of public health and the economics of sustainable development. The programme provides both a theoretical and practical approach to environmental problems that will ultimately lead to improved effectiveness of environmental management.

THE AIMS AND OBJECTIVES

The overall aim of the programmes is to provide advanced education and training for graduates in Engineering, Science, and related areas to meet current and future needs of environmental engineering in the region.

Its objectives are:

- To alert participants to major environmental concerns at the global, regional and local levels.
- To promote, among participants, a holistic and proactive approach to the solution of environmental problems.
- To familiarise participants with instruments and techniques used for the prediction and measurement of environmental quality.
- To train participants in the planning and design of engineering works related to the preservation and improvement of the environment.

ENTRY REQUIREMENTS

Applicants must have a BSc (Hons) in Engineering or an equivalent qualification. Candidates with a BSc (Hons) in the physical sciences will be considered if they have at least one (1) year relevant work experience. Qualifying examinations may also be prescribed for such candidates.
DELIVERY OF THE PROGRAMMES
There are evening programmes with lectures and tutorials being delivered between 4:00 pm and 8:00 pm on weekdays, mainly in a face-to-face mode; a portion of the course material may be available on-line.

POSTGRADUATE DIPLOMA IN ENVIRONMENTAL ENGINEERING

STRUCTURE OF THE PROGRAMME
Offered both full-time and part-time

DURATION OF STUDY
The Postgraduate Diploma in Environmental Engineering can be pursued either on a full-time or a part-time basis. Full-time students will normally be expected to complete the examination requirements within two (2) semesters. Part-time students will normally be expected to complete the examination requirements within four (4) semesters.

NUMBER OF CREDITS REQUIRED
Twenty four (24) credits are required for this diploma, comprising the following:
1. Credits from Core Courses: 12
2. Credits from Optional Courses: 12
The optional courses are to be taken from the list of optional courses below, or any other course approved by the Department.

COURSE LISTING
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 6000</td>
<td>Introduction to Environmental Engineering and Management</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6001</td>
<td>Environmental Data: Quality Standards, Sampling and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6002</td>
<td>Environmental and Health Effects of Pollution</td>
<td>4</td>
</tr>
</tbody>
</table>

OPTIONAL COURSES**: (At least 12 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 6004</td>
<td>Solid and Hazardous Waste Management</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6005</td>
<td>Pollution Prevention Cleaner Production and Industrial Waste Abatement</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6006</td>
<td>Water and Wastewater Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6007</td>
<td>Air Pollution Control</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6008</td>
<td>EIA in Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6009</td>
<td>Engineering in Disaster Management and Mitigation</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6010</td>
<td>Economics for Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6011</td>
<td>GIS, Land Use and Resource Management in Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6013</td>
<td>Chemistry and Microbiology for Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6014</td>
<td>Transport of Pollutants</td>
<td>4</td>
</tr>
</tbody>
</table>

** Any other relevant university course not on this list may be done, provided approval is obtained from the programme coordinator.

MSC IN ENVIRONMENTAL ENGINEERING

STRUCTURE OF THE PROGRAMME
Offered both part-time and full-time

DURATION OF STUDY:
Full-time students are normally expected to complete the examination requirements within two (2) semesters and to complete the project in accordance with the relevant University Regulations.
Part-time students are normally expected to complete the examination requirements within four (4) semesters and to complete the project in accordance with the relevant University Regulations.

NO. OF CREDITS: 45
Project (consisting of either a laboratory or field study or detailed design) 9
Compulsory group of courses 12
Optional group of courses 24 (minimum)
Total 45

The compulsory group of courses is designed to introduce students to major global, regional and local environmental concerns and to provide them with the basic background knowledge for a proper understanding of the specialist topics that follow.

Courses should be selected in consultation with the programme co-ordinator, according to the student’s background and interest.

Upon the recommendation of the programme co-ordinator, up to two (2) courses (8 credits) can be credited for studies undertaken at institutions of higher education.

Students failing to complete all course requirements for the MSc programme within the specified period will be granted a Post Graduate Diploma in Environmental Engineering, provided that they have met all the necessary requirements.

INFORMATION ON THE PROJECT
Projects will relate to real environmental problems and will test a candidate’s ability to work independently. A project may be a major laboratory or field investigation, detailed design or research or any combination of these. Its scope will reflect the fact that it counts for close to twenty percent (20%) of the total number of credits. The MSc Project will be evaluated based on the final report.

The report is to be prepared in accordance with the University requirements.
Course Listing for the MSC Programme

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 6000</td>
<td>Introduction to Environmental Engineering and Management</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6001</td>
<td>Environmental Data: Quality Standards, Sampling and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6002</td>
<td>Environmental and Health Effects of Pollution</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6003</td>
<td>Environmental Engineering Research Project</td>
<td>9</td>
</tr>
</tbody>
</table>

Core Courses: (21 Credits)

Optional Courses: (At least 24 Credits)

(Six courses are to be selected from the following)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 6004</td>
<td>Solid and Hazardous Waste Management</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6005</td>
<td>Pollution Prevention Cleaner Production and Industrial Waste Abatement</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6006</td>
<td>Water and Wastewater Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6007</td>
<td>Air Pollution Control</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6008</td>
<td>EIA in Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6009</td>
<td>Engineering in Disaster Management and Mitigation</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6010</td>
<td>Economics for Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6011</td>
<td>GIS, Land Use and Resource Management in Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6013</td>
<td>Chemistry and Microbiology for Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6014</td>
<td>Transport of Pollutants</td>
<td>4</td>
</tr>
</tbody>
</table>

Optional Courses: (At least 24 Credits)

(Six courses are to be selected from the following)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 6004</td>
<td>Solid and Hazardous Waste Management</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6005</td>
<td>Pollution Prevention Cleaner Production and Industrial Waste Abatement</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6006</td>
<td>Water and Wastewater Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6007</td>
<td>Air Pollution Control</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6008</td>
<td>EIA in Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6009</td>
<td>Engineering in Disaster Management and Mitigation</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6010</td>
<td>Economics for Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6011</td>
<td>GIS, Land Use and Resource Management in Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6013</td>
<td>Chemistry and Microbiology for Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6014</td>
<td>Transport of Pollutants</td>
<td>4</td>
</tr>
</tbody>
</table>

Optional Courses: (At least 24 Credits)

(Six courses are to be selected from the following)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 6004</td>
<td>Solid and Hazardous Waste Management</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6005</td>
<td>Pollution Prevention Cleaner Production and Industrial Waste Abatement</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6006</td>
<td>Water and Wastewater Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6007</td>
<td>Air Pollution Control</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6008</td>
<td>EIA in Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6009</td>
<td>Engineering in Disaster Management and Mitigation</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6010</td>
<td>Economics for Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6011</td>
<td>GIS, Land Use and Resource Management in Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6013</td>
<td>Chemistry and Microbiology for Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 6014</td>
<td>Transport of Pollutants</td>
<td>4</td>
</tr>
</tbody>
</table>

Other Information

Evaluation

Evaluation in all courses will normally be by an approved combination of coursework and a final written examination. However, in some instances evaluation will be entirely by coursework. Candidates will be required to pass both the coursework and written examination where applicable. Students who fail more than two courses in any one semester may be required to withdraw. Students will not normally be permitted more than two attempts at any course examination. Part-time students will normally be allowed a pro-rated number of attempts before withdrawal.

With the exception of those courses listed below, the coursework component of all courses (which may contain individual mini projects), will count for forty percent (40%) of the final mark. The exceptions are:

- ENGR 6008 Environmental Impact Assessment in Environmental Engineering 100
- ENGR 6011 GIS - Land Use and Resource Management in Environmental Engineering 100

Programme Delivery and Academic Supervision

The programme will draw mainly on staff in the Departments of Civil & Environmental Engineering and Chemical Engineering, but Faculty of Engineering staff in the Departments of Mechanical & Manufacturing Engineering and Geomatics Engineering and Land Information and in Departments of the Faculties of Science & Agriculture, Social Sciences, Medicine and Law may also contribute to teaching. Teaching may be complemented by the services of visiting specialists from consulting firms, public authorities, international agencies and industry. The programme will be delivered through lectures, laboratory classes, field trips, coursework assignments, design classes, mini projects, tutorials, seminars and the Project.

Resources

Library

The UWI Library has an excellent stock of books, journals and reports relevant to the many discipline areas that comprise the MSc programme. This collection is continuously augmented by annual additions.

Laboratories and Equipment

The laboratories that will be used for teaching are extensive and well equipped. All the basic equipment for carrying out routine analyses of water, wastewater and solid wastes are available in the Environmental Engineering Laboratory of the Department. These facilities are complemented by the generously equipped laboratories of the University.

Syllabuses

Compulsory Courses

Semester:
- **Course Code:** ENGR 6000
- **Course Title:** Introduction to Environmental Engineering & Management
- **No. of Credits:** 4
- **Prerequisites:** None

Syllabus: The nature of the environment; environmental concerns: global, regional, local; the environmental movement; population and poverty; environmental management; evolution of environmental management, energy consumption; environmental pathways; sustainable development; environmental assessment methods; life cycle assessment; environmental impact statements; economic assessments; environmental auditing; impact matrices; environmental ethics; environmental design, environmental management systems, integration with health, safety and quality management systems; environmental standards and legislation in the Caribbean; economic instruments for pollution control; regulations for pollution control.
SEMESTER:
COURSE CODE: ENGR 6001
COURSE TITLE: ENVIRONMENTAL DATA – QUALITY STANDARDS, SAMPLING & ANALYSIS
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Quality standards for the atmosphere, hydrosphere and lithosphere and for the built environment; sampling techniques; analysis and interpretation of results in connection with standard methods for the physical, chemical and biological examination of water, waste water, air quality and soil; statistical methods in environmental data analysis.

SEMESTER:
COURSE CODE: ENGR 6002
COURSE TITLE: ENVIRONMENTAL & HEALTH EFFECTS OF POLLUTION
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Health effects of inorganic and organic contaminants; sanitation and health; pathogenic organisms; waterborne diseases; airborne diseases; diseases spread by vermin; toxic effects of inorganic and organic contaminants on flora and fauna; eutrophication; pollution and self purification of streams; living indices of pollution.

SPECIALIST OPTIONAL COURSES
SEMESTER:
COURSE CODE: ENGR 6004
COURSE TITLE: SOLID & HAZARDOUS WASTE MANAGEMENT
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Definition of Municipal Solid Waste Management (MSW) and hazardous wastes systems; system objectives; waste classification; municipal and hazardous waste quantities, composition and characteristics; collection systems; waste disposal at sanitary landfills; design of sanitary landfills, hazardous waste treatment and disposal; hazardous waste handling and transport; secure landfills; hazardous waste management organizations organizations, resource recovery; re-use, recycling and waste minimization; energy recovery through incineration; composting; agricultural waste treatment process and plant design; disposal of treated agricultural wastes.

SEMESTER:
COURSE CODE: ENGR 6005
COURSE TITLE: POLLUTION PREVENTION, CLEANER PRODUCTION & INDUSTRIAL WASTE ABATEMENT
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Preventative Environmental strategies versus end-of-pipe treatment, environmentally friendly product design, low-waste production technologies, efficient use of energy and raw materials, optimisation of existing technologies, operational safety, integrated approach to waste minimization. In plant Survey. Waste minimization through volume and strength reduction, process modification, separation and segregation, recycle and reuse technology. Characterization of liquid, solid and gaseous wastes from important industries of the country or region. Treatment of waste from different industries – case studies. Combined treatment plant for small-scale industries.

SEMESTER:
COURSE CODE: ENGR 6006
COURSE TITLE: WATER & WASTEWATER ENGINEERING
NO. OF CREDITS: 4
PREREQUISITES: ENGR 6013, ENGR 6014

SEMESTER:
COURSE CODE: ENGR 6007
COURSE TITLE: AIR POLLUTION CONTROL
NO. OF CREDITS: 4
PREREQUISITES: ENGR 6014
SYLLABUS: Sources of air pollution; natural and industrial sources; emissions from utilities, transportation; domestic emissions and their influence on indoor air quality; estimates of emission; concept of source reduction; process change; fuel change; material substitution. Control devices for: particulates and mist, gaseous pollutants, choice of device and design of trains; control for re-use and recovery; industry-specific control strategies.

SEMESTER:
COURSE CODE: ENGR 6008
COURSE TITLE: ENVIRONMENTAL IMPACT ASSESSMENT IN ENVIRONMENTAL ENGINEERING
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Elements of the EIA process; design of an EIA; Leopold matrices; EIA in development projects; international EIAs; case studies; Environmental Impact Statements (EIS): definition, documentation, typical headings, major sections; checklist.

SEMESTER:
COURSE CODE: ENGR 6009
COURSE TITLE: ENGINEERING IN DISASTER MANAGEMENT & MITIGATION
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Environmental and socio-economic impacts of natural disasters: wind, floods, earthquakes, landslides, tsunamis, volcanoes; preparedness mitigation, prediction emergency response; engineering in management and mitigation. Industrial accidents; oil spills; environmental and socio-economic impacts; hazard and risk assessment; systematic identification and quantification of hazards; flammability assessment and fire prevention; safety of plant in start-up, operation; shut-down, maintenance and modification; fire and explosion; toxicity and toxic release; Factory Acts; Health and Safety at Work Act.
SEMESTER:
COURSE CODE: ENGR 6010
COURSE TITLE: ECONOMICS FOR ENVIRONMENTAL ENGINEERING
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Economics of environmental management; internalization of externalities; concept of public ownership of natural resources; resource evaluation; economics of sustainable development in small island states; economics of pollution, project economics; cost-benefit analysis including environmental components; shadow pricing; risk analysis; the role of the international lending agencies.

SEMESTER:
COURSE CODE: ENGR 6011
COURSE TITLE: GIS, LAND USE & RESOURCE MANAGEMENT IN ENVIRONMENTAL ENGINEERING
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Principles of integrated land-use planning; planning practice; managing forests and fragile eco-systems; managing renewable resources; sustainable human settlement, principles of land surveying; aerial surveys and photographic interpretation; data acquisition and analysis for geographic and land information systems.

SEMESTER:
COURSE CODE: ENGR 6012
COURSE TITLE: HYDROLOGY & DRAINAGE SYSTEMS
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Catchment morphology; natural run-off processes in the humid tropics; linear theory and the unit hydrograph; non-linear rainfall run-off models; lumped and distributed flow routing; catchment responses to changing land uses; the role of natural forests in catchment water balance relationships; design of land drainage and flood control systems; modelling of run-off in urban catchments; effects of urban development on catchment responses; lumped and continuous simulation models; numerical solution of the Saint Venant equations; design of storm-water drainage systems; erositivity and erodibility; modelling soil loss; erosion control; design of control structures; the role of forests in limiting erosions; protecting soil quantity and modelling flooding; effects of deforestation; agro-forest systems, forestry management.

SEMESTER:
COURSE CODE: ENGR 6013
COURSE TITLE: CHEMISTRY & MICROBIOLOGY FOR ENVIRONMENTAL ENGINEERING
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Particle dispersion, solutions and solubility; acid-base reactions; Redox reaction; the carbonate system; acidity and alkalinity, laws relating to gases and gaseous mixtures; gas-liquid transfer; mass and charge balances; Nernst’s equation; corrosion; chemical precipitation; chemical coagulation; precipitation of iron and manganese; phosphate precipitation. Special reference to water and waste treatment processes, chemical equilibria and kinetics relevant to the water cycle allowing definition of water quality parameters. Micro-organisms and their characteristics; bacterial growth and death; viruses, algae, fungi and protozoa in wastewater treatment processes and environmental pollution; microbiology of soil, solid wastes, water, wastewater, the atmosphere and indoor air; laboratory techniques for the culture and identification of micro-organisms. The role of different species in the various treatment processes. An outline of the bacterial metabolism which occurs during aerobic biological sewage treatment and anaerobic sewage sludge digestion.

SEMESTER:
COURSE CODE: ENGR 6014
COURSE TITLE: TRANSPORT OF POLLUTANTS
NO. OF CREDITS: 4
PREREQUISITES: NONE
SYLLABUS: Modelling of pollutant transport in watercourses and coastal water; the Navier-Stokes Equations; Diffusion Equations; numerical solutions using finite elements methods; modelling of pollutant transport in groundwater flow; Darcy Equation; Stream and potential functions; flow notes; flow modelling techniques; numerical solution techniques; finite difference and finite element methods; the advection-dispersion equation; use of computer models. Air pollution meteorology, ventilation, stagnation, wind, atmospheric stability, mixing height; modelling air pollution: point, area and line sources; reactive pollutants; heavier than air gases.

SEMESTER:
COURSE CODE: ENGR 6015
COURSE TITLE: ENVIRONMENTAL SEPARATION PROCESSES
NO. OF CREDITS: 4
PREREQUISITES:
SYLLABUS: Screening of water, wastewater and liquids; settling and flotation; aerobic and biological processes; coagulation and flocculation; filtration; ion exchange; adsorption; disinfection separation by membranes, sludge stabilization, thickening and conditioning, solidification. Settling of particulates by gravity, inertia, electrostatic and wet collectors, gas and vapour absorption processes; adsorption processes.
PROGRAMMES IN WATER
AND WASTEWATER SERVICES
MANAGEMENT
The Postgraduate Diploma and MSc programmes in Water and
Wastewater Services Management have been developed to
address the current needs for skilled personnel in the expanding
water and wastewater sectors in Trinidad and Tobago and the
Caribbean. Through the courses, students will acquire deeper
knowledge and understanding in technical and management
aspects of the industry. Students will make immediate impact by
doing research projects that address real problems in the sectors.
Industry is involved in the programme via the delivery of lectures,
the hosting of field trips and the identification and co-supervision
of the research projects.

AIMS OF THE PROGRAMME
1. To provide advanced and specialized knowledge in the field
 of water resources management.
2. To promote the adoption of sustainable approaches to
 management of water resources.
3. To equip engineers and water resources professionals to
 apply modern knowledge effectively in the water sector, and
 hence to assist in the modernization and development of the
 Caribbean region.
4. To develop postgraduate students’ intellectual abilities, critical
 faculties, transferable skills and knowledge in the interests of
 their personal development, career prospects and potential
 contribution to the economy and to society at large.

ENTRY REQUIREMENTS
Candidates applying for registration should normally have a
minimum of one (1) year work experience in the water sector as
well as either:
1. A BSc (Hons) degree in engineering;
2. A BSc (Hons) degree in a scientifically-based water
 programme;
3. Equivalent qualification.

DELIVERY OF THE PROGRAMMES
These are evening programmes with lectures and tutorials being
delivered between 4:00 pm and 8:00 pm on weekdays, mainly
in a face-to-face mode; a portion of the course material may be
available on-line.

Postgraduate Diploma in
Water and Wastewater Services
Management

STRUCTURE OF PROGRAMME
This programme is offered both as part-time and full-time.

DURATION OF STUDY
Full-time students are normally expected to complete the
examination requirements in two (2) semesters.
Part-time students are normally expected to complete the
examination requirements within four (4) semesters.

NUMBER OF CREDITS
Thirty (30) credits must be completed for the postgraduate diploma,
which include twenty four (24) credits from core courses and at least
six (6) credits from optional courses.

Upon the recommendation of the programme coordinator, up to
two (2) courses (8 credits) can be credited for studies undertaken
at institutions of higher education.

COURSE LISTING
Candidates are required to select options approved by the
Department, in Semester II, equivalent to at least six (6) credits.

SEMESTER I
CORE COURSES
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6000</td>
<td>Advanced Environmental Engineering</td>
<td>E4</td>
</tr>
<tr>
<td>CIEN 6010</td>
<td>Advanced Engineering Hydrology</td>
<td>E3</td>
</tr>
<tr>
<td>COEM 6006</td>
<td>Construction Accounting and Finance</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6009</td>
<td>Contract Management and Construction Law</td>
<td>E4</td>
</tr>
</tbody>
</table>

SEMESTER II
CORE COURSES
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6011</td>
<td>Water Resources Metrics</td>
<td>E4</td>
</tr>
<tr>
<td>COEM 6025</td>
<td>Practical Team Project</td>
<td>E5</td>
</tr>
</tbody>
</table>

OPTIONAL COURSES
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6009</td>
<td>EIA of Water Resources Projects</td>
<td>E4</td>
</tr>
</tbody>
</table>

Any other course approved by the Department
MSc in Water and Wastewater Services Management

STRUCTURE OF PROGRAMME
The programme is offered both part-time and full-time.

DURATION OF STUDY
Full-time students: Normally expected to complete the examination requirements in two (2) semesters and to complete the project in accordance with the relevant University Regulations. Part-time students: Normally expected to complete the examination requirements within four (4) semesters and to complete the project in accordance with the relevant University Regulations.

NUMBER OF CREDITS
Forty (40) credits must be completed for the MSc, which include thirty six (36) credits from core courses and four (4) credits from options.

COURSE LISTING
Candidates are required to select options approved by the Department, in Semester II, equivalent to at least four (4) credits.

SEMESTER I
CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6000</td>
<td>Advanced Environmental Engineering E4</td>
</tr>
<tr>
<td>CIEN 6010</td>
<td>Advanced Engineering Hydrology E3</td>
</tr>
<tr>
<td>COEM 6006</td>
<td>Construction Accounting and Finance E4</td>
</tr>
<tr>
<td>COEM 6009</td>
<td>Contract Management and Construction Law E4</td>
</tr>
</tbody>
</table>

SEMESTER II
CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6011</td>
<td>Water Resources Metrics E4</td>
</tr>
<tr>
<td>COEM 6025</td>
<td>Practical Team Project E5</td>
</tr>
<tr>
<td>COEM 6020</td>
<td>Research Methods E3</td>
</tr>
</tbody>
</table>

OPTIONAL COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6009</td>
<td>EIA of Water Resources Projects E4</td>
</tr>
</tbody>
</table>

Any other Departmental approved course, worth at least 4 credits.

SEMESTER III (May-July)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COEM 6018</td>
<td>Research Project C9</td>
</tr>
</tbody>
</table>

SYLLABUSES IN WATER AND WASTEWATER SERVICES MANAGEMENT

SEMESTER: I

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>NUMBER OF CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6000</td>
<td>ADVANCED ENVIRONMENTAL ENGINEERING</td>
<td>4</td>
</tr>
</tbody>
</table>

SEMESTER: II

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>NUMBER OF CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6009</td>
<td>EIA OF WATER RESOURCES PROJECTS</td>
<td>4</td>
</tr>
</tbody>
</table>

SYLLABUS: Objectives of EIA, legal context; scope of impacts of water resource projects, visual, audible, smell, water quality, contaminants in water and on sediments, pollution ecology, quality standards; the impact of water resource management on urban and rural communities; watershed impacts; mitigation and remedial measures, control measures, consequences of infringement, monitoring and management.

SEMESTER: I

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>NUMBER OF CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6010</td>
<td>ADVANCED ENGINEERING HYDROLOGY</td>
<td>3</td>
</tr>
</tbody>
</table>

SYLLABUS: Hydrologic processes; climate change issues; hydrologic data; design of hydrometeorological networks; probability and statistics for hydrology; modelling approaches; stochastic modelling; deterministic modelling; model applications.

SEMESTER: II

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>NUMBER OF CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 6011</td>
<td>WATER RESOURCES METRICS</td>
<td>4</td>
</tr>
</tbody>
</table>

SYLLABUS: Descriptive statistics; measurements and monitoring techniques for hydrometeorological surveys; sediment and water quality sampling techniques; emerging technologies and best practice; database development; spatial techniques.

SEMESTER: I

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>NUMBER OF CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COEM 6006</td>
<td>CONSTRUCTION ACCOUNTING AND FINANCE</td>
<td>4</td>
</tr>
</tbody>
</table>

SEMESTER: I
COURSE CODE: COEM 6009
COURSE TITLE: CONTRACT MANAGEMENT AND CONSTRUCTION LAW
NUMBER OF CREDITS: 4
SYLLABUS: The elements of the Law of Tort; The impact of law on the delivery of goods and services; Types of contracts; different procurement systems; standard form of contracts (specifications, codes of practice; standards, statutes and local government regulations). Identification of skills required; manpower planning and development, education, training, certification, industrial climate, politics, trade unionism, disputes and conflict resolution methods; professional codes of ethics, professional liability; claims; the risk assessment of time, cost, quality, health & safety, sustainability and environmental issues. Introduction to international law.

SEMESTER: II
COURSE CODE: COEM 6020
COURSE TITLE: RESEARCH METHODS
NUMBER OF CREDITS: 3
SYLLABUS: The topics covered in the unit will include: Principles of research, information sources, research design, research methodology, data collection, data analysis, presenting research proposals, writing research reports.

SEMESTER: II
COURSE CODE: COEM 6025
COURSE TITLE: PRACTICAL TEAM PROJECT
NUMBER OF CREDITS: 5
SYLLABUS: The projects are based upon real schemes and involve information gathering, planning, organization, co-ordination, detailed assessment of ideas, reporting and presentation.

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

RESEARCH

GENERAL ACTIVITIES
The Department of Electrical and Computer Engineering (http://sta.uwi.edu/eng/electrical) offers taught postgraduate programmes leading to the award of a Master of Applied Science (MASc) and a Postgraduate Diploma in Electrical & Computer Engineering. It also offers programmes of study and research leading to MPhil and PhD degrees in Electrical & Computer Engineering. Postgraduate programmes are conducted in four (4) major subject areas: Communication Systems, Control Systems, Energy Systems and Integrated Systems. Departmental research activities are conducted in five (5) major subject areas: Communication Systems, Computer Systems Engineering, Control Systems, Electronic Systems and Energy Systems.

RESEARCH ACTIVITIES
Communication Systems
Research in Communication Systems includes mobile technologies for social and economic development; cognitive, semantic and related technologies for productivity enhancement, and network and application performance studies. Research in new and emerging communications technologies focuses heavily on the performance analysis of wired and wireless high-speed, multiservice networks. The group is actively engaged in, for example, the evaluation of IP networks in wired and wireless environments, mobility management for wireless networks, mobile IP and the performance of TCP in wireless as well as mobile environments. This work is conducted both on simulated platforms as well as on a multiservice carrier-grade hardware platform hosted in the Nortel Networks Communications Laboratory in the Department.

The Communication Systems Group has a keen interest in technical areas, such as spectrum management and monitoring that relate to telecommunications regulation and policy.

The group has enjoyed the gracious support of industry and international organizations for a number of years. Support has been forthcoming in a variety of ways from TTNIC, Nortel Networks, Lucent Wireless Networks Group, Digidata, TSTT, The Ministry of Energy and Energy Industries, Microsoft Caribbean, NGC, OAS, ICL, IBM, TTARS and the International Development Research Centre (IDRC).
Energy Systems
Research in Power Systems is related to real operating and planning problems encountered in the industry. Emphasis is placed on special problems related to peculiarities of small, isolated systems as obtains in all the Caribbean countries. The Energy Systems Group conducts research in electricity generation, with renewable and conventional sources, and its transmission and distribution. Current research activities include consideration of the effects of large loads, such as arc furnaces, on the system operation and the life span of equipment; simulation of various electromechanical and electromagnetic transient phenomena; introduction of wind energy systems to a grid; linear and non-linear optimisation problems as applied to power systems and design and simulation of power electronic drives. The Group additionally conducts research in the application of power electronics to electrical drive systems.

Research is being conducted in the electronic control of machines and drives where induction motors are being controlled using rotor field-oriented control and digital signal processing methods. Electro-magnetic interference and radio frequency interference problems are being studied as well as power factor correction in the presence of harmonics.

Control Systems
Automation, control and instrumentation theory is crucial to measurement and product quality control. Control plays a vital role in regulating machines and processes to close tolerances. The Control Systems Group conducts research in industrial control and instrumentation systems analysis, design and implementation. This includes the application of electronic, computer and communications technologies to the programming, design and application of advanced control strategies on Real Time Embedded Controllers, Programmable Logic Controllers and Distributed Computer Control Systems.

Integrated Systems
The Electronic Systems and Computer Engineering Systems groups conduct research in the development and application of Integrated Systems involving the complex interaction of electronic and computer sub-systems in real-world applications. This combination is becoming increasingly important and has encouraged the Department to introduce a major in Integrated Systems. Research in this area involves the design and testing of new analogue circuit configurations using operational amplifiers and linear integrated circuits. Other areas under investigation include the design and application of a new form of transconductance amplifier, the use of current feedback techniques in small and large signal design and the evaluation of current conveyors and their comparison with operational amplifiers in the design of voltage amplifiers, filters, multiphase oscillators and gyrators. These areas of research are combined in areas of computer architecture & organisation, advanced computer architecture, microprocessor / microcontroller based hardware & software design, design of application specific parallel architectures, embedded systems, supercomputer technologies, image processing, artificial intelligence and robotics.

PROGRAMMES IN ELECTRICAL AND COMPUTER ENGINEERING
The Department offers two (2) Master’s level programmes:
1. Master of Applied Science (MASc) in Electrical Computer Engineering.
2. Postgraduate Diploma in Electrical and Computer Engineering.

The MASc and Diploma in Electrical and Computer Engineering are offered with Majors in four (4) subject areas, i.e., Communication Systems, Control Systems Engineering, Energy Systems and Integrated Systems.

REGULATIONS FOR MASc AND DIPLOMA PROGRAMMES
ENTRY REQUIREMENTS
Minimum requirements for entry into the MASc and Diploma Programmes are:
1. BSc (Hons) in Electrical and/or Computer Engineering
2. BSc (Hons) in Mechanical Engineering
3. BSc (Hons) in Applied Physics majoring in Electronics
4. Other such qualifications deemed equivalent to any of the above (1,2,3) by the Faculty.

For entry into MASc Energy Systems option, only candidates with qualifications under categories 1 or 2 or equivalent are eligible for entry.
Candidates with a BSc Third Class (Hons) Degree in Electrical Engineering may be considered eligible for entry, subject to an evaluation of the BSc degree and relevant post-degree industrial experience.

All students who seek entry under categories 2, 3 and 4 may be required to pursue qualifying courses and undertake examinations in these courses. The qualifying courses will be determined by the Head of Department and will normally not exceed twelve (12) credits.

CREDIT REQUIREMENTS
Postgraduate Diploma in Electrical and Computer Engineering
The Diploma will be awarded to students who pass 21 credits of courses approved by the Department. Students will be required to select a major subject area from the five already listed and must register for five courses listed as core for that major and the compulsory course ECNG 6709 - Business Management. The remaining credits may be obtained from any of the other postgraduate courses offered by the Department or from other Departments within the Faculty and approved by the Head of Department.
Master of Applied Science in Electrical and Computer Engineering

Aims and Objectives
The overall aim of the primary taught postgraduate award, the Master of Applied Science (MASc), is to provide advanced exposure to the breadth and depth of Electrical and Computer Systems and technologies, as well as pertinent Engineering Practice, thereby enabling graduates to demonstrate technical and commercial leadership. This is accomplished by improving business management and general research skills and facilitating the development of subject-specific skills and knowledge levels using existing and emerging technologies. Through this Programme, the Department also aims to make a significant contribution to the pool of professional and technological resources available locally and regionally to support associated industry, teaching and research in locally and regionally-relevant Electrical & Computer Engineering-based areas.

The Learning Objectives of the Master of Applied Science (MASc) in Electrical & Computer Engineering programme are to:
1. Use a combination of general and specialist engineering knowledge and understanding to optimise the application of existing and emerging technology.
2. Apply appropriate theoretical and practical methods to the analysis and solution of engineering problems.
3. Provide technical and commercial leadership.
4. Demonstrate effective interpersonal skills.
5. Demonstrate a personal commitment to professional standards, recognising obligations to society, the profession and the environment.

The MASc in Electrical and Computer Engineering will be awarded to students who obtain a minimum of 36 credits as follows:
- Taught courses: 24 credits
- Supervised Research Course: 4 credits
- MASc Project: 8 credits

Twenty four (24) credits must comprise five courses from any of the majors and two compulsory courses (ECNG 6709 and ECNG 6710) and an elective.

Duration of Study
Both the Diploma and MASc programmes are offered in full-time and part-time modes. Part-time students are normally expected to fulfill the degree requirements in six (6) semesters. Full-time students are normally expected to fulfill the degree requirements in three (3) semesters.

MASc PROJECT
The MASc Project must be conducted in the area of the selected major.

(a) Students who have completed the taught course requirements and are approved to proceed to the project phase MUST register for the following courses:
- ECNG 6021 MASc Research I – 4 credits, followed by
- ECNG 6022 MASc Research II – 0 credits, followed by
- ECNG 6023 MASc Project – 8 credits

Students can register for these courses in any semester. ECNG 6022 registration is only required if the student requires more than one semester to complete the research project [refer to (c) below].

(b) Project Selection
As early as the semester prior to anticipated registration in ECNG 6021, proposals for MASc projects must be submitted to the Department on the prescribed form duly signed by the project supervisor(s). Students should consult the MASc Project Guide or the Department website for further details.

(c) Students who have made substantial progress in their work in ECNG-6021, can take up an accelerated path and hence can register for ECNG 6022 and ECNG 6023 in the second semester of the project phase.

(d) Examination of Project Components
First and second examiners for each student project will be appointed by the Head of Department immediately following the submission and approval of the project proposal.

ECNG 6021 and ECNG 6022 will be examined by way of an interim report submitted by the student and examined by the first and second examiners. ECNG 6023 will be examined by way of a final report submitted by the student and examined by the first and second examiners. Evaluation of ECNG 6023 may include a demonstration, report presentation and oral examination led by a panel comprising the first examiner, second examiner and a moderator.

Students who fail ECNG 6021 or ECNG 6022 on the first attempt will be deemed to have failed the programme and asked to withdraw. As recognition of the work completed in the MASc Programme, these students will be offered a Postgraduate Diploma Degree. Students who fail ECNG 6023 will be allowed one final opportunity to pass the course.
COURSE LISTING FOR THE MAsc AND DIPLOMA PROGRAMMES

Prerequisite Courses
Each major has a list of prerequisite BSc level courses. Prerequisites may be waived based on qualification and experience. Otherwise, candidates will be required to complete the relevant prerequisites as qualifying or departmental courses, as determined by the Head of Department. Students may opt to register for electives other than those listed for the selected major.

*Compulsory Courses (for all majors)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 6710</td>
<td>Research Methods</td>
</tr>
<tr>
<td>ECNG 6709</td>
<td>Business Management</td>
</tr>
</tbody>
</table>

PREREQUISITE COURSES:
ECNG 3021 or equivalent undergraduate course of study.

MAJOR IN COMMUNICATION SYSTEMS

CORE COURSES:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 6700</td>
<td>Stochastic Processes</td>
</tr>
<tr>
<td>ECNG 6701</td>
<td>Data Communication Networks</td>
</tr>
<tr>
<td>ECNG 6703</td>
<td>Principles of Communication</td>
</tr>
<tr>
<td>ECNG 6704</td>
<td>Performance Engineering of Computer</td>
</tr>
<tr>
<td>ECNG 6705</td>
<td>Communication Systems</td>
</tr>
<tr>
<td>ECNG 6708</td>
<td>Transmission Systems</td>
</tr>
</tbody>
</table>

PREREQUISITE COURSES:
ECNG 3001 Communication Systems II
ECNG 3002 Data Communication Systems
ECNG 3003 Telecommunication Networks

MAJOR IN CONTROL SYSTEMS

CORE COURSES:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 6600</td>
<td>Real Time Systems</td>
</tr>
<tr>
<td>ECNG 6603</td>
<td>Modern Control Strategies</td>
</tr>
<tr>
<td>ECNG 6604</td>
<td>Linear Control Systems</td>
</tr>
<tr>
<td>ECNG 6605</td>
<td>Distributed Computer Control</td>
</tr>
<tr>
<td>ECNG 6711</td>
<td>Adaptive Control</td>
</tr>
</tbody>
</table>

PREREQUISITE COURSES:
ECNG 3004 Control and Instrumentation II
ECNG 3032 Control and Instrumentation I

MAJOR IN ENERGY SYSTEMS

CORE COURSES:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 6500</td>
<td>Computer Aided Power Systems Analysis</td>
</tr>
<tr>
<td>ECNG 6503</td>
<td>Advanced Power System Protection</td>
</tr>
<tr>
<td>ECNG 6504</td>
<td>Electrical Drives & Industrial Power Systems</td>
</tr>
<tr>
<td>ECNG 6505</td>
<td>Surge Phenomena & Insulation Coordination</td>
</tr>
<tr>
<td>ECNG 6509</td>
<td>Switchgear & Transformer Technology</td>
</tr>
</tbody>
</table>

PREREQUISITE COURSES:
ECNG 3008 Power Electronic Circuits
ECNG 3010 Electrical Machines & Drive Systems
ECNG 3012 Power Systems Analysis
ECNG 3015 Industrial & Commercial Electrical Systems

MAJOR IN INTEGRATED SYSTEMS

CORE COURSES:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 6600</td>
<td>Real Time Systems</td>
</tr>
<tr>
<td>ECNG 6601</td>
<td>Digital Electronic Systems</td>
</tr>
<tr>
<td>ECNG 6605</td>
<td>Distributed Computer Control</td>
</tr>
<tr>
<td>ECNG 6613</td>
<td>Database Systems Principles and Design</td>
</tr>
<tr>
<td>ECNG 6614</td>
<td>Multiprocessor Systems</td>
</tr>
</tbody>
</table>

PREREQUISITE COURSES:
ECNG 3006 Microprocessor Systems: Design and Applications

COURSE DESCRIPTIONS

SEMESTER: 1 & 2
COURSE CODE: ECNG 6021
COURSE TITLE: MASC RESEARCH I
NO. OF CREDITS: 4

COURSE DESCRIPTION: This course represents the first phase of the Masc project. Students are expected to identify their project area and proceed to fully engage their research. A 4-credit weighting has been applied to underscore the effort expected in the timely and effective management of the research project. Grading and assessment will be based on the submission of a report.

SEMESTER: 1 & 2
COURSE CODE: ECNG 6022
COURSE TITLE: MASC RESEARCH II
NO. OF CREDITS: 0

COURSE DESCRIPTION: This course is offered on a PASS/FAIL basis only. During the semester of registration in ECNG 6022 Masc. Research II, it is expected that students would complete their Masc research activity but not yet completed their final report. Assessment will be based on the submission of a report.
SEMIESTER: 1 & 2
COURSE CODE: ECNG 6023
COURSE TITLE: MASC PROJECT
NO. OF CREDITS: 8
COURSE DESCRIPTION: Students registered for the ECNG 6023 MSc. Project are expected to complete their final report for submission no later than three (3) weeks prior to the start of the relevant end-of-semester examinations. ECNG 6023 will be examined by way of a final report submitted by the student and examined by the first and second examiners. Evaluation of ECNG 6023 may include a demonstration, report presentation and oral examination led by a panel comprising the first examiner, second examiner and a moderator.

SEMIESTER: 1
COURSE CODE: ECNG 6500
COURSE TITLE: COMPUTER-AIDED POWER SYSTEM ANALYSIS
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course is designed to revisit fundamental concepts and develop understanding of fundamental techniques employed for power systems analysis. At the end of this course, students will be able to: model the components of power systems; statistically assess power systems and their components; apply the per-unit system to evaluate power system analyses; understand the power transfer problem; calculate symmetrical and asymmetrical fault studies; apply numerical techniques to the solution of large networks and apply computer-based applications for power systems analysis.

SEMIESTER: 1
COURSE CODE: ECNG 6501
COURSE TITLE: POWER SYSTEM DYNAMICS
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course treats with the study and analysis of the dynamic behaviour of electric power systems in response to small and large disturbances. The basic aim is to provide students with the knowledge involved in the operation, planning and design of electric power systems from the point of view of stability. Additionally, students will learn about modelling and simulation of power systems, especially the synchronous machine and its control systems. This course is designed to provide an adequate background for a career in the electric utilities or in the energy-based industries.

SEMIESTER: 1
COURSE CODE: ECNG 6502
COURSE TITLE: POWER SYSTEM OPERATION & PLANNING
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course is designed to cover a variety of matters that relate to power system operation and planning. In particular, it treats with economic and security methods in power systems; control of interconnected systems; reliability analysis of power systems; system planning and expansion.

SEMIESTER: 1
COURSE CODE: ECNG 6503
COURSE TITLE: ADVANCED POWER SYSTEM PROTECTION
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course is designed to review the fundamental protection equipment used in a power system, introduce students to their applications and the special considerations of the power system. The problem of improper coordination and proper grading of the power system are also analysed. At the end of this course, students will be able to: understand and apply power system protection equipment; analyse mathematically the operation of comparators; apply current transformers and digital transducers; perform coordination studies on the power system; differentiate between distance protection and power swings; compare the application of digital techniques in power system protection.

SEMEISTER: 2
COURSE CODE: ECNG 6505
COURSE TITLE: SURGE PHENOMENA & INSULATION COORDINATION
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course presents the fundamental types of overvoltages that can be encountered in electric networks, their typical scenarios and methods of analysis. At the end of this course, students will be able to: identify different types of sources of dielectric stress in the power system; understand the concepts of insulation coordination, insulation levels and related concepts; understand and use mathematical techniques to simulate and study the behaviours of electric networks under transient conditions; analyse the response of the electric network to different types of surges; understand the concepts of wave propagation, calculation of line parameters and their frequency; understand and apply the concepts of different techniques for the mitigation of overvoltages.
SEMESTER:
COURSE CODE: ECNG 6506
COURSE TITLE: OPTIMISATION TECHNIQUES
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course is designed to cover a variety of techniques applicable to optimisation. In particular, it treats with linear programming matters including simplex and revised simplex methods, duality, sensitivity analysis as well as dynamic programming, integer programming methods and network planning techniques. It also covers PERT/CPM; dynamic optimisation methods and applications to engineering systems.

SEMESTER:
COURSE CODE: ECNG 6507
COURSE TITLE: ENERGY ECONOMICS & PLANNING
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course is designed to expose students to aspects of finance, economics, system design, economic operation and short term and long term generation planning in the context of electric energy systems. At the end of this course, students will be able to: define and analyse the problem of load forecasting; describe the different resources needed for system development; understand and apply the basic techniques used in the analysis of long term and short term generation planning; describe and understand the various financial and computer methods available for arriving at an optimal long term, least cost utility development; characterise the basic principles used to model economic load dispatch; understand and describe the rules and basis for cost allocation and classification in arriving at rates and tariffs.

SEMESTER:
COURSE CODE: ECNG 6508
COURSE TITLE: POWER SYSTEM INSTRUMENTATION
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course covers a variety of topics that relate to power systems instrumentation. In particular, it treats with signal processing and conditioning; transducers; metering technology (volts, amperes, watts, vars, frequency, etc.); application of P techniques in instrumentation; thermal measurements (flow pressure, temperature, etc.); networking of instruments; application of computers to measurement and display; transient data recorders and maintenance of power system instruments.

SEMESTER:
COURSE CODE: ECNG 6509
COURSE TITLE: SWITCHGEAR & TRANSFORMER TECHNOLOGY
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course reviews the physics of the electric AC arc and its application to circuit breaking. At the end of this course, students will be able to: understand and apply circuit breakers and power transformers; analyse mathematically the operation of circuit breakers and transformers; apply engineering analysis in the selection of circuit breakers and transformers; recognise the importance of the circuit breaker and the transformer in the efficient operation of the power system; understand the difference between the various types of arc media; understand the maintenance requirements of the circuit breaker and transformer.

SEMESTER:
COURSE CODE: ECNG 6510
COURSE TITLE: POWER SYSTEMS MONITORING & CONTROL
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course is designed to cover a variety of systems and techniques applicable to power systems monitoring and control. In particular, it treats with SCADA systems, networking applied to power systems; on-line load flow and security analysis; state estimation techniques and automatic load frequency control. The course contextualizes these themes in explorations of modern trends in power system monitoring and control.

SEMESTER: 2
COURSE CODE: ECNG 6600
COURSE TITLE: REAL TIME SYSTEMS
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course provides students with an understanding of Real Time Systems (RTS) theory and the practical issues involved when applying RTS principles to digital control systems. At the end of this course, students will be able to: identify and discuss the real-time characteristics of an application; utilise available techniques to (a) translate application-based specifications into periodic/deadline specifications, (b) map ideal priority levels onto available OS priorities and (c) alleviate constraints due to hardware and interprocess communications; produce schedules for cyclic executive, ideal DM, RM or EDF systems and demonstrate their validity by applying utilisation and response-time based criteria; identify the real-time specific features of a real time OS and contrast it with ideal/open real-time OS; produce a graphical representation of a RTS using UML and related techniques; analyse a RTS in terms of its reliability and fault tolerance; propose a solution for a real-time scenario involving hardware control and implement the solution using a real-time OS kernel.

SEMESTER: 2
COURSE CODE: ECNG 6601
COURSE TITLE: DIGITAL ELECTRONIC SYSTEMS
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course presents the methods and design considerations for the implementation of digital systems on FPGAs. At the end of this course, students will be able to: discuss the timing issues in digital systems; explain the rationale for the techniques employed in implementing digital systems on FPGAs; use VHDL in designing Intellectual Property (IP) Core Modules; design a digital system; understand Functional Verification of Digital Systems; use effectively Xilinx ISE, Modelsim and a Functional Verification Tool in FPGA-based design projects.
SEMESTER: 2
COURSE CODE: ECNG 6603
COURSE TITLE: MODERN CONTROL STRATEGIES
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course aims to provide hands-on immersion in advanced control systems design. Topics that will be covered include: State Space methods; Optimal Control; Linear Quadratic Regulation (LQR); Linear Quadratic Gaussian (LQG) methods; State Estimation; Optimal State Estimators and Kalman filters; Stochastic Control; Model Reference Adaptive Control (MRAC); Self Tuning Regulators; Intelligent Control Systems and Neuro-Fuzzy Control.

SEMESTER: 1
COURSE CODE: ECNG 6604
COURSE TITLE: LINEAR CONTROL SYSTEMS
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course treats the design of advanced control systems that utilise advanced analog or discrete multivariable controllers. Topics that will be covered include: mathematical representation of dynamic systems; matrix theory review: eigenvalues and eigenvectors, generalised eigenvectors, Jordan form, functions of a square matrix; concept of state-space description of dynamic systems; controllability and observability; feedback control and state estimation; canonical decomposition of state-space systems; system stability; non-linear systems and their state-space representation; stability analysis; optimal control.

SEMESTER: 1
COURSE CODE: ECNG 6605
COURSE TITLE: DISTRIBUTED COMPUTER CONTROL
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course introduces the fundamental concepts and theoretical issues in modern distributed computer controlled systems. At the end of this course, students will be able to: define terms and concepts used in distributed computer controlled systems, distributed operating systems and distributed database systems; distinguish between the different hardware/software architectural models used in the design of distributed systems; recognise the constraints placed on distributed system designs by ancillary issues and propose appropriate strategies/counter-measures; relate industrial practice and standards to the theory of distributed systems; appraise the choice of physical architecture/software infrastructure components for a distributed system application.

SEMESTER: 2
COURSE CODE: ECNG 6606
COURSE TITLE: OPTICAL COMPONENTS
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course identifies key components used in optical systems: fiber, sources, detectors, amplifiers, modulators, etc. It presents the theoretical foundation for the physical phenomena utilised in the operation of the optical devices and then investigates the performance limitations imposed by these physical processes. Ideal and real characteristics of the optical devices are related to performance specifications represented in commercial data sheets. Case studies treat cost analysis for system design.

SEMESTER: 1
COURSE CODE: ECNG 6607
COURSE TITLE: OPTICAL APPLICATIONS
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course treats the design and performance analysis of systems derived from a range of optical applications. Optical applications are drawn from Communications and Instrumentation. At the end of this course, students will have an appreciation for the description of light in terms of its degrees of freedom (amplitude, phase, frequency, polarisation and propagation direction) and the physical processes used to manipulate these parameters for communications, sensing and beam-positioning. Students should be able to evaluate the performance of a range of systems and offer reasonable component selection criteria for the design of such systems. Cost analysis is treated.

SEMESTER: 1
COURSE CODE: ECNG 6608
COURSE TITLE: DIGITAL INTEGRATED CIRCUITS
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course on digital integrated circuits presents an introduction to Integrated Circuit (IC) fabrication techniques and provides a comparative study of logic families. It reviews the structure of memory elements and focuses heavily on VLSI design using stick diagram, and other relevant techniques.

SEMESTER: 1
COURSE CODE: ECNG 6609
COURSE TITLE: ANALOGUE ELECTRONIC SYSTEMS
NO. OF CREDITS: 3
COURSE DESCRIPTION: This graduate course offers an advanced treatment of the analysis and design of discrete analog electronic building blocks. In particular, the course treats with these aspects as they relate to current sources as well as voltage sources and references. It analyses amplifier characteristics and implementations such as the differential amplifier and op-amp circuits. It also treats special function circuits, both integrated and discrete; high power audio amplifier techniques; switch mode power supply design and high frequency amplifier design.
This course opens with a review of the architecture of representative processors. It includes coverage of hardware programming languages; machine organisation; hardware realisation; micro-programming; intersystem communication; interrupt and memory mapped I/O; communication and error control; large memory systems and high-speed computer arithmetic realisations.

This course treats with a variety of topics that relate to operating systems. In particular, it includes coverage of Communicating Sequential Process (CSP): symbolic description of processors, traces, communication channels, pipes, etc. with analysis of properties such as synchronisation, parallelism, deadlock and livelock and data flow, etc. It distinguishes between centralised and distributed systems and compares the behaviour of centralised operating systems vs. distributed operating systems. It treats with synchronisation as well as deadlock and livelock analysis using CS; layered protocol and the client server model; ISO OSI model, layers, interfaces and protocols; Remote Procedure calls and Distributed File Systems, message transport over network, RPC GEN tools and programming for operating system development. The course recognizes UNIX as an industrialised standard platform.

This graduate course focuses on the principles and application associated with database systems. These principles will be used to design and develop software to meet specific requirements and quality standards within the framework of time and cost. At the end of this course, students will be able to design a DBMS for information processing of a given system; understand the concepts, tools and technologies related to information systems; design and develop PL/SQL programs for existing databases for information extraction and decision making.

This course is an introduction to parallel processing techniques. It covers parallel processing languages and algorithms as well as introduction topics relating to synchronous multiprocessing.

This course introduces theory and practical techniques, which will enable the student to create, manipulate, display and analyse digital data, using either a compiled (C/C++) or an interpreted (MATLAB, Tcl) language and appropriate software packages/libraries. At the end of this course, students should be capable of implementing display/processing algorithms for digital data, by using appropriate theory/techniques drawn from the fields of Information Visualisation, Computer Graphics, Digital Image Processing, Machine and Computer Vision.

This course covers fuzzy computing; basic definitions and terminology, fuzzy set operations, membership functions, fuzzy relations, fuzzy if-then-else rules, fuzzy reasoning; adaptive networks; architecture, back propagation learning methods, associative memory learning methods, supervised and unsupervised learning neural networks, neuro-fuzzy modeling, system identification; least squares methods; derivative-based and derivative free optimisation methods, genetic algorithms; neuro-fuzzy computing applications.

This optional post-graduate/final-year course targets students who wish to understand the scope and limitations of digital visual media. It introduces common standards, and explains the tradeoffs inherent in utilising these standards in different application domains, such as cinema post-production, machine vision, and visual consumer electronics. At the end of this course, students will be able to identify, analyse, recommend, and justify use of image processing tools in applications. Topics include: image filtering, image content analysis, image compression, and motion estimation in image sequences.
ECNG 6701 covers the design and evaluation of networks which support multi-service traffic. ECNG 6701 presents a structured process accounting for user requirements, system design, and validation, taking account of user-defined service metrics, as well as other contextual factors such as mobility, security, and availability objectives. For proposed designs, issues such as logical addressing, routing, security, and network management will also be considered. Students are exposed to contemporary and emerging networking protocols and technologies as well as computer-aided techniques employing protocol analyzers and simulation tools as the basis to synthesize and evaluate logical network designs. These will serve as the basis for further analysis and optimization of communications networks and protocols. The course is assessed through 100% coursework.

SEMESTER: 1
COURSE CODE: ECNG 6700
COURSE TITLE: STOCHASTIC PROCESSES, DETECTION AND ESTIMATION
NO. OF CREDITS: 3
COURSE DESCRIPTION: In ECNG 6700 the theory and application of statistical signal processing is explored, providing the foundation for analysis and design within numerous domains including engineering, education, finance, economics, and pure sciences. Both analytical and computer-aided tools are leveraged for implementing statistical signal processing algorithms enabling learner experimentation with statistical signal processing for real-world non-deterministic problems. The course also provides experiential development to model the behaviour of and to describe the performance of non-deterministic systems. By extension, the course provides students with opportunities to expand and adapt contemporary techniques for use in application spaces of interest, including techniques for the analysis of more complex real-life systems and sub-systems. The course is assessed through 60% final exam and 40% coursework.

SEMESTER: 2
COURSE CODE: ECNG 6701
COURSE TITLE: DATA COMMUNICATION NETWORKS
NO. OF CREDITS: 3
COURSE DESCRIPTION: ECNG 6701 covers the design and evaluation of networks which support multi-service traffic. ECNG 6701 presents a structured process accounting for user requirements, system design, and validation, taking account of user-defined service metrics, as well as other contextual factors such as mobility, security, and availability objectives. For proposed designs, issues such as logical addressing, routing, security, and network management will also be considered. Students are exposed to contemporary and emerging networking protocols and technologies as well as computer-aided techniques employing protocol analyzers and simulation tools as the basis to synthesize and evaluate logical network designs. These will serve as the basis for further analysis and optimization of communications networks and protocols. The course is assessed through 100% coursework.

SEMESTER: 2
COURSE CODE: ECNG 6702
COURSE TITLE: PRINCIPLES OF SWITCHING
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course treats switched networks for telecommunications applications. It includes coverage of teletraffic analysis; digital circuit switching; integrated digital networks; packet switching and signaling and control in digital telephone networks. The course contextualizes these topics in explorations of new developments in digital telephone networks.

SEMESTER: 1
COURSE CODE: ECNG 6703
COURSE TITLE: PRINCIPLES OF COMMUNICATION
NO. OF CREDITS: 3
COURSE DESCRIPTION: ECNG 6703 is a foundation Masc Communication Systems course. It explores digital communication techniques employed at the physical layer for the reliable and efficient transfer of information over a communications channel subject to Additive White Gaussian Noise (AWGN). The course steps through the functional elements that comprise a digital communications link: source encoding, channel encoding and modulation, as the context in which the requirements for optimal performance are examined. Computer-aided analysis is used to reinforce the theoretical treatment of system behaviour and performance. The course is assessed through a mix of formative and summative exercises. The formative exercises comprise a 20% simulation-based student portfolio, a 15% research project and a 15% analysis project. A 50% final examination provides summative assessment.

SEMESTER: 2
COURSE CODE: ECNG 6704
COURSE TITLE: PERFORMANCE ENGINEERING OF COMPUTER COMMUNICATION SYSTEMS
NO. OF CREDITS: 3
COURSE DESCRIPTION: In this course, the performance of multi-service communication networks will be investigated using analytic and simulation-based methods. The requirements of various classes of applications will be mapped to performance metrics such as throughput, delay, jitter, and packet loss rate. Passive and active techniques for quantifying these metrics will be explored. From an empirical standpoint, input analysis performed on the real-world traffic will be used to drive simulation models which in turn will be used to predict the performance for a wider range of scenarios. However, prediction will also be performed using analytic means by assuming input distributions and using tools such as discrete-time and continuous-time Markov chains, queuing models, and models for networks of queues. Performance predictions and knowledge of quality-of-service (QoS) architectures will be used to inform strategies for the improvement of network performance.
SEMESTER:
COURSE CODE: ECNG 6705
COURSE TITLE: APPLIED PROBABILITY
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course treats a variety of topics relating to applied probability. In particular, it treats with modeling, quantification and analysis of uncertainty; formulation and solution in sample space; random variables, transform techniques, simple random processes and their probability distributions; Markov processes; Limit theorems; Elements of statistical interference, and decision-making under uncertainty; and Interpretations. The course includes a rich portfolio of applications and lecture demonstrations.

SEMESTER:
COURSE CODE: ECNG 6706
COURSE TITLE: ANTENNAS & RADIATION
NO. OF CREDITS: 3
COURSE DESCRIPTION: ECNG 6706 is an elective MASc Communications Systems course. Performance analysis and design of wireless communications systems are investigated, with focus upon the transceiver front-end, waveguides, propagation channels and antennas. Analytical and simulation techniques, and consideration of practical issues such as spectrum management, EMC, and RF safety feature strongly in the course. Contemporary and emerging standards and technologies are investigated through examination of the role of transceiver and antenna systems and supporting signal processing techniques. Students are exposed to software-defined radio which serves as the basis to implement advanced communications techniques such as dynamic spectrum access and MIMO systems. The course is assessed through 100% coursework, comprising of various individual and group-based problem-based analysis and design.

SEMESTER:
COURSE CODE: ECNG 6707
COURSE TITLE: MULTIMEDIA COMMUNICATION SYSTEMS
NO. OF CREDITS: 3
COURSE DESCRIPTION: This course recognizes that multimedia communication technologies have propelled the development and the popularity of the World Wide Web as a means of communication, and as a source of information and entertainment. Image, audio and video compression and coding techniques facilitate the proper functioning of multimedia applications by reducing load requirements on networks while network protocols play a complementary role by ensuring that data is transmitted efficiently with little compromise in quality. With these technologies industries across the region can be assisted in becoming more integrated as they are able to increase interaction and make their services more easily accessible to each other and to citizens. The resulting boost in productivity will stimulate growth, as well as help increase the international competitiveness in these sectors. This course will examine fundamental concepts and technologies necessary to multimedia communications.
DEPARTMENT OF GEOMATICS ENGINEERING & LAND MANAGEMENT

RESEARCH
The Department has nine academic staff members involved with three taught postgraduate programmes in addition to MPhil and PhD research degrees. The taught programmes are MSc Geoinformatics, MSc Urban and Regional Planning and Graduate Diploma in Land Administration.

The Department’s research expertise is established in the ability to understand, capture and visualise the spatio-temporal phenomena and processes to provide reliable management options for decision-makers to achieve sustainable development.

These objectives are achieved by using surveying, mapping, monitoring, modelling and spatial analysis tools and techniques. Cutting edge technology is being utilised in the research such as global positioning systems, satellite remote sensing and GIS. The other side of the approach is in the field of physical planning and development associated with policy planning, strategic and development planning, coastal zone planning and development control.

Priority areas and new themes of research have been identified and are being pursued. The research focus extends to areas covering geomatics, geodesy, land administration, spatial analysis, geoinformatics, spatial and settlements planning, the environment and ecosystems. The following are some topics of immediate concern:

- Mapping and modelling of land cover/use dynamics for the sustainable management of the environment and natural resources.
- Extraction of spatial information from aerial and satellite Imagery and Lidar.
- Coastal zone management and modelling coastal changes for sustainable development.
- Comparative analysis of planning statutes and administrative structures in the Caribbean.
- Design for sustainable development of urban and other settlement areas, environmental planning and policy planning.
- Urban structure and urban form in the Caribbean.
- Community and participatory planning.
- Non-structural measures for hazard mitigation.
- Formulation and definition of national datums.
- Geohazards; flooding and landslides, developing plans for areas exposed to natural and man-made hazards.
- Global climate change, climate change and food security, sea level change.
- Land tenure rights and practices including family land in specific jurisdictions.
- Quality assurance of spatial data and other land-related information, development of standards for spatial data exchanges.
- Relevant theory and methodology for Caribbean Planning and Resource Management.

Resources for research include automated field and GPS data recording and computation systems, photogrammetric and satellite images processing and analysis tools, GIS and mapping hardware and software, in addition to state-of-the-art computing and digital services facilities.

MPHIL/PHD DEGREES IN SURVEYING & LAND INFORMATION, GEOINFORMATICS AND URBAN AND REGIONAL PLANNING

Regulations
MPhil in Surveying & Land Information
MPhil in Urban and Regional Planning
MPhil in Geoinformatics

The Regulations for the MPhil in Surveying and Land Information, MPhil in Urban and Regional Planning, and MPhil in Geoinformatics are the same as the General Regulations for the MPhil, except that candidates applying for registration should normally have either:

a. A Bachelor’s degree with Second Class Honours in Surveying & Land Information/Geomatics; or
b. An equivalent qualification suited to the fields of Urban & Regional Planning or Geoinformatics.

PhD in Surveying & Land Information
PhD in Geoinformatics
PhD in Urban and Regional Planning

The Regulations for the PhD in Surveying and Land Information, Geoinformatics and in Urban and Regional Planning are the same as the University and Faculty of Engineering regulations for the Degree of Doctor of Philosophy except that candidates applying should normally have either:

a. An MPhil Degree in Surveying and Land Information/Geomatics, Geoinformatics or Urban and Regional Planning of The University of the West Indies or
b. A Master’s Degree by Research in Geomatics, Urban & Regional Planning or Geoinformatics of an approved University.
MPhil/PhD Degree in Geoinformatics

The aim of the MPhil and PhD in Geoinformatics programme is to meet the growing needs of the Caribbean region for high-level critical thinkers who will be able to undertake research and development necessary to support sustainable development efforts of the region. The study programme for MPhil/PhD in Geoinformatics provides students with the knowledge and understanding for:

- Critical assessment and understanding of the manipulation and analysis of spatial information.
- A systematic approach to analyzing and solving spatial problems using a range of appropriate strategies and specific techniques.
- Understanding of the main issues surrounding data requirements, quality, analysis and management of spatial data embedded in particular economic, political, social and legal structures create social barriers affecting their wider use.
- Understanding of design, management and logistical issues in Enterprise GIS development.

MPhil/PhD Degree in Urban and Regional Planning

Urban and regional planning is the profession that deals with the understanding and management of land uses in the hierarchy of urban and regional settlements and the spatial relations of human activities. It is an interdisciplinary science that deals with the physical, environment, social, economic and cultural aspects of human settlements in both urban and rural areas. The study programme for MPhil/PhD in Urban and regional planning provides students with the knowledge and understanding of:

- Comparative International theory and practice of urban and regional planning.
- Caribbean urban history and settlements structures.
- The Caribbean’s natural resource base as islands and implications for economic development in sectors such as industry, tourism, agriculture, forestry and sustainable development.
- The legal and administrative structure governing Caribbean urban and regional planning and management including development planning and the regulation of land use and built development.
- The manipulation and analysis of spatial data and information as part of research and policy formulation.

PGDIP/MSc in Urban & Regional Planning

Introduction

The MSC Urban and Regional Planning Programme is driven by the need to produce a cadre of planning professionals with a tailored education and training in Caribbean planning issues, which are distinct from other regions of the world by virtue of population dynamics, economic evolution, social problems and unique physical environment. The programme focuses on the evolution of theoretical perspectives on planning, especially with a developing country planning epistemology, it aims to equip the graduate with the knowledge associated with policy planning, strategic and development planning, physical planning and design, as well as development control in areas of development relevant to the Caribbean region.

The Aims and Objectives

Aims

a. To provide general and specialised knowledge in the field of physical planning with respect to theory, methodology, analysis and applications.

b. To equip the graduate with the knowledge for a profession in the field of urban and regional planning, associated with policy planning, strategic and development planning, physical planning and urban design, coastal zone planning, environmental planning, as well as development control.

c. To produce a graduate capable of developing appropriate plans for communities and settlements, open areas, coastal zones, protected areas, areas exposed to natural and man-made hazards, and other areas where development occurs, or areas which are subjected to protection, conservation, or any other special treatment.

d. To produce a graduate capable of managing the implementation and monitoring of policies and plans.

Objectives

i. The core courses are intended to fulfil the following objectives:

- To provide students with full understanding of planning as a discipline, the philosophical basis of planning, and the major theoretical and analytic developments in the field.
- To cover the methods and procedures for making plans for physical development, be it for the public or private sector, at the national, regional, local or site level.
- To equip students with a reflective and insightful understanding of the social and environmental conditions of human settlements and spatial development and change.
- To equip students with an understanding and knowledge of implementing policies, strategic and development plans, physical and urban design plans, as well as development control measures.
- To understand and evaluate the impact of development.

ii. The electives provide the basis for students to acquire a measure of skills mix, as well as the background for further work, research and development.
Learning Outcomes
As a result of the course content and instruction graduates should be able to:

- Demonstrate the ability to respond effectively to unfamiliar problems in unfamiliar contexts.
- Formulate and propose incisive and innovative policies, strategies and courses of action as responses to a variety of planning problems, transforming existing systems and not simply function within an ineffective one.
- Synthesise and Integrate data from various sources and to identify the contexts in which the various data types are appropriate.
- Describe the genesis and function of planning in society.
- Apply the history and theory of planning in relation to social and economic structures, including, but not limited to, such characteristics as income, race, ethnicity, and gender.
- Understand the ethics of professional practice and behaviour, including the relationship to clients and the public, and the role of citizens in a democratic society.
- Interpret case laws relevant to the field of urban and regional planning and application of these laws to realistic hypothetical situations.
- Conceptualise problems from complex, real world situations so that the problems are meaningful to clients and are research worthy.
- Apply statistical and other analytic techniques, as well as computer methods, to define planning problems, generate alternatives, and evaluate their consequences. Use census data to inform policy formulation.
- Effectively and fluently communicate a wide variety of planning information, ideas, principles, arguments and proposals through well-prepared written, graphic, oral and electronic means, and demonstrate effectively and fluently written, numeric, oral, IT and information literacy skills.
- Work effectively as members and leaders of planning teams, and to apply an understanding of interpersonal and group dynamics to assure effective group action.
- Interpret case laws relevant to the field of urban and regional planning and application of these laws to realistic hypothetical situations.
- Exhibit an excellent level of understanding of the complexities of planning issues and problems especially the complexities of planning within the Caribbean context, with regards to space, ecology, resources and susceptibility to natural disasters.
- Demonstrate originality and flair in the treatment and exposition of the subject matter, making excellent connections between the different areas of the curriculum
- Work very well individually and in groups, demonstrating high levels of initiative, autonomy and leadership
- Exhibit a sensibility in formulating interventions that reflect an understanding of place-specific socioeconomic, political, and cultural circumstances.

Entry Requirements
Applicants for the MSc Urban and Regional Planning should have:

1. at least a Second Class Bachelor’s Degree in a related area from a recognised institution, or
2. a combination of maturity, training and professional experience acceptable to the Faculty. A typical applicant would have a previous degree gained in Urban and/or Regional Planning, Surveying, Natural Sciences, Engineering, Geography, Architecture, Sociology, Economics, Political Science, Management and Law.

Qualifying Student
An applicant not considered suitable for direct admission may be admitted as a qualifying student, up to one year. The structure of study will be designed to suit the needs of the individual student.

Transfer of Credits
Up to six (6) credit hours of coursework taken prior to enrolment in the Master’s programme, whether at this university or another, may be counted towards the Master’s degree, if the Head of Department formally approves acceptance of these courses. Prior to the approval, the advice from the Programme Coordinator should be sought.

Structure of Programme
Offered part-time and full-time

a) Part-time students: - Normally required to complete the coursework and written examinations within six (6) semesters of registration - Project should be started at the commencement of the semester following the completion of the written examinations and completed within nine (9) months
b) Full-time students: - Normally required to complete the coursework and written examinations within three (3) semesters of registration - Project should be started at the commencement of the semester following the completion of the written examinations and completed within six (6) months

NB The normal load for a part-time student is half that of a full-time student.

Duration of Study
Part-time students: Must normally complete the programme within ten (10) semesters.
Full-time students: Must normally complete the programme within eight (8) semesters.

No. of Credits Required: 39

<table>
<thead>
<tr>
<th></th>
<th>Core courses</th>
<th>Elective courses</th>
<th>Research Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Credits</td>
<td>18</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

The programme offers a wide range of courses that allows the student to pursue individual specialisations, progress to employment within the field and to embark on advanced study within planning, including MPhil/PhD research.
Other information

Examination
(a) Evaluation may take one of the following modes: (1) coursework only, normally applied for studio work, (2) combination of coursework and final examination, and (3) final examination. In the case of combination, candidates will be required to pass both the coursework and examination.
(b) In MSc Research Project evaluation will be on the report. Candidates may also be orally examined. They will in addition be required to present at least one acceptable seminar.
(c) A full-time candidate who fails not more than two courses, or a part-time candidate who fails not more than one course in a semester may be allowed to repeat such courses if the Board of Higher Degrees so decides.
(d) A full-time candidate who fails more than two courses, or a part-time candidate who fails more than one course in a semester, will normally be required to withdraw from the programme.

Award of Degree
1. The MSc in Urban & Regional Planning will be awarded on successful completion of all courses and the Research Project.
2. The MSc may be awarded with distinction if the candidate attains an overall mark of ‘A’ grade and a similar mark in the project.

COURSE LISTING

CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAN 6000</td>
<td>Philosophy & Principles of Planning</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6001</td>
<td>Planning Practice Law and Ethics in the Caribbean</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6002</td>
<td>Graphic and Design Studio</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6003</td>
<td>Design for Development</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6004</td>
<td>Planning Analysis and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6024</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6030</td>
<td>Research Project (MSc Urban and Regional Planning Only)</td>
<td>12</td>
</tr>
</tbody>
</table>

Elective Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAN 6005</td>
<td>Urban Design</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6006</td>
<td>Sustainable Housing and Settlements Planning</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6007</td>
<td>Community and Participatory Planning</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6008</td>
<td>Tourism Planning</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6009</td>
<td>Transportation Planning</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6011</td>
<td>Planning in the Coastal Zone</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6012</td>
<td>Professional Planning Internship</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6014</td>
<td>SIDS Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6025</td>
<td>Independent Study in Urban and Regional Planning</td>
<td>3</td>
</tr>
<tr>
<td>TOUR 6040</td>
<td>Sustainable Tourism Management</td>
<td>3</td>
</tr>
<tr>
<td>TOUR 6002</td>
<td>Tourism Destination Management</td>
<td>3</td>
</tr>
<tr>
<td>TOUR 6003</td>
<td>Tourism Policy and Strategy</td>
<td>3</td>
</tr>
<tr>
<td>GINF 6100</td>
<td>Principle of Geoinformatics</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER: 1

COURSE CODE: PLAN 6000
COURSE TITLE: PHILOSOPHY & PRINCIPLES OF PLANNING
NO. OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: The material covered in this course is related to the context and environment of the Caribbean and illustrated by case studies from the region and other similar societies as far as available. The content covered by this course includes: Garden cities, Anglo-American and European tradition, Third World urbanisation and planning, Planning in the Caribbean SIDS, Sustainable development and sustainable planning, National urban strategies, growth centre and secondary cities, Self-Help; architecture of the poor, Globalisation and impacts on planning, Impacts of ICTs.

SEMESTER: 1

COURSE CODE: PLAN 6001
COURSE TITLE: PLANNING PRACTICE LAW & ETHICS IN THE CARIBBEAN
NO. OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: This course examines planning law and the effectiveness of institutions involved in physical planning and development and to determine the need for institutional reform given the goals and objectives of planning. The evolution of Caribbean legislation; Public and private property rights and policy instruments; Constitutional powers and responsibility of the government for the provision of land and environmental resources, utilities, transport, social services and public health; Planning-related legislation such as the Public Health Ordinance, Municipal Corporations Act, the Housing Act, Slum Clearance and Housing Act; Public decision making in the Caribbean-the roles of government, political parties, interest groups, entrepreneurs and individuals; decision making and the judicial review of public decision and appellate tribunals.

SEMESTER: 1

COURSE CODE: PLAN 6004
COURSE TITLE: PLANNING ANALYSIS & EVALUATION
NO. OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: This course deals with tools and techniques of Data Collection and Analysis; encompassing Survey techniques; Site analysis and processing of development applications; Settlement Planning; Sampling; Probability analysis; Planning evaluation tools; Goal achievement matrices; Multiple criteria evaluation; Planning balance sheets; Time value of money; Internal Rate of Return; NPV; Demographic Projections.
This course offers a practical, problem solving approach that involves students in varied planning projects, and introduces students to various graphic methods used to aid in design. It is intended to give students an introduction to graphics and spatial data analysis and presentation, including the use of digital techniques. It will be done in a studio context and will include a range of graphic and design problems and techniques, such as AutoCAD, sketchup, cartography, and other graphic software used in planning.

This course is designed around a studio project which aims at highlighting the physical aspects of urban development and its relationship to the economic, social and environmental features of human settlements development. The content of this course includes the following topics: Existing urban centres and towns, Re-development and renewal, Development of coherent communities into the real neighbourhoods and diverse districts, Public spaces. Conservation of natural environments and the preservation of the built legacy, Urban places framed by architecture and landscape design rooted in local history, climate, ecology and building practice, Infrastructure and amenity design and standards, including local traffic distribution, transportation and related land-use controls, Re-establishment of the relationship between the art of building and the making of community, through citizen-based participatory planning and design.

This course deals with the history, role and functions of both community and participatory planning, including the growing role of the public and stakeholder interests in the planning process. The evolution of planning in the Anglo-American and international experience, the specific process and tools of public consultation and participation in the development of and regulatory functions, the problems associated with community planning and participation in the planning process, Tools and techniques used in community planning exercises which include: Community mapping, Needs assessment, Strategic planning and lobbying, Community Visioning.

This course gives an introduction to transportation planning, and its relationship to land-use planning, it will acquaint students with the profession of transportation planning and the types and activities that transport planners are required to conduct. Urban transportation planning and its relationship to land-use planning, including procedures for traffic impact analysis of urban development sites, analysis framework for long-range planning, data collection procedures, basic demand forecasting, assessment of alternative transport plans and impact on the environment and land development at the regional scale.
SEMESTER: 1
COURSE CODE: PLAN 6006
COURSE TITLE: SUSTAINABLE HOUSING & SETTLEMENTS PLANNING
NO. OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: This course aims at demonstrating the ways in which human settlements planning is undertaken, whether this is for small towns, villages, neighbourhoods or extensive urban areas, with the focus being on sustainability of these developments. Housing Demand Analysis; Housing Finance; Housing Infrastructure; Construction; residential environment and community development, with the associated issues of fostering employment opportunities, responding to social and educational needs, commercial and recreational facilities demand transportation, infrastructure and environmental concerns.

SEMESTER: INACTIVE
COURSE CODE: PLAN 6005
COURSE TITLE: URBAN DESIGN
NO. OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: Cultural basis for design, new approaches: smart cities, sustainable cities, new urbanism. The competing goals and objectives in urban design, Users versus providers of the built environment, urban structure, public space, safety and security in urban design. Elements and components: neighbourhood, block, street, individual building. Guidelines and standards.

SEMESTER: 2
COURSE CODE: PLAN 6008
COURSE TITLE: TOURISM PLANNING
NO. OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: This course gives an introduction to the land-use, infrastructure, coastal and environmental impacts and needs of the tourism industry, this will be done at the macro, national, and regional planning levels as well as the more detailed project site and community levels.

SEMESTER: 2
COURSE CODE: PLAN 6024
COURSE TITLE: RESEARCH METHODS
NO. OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: Preparation and methods of research. Problem definition: research objectives, quantitative and qualitative methods, data collection and analysis, field surveys, preparation of questionnaires, literature reviews, testing hypotheses, case studies, historical and policy analysis, report preparation.

SEMESTERS: 1 AND 2
COURSE CODE: PLAN 6025
COURSE TITLE: INDEPENDENT STUDY IN URBAN AND REGIONAL PLANNING
NO. OF CREDITS: 3
PREREQUISITES: Must have completed all core courses in the programme.
SYLLABUS: A special topic involving a specialised area of urban and regional planning not normally available through taught courses will be made available to the students. The course will be evaluated by a combination of the following: a technical report, design project, or a major research paper which may include a seminar presentation.

SEMESTER: NOT APPLICABLE
COURSE CODE: PLAN 6030
COURSE TITLE: MSC RESEARCH PROJECT
NO. OF CREDITS: 12
PREREQUISITES: NONE
SYLLABUS: The research project is expected to be the result of a comprehensive investigation and independent analysis of a topic that is germane to the area of interest to the student. The goal of the research should be to study a specific area or phenomenon and to provide a contribution of new knowledge to the field of study or produce a new interpretation of existing information.

Postgraduate Diploma in Land Administration
This programme is being developed to address the reform of the policies, procedures, statutes and institutions involved in Land Administration and Management throughout the Caribbean. This programme is a response to the need to maintain and strengthen the human resources employed in land administration and land management in key institutions of the state, and private quasi-state sectors.

The Aims and Objectives
a. Provide specialised training in Land Administration Management to key public, quasi-state and private sector professionals.
b. To enhance the existing process of reform in Land Administration in the public sector.
c. To enhance the Department’s capability in offering training in the broader area of Land Studies and Land Management in keeping with the Department’s strategic plan.

Entry Requirements
The main condition for entry would be a relevant first degree and relevant industrial experience or maturity and professional experience acceptable to the Faculty. Present entry requirements for either MSc Planning and Development or MSc Geoinformatics would also be acceptable. The target groups are:

(a) Public officials nominated by sponsoring institution.
(b) Professionals: Surveyors, engineers, planners, geographers, agriculturalists, natural and social scientists interested in the area of Land Administration and Management.
(c) Individuals interested in upgrading their skills on a course-by-course basis.
Structure of Programme
The programme will be delivered in six (6) short intensive instructional periods each approximately one week of whole day lectures, tutorial demonstrations and lab/field exercises. There will be a full-time, three-week period when students will work on their special projects towards the end of the cycle.

Duration of Study
Twelve (12) months.

Course Listing
Students are required to complete the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND 5000</td>
<td>Introduction to Land Administration</td>
<td>E3</td>
</tr>
<tr>
<td>LAND 5002</td>
<td>Land Economy & Property Management</td>
<td>E3</td>
</tr>
<tr>
<td>LAND 5003</td>
<td>Land Law</td>
<td>E3</td>
</tr>
<tr>
<td>LAND 5004</td>
<td>Land Information Management</td>
<td>E3</td>
</tr>
<tr>
<td>LAND 5006</td>
<td>Special Project</td>
<td>C6</td>
</tr>
<tr>
<td>LAND 5007</td>
<td>Cadastral Systems</td>
<td>E3</td>
</tr>
<tr>
<td>PLAN 6014</td>
<td>Small Island Developing States (SIDS) Resource Management</td>
<td>E3</td>
</tr>
</tbody>
</table>

Assessment and Award of Diploma
With the exception of LAND 5006 Special Project which shall be assessed as a 100% coursework, all other courses shall be assessed as follows:
- Final examination: 60%
- Assessed assignments: 40%.

Students are required to complete 18 credits of core taught courses and 6 credits of project for a total of 24 credits. Diplomas shall be awarded upon completion of all courses and the final project.

SYLLABUSES

SEMESTER:
COURSE CODE: LAND 5000
COURSE TITLE: INTRODUCTION TO LAND ADMINISTRATION
NO. OF CREDITS: 3

PREREQUISITES: NONE

SYLLABUS: This course introduces the concepts of land administration including the legislative provisions and policy concepts relating to land, its transfer and control. Land settlement in the Caribbean is covered including evolution of policy frameworks. State lands and their management, land policy formulation, information needs are also introduced with land administration and land management concepts in general.

SEMESTER:
COURSE CODE: LAND 5002
COURSE TITLE: LAND ECONOMY & PROPERTY MANAGEMENT
NO. OF CREDITS: 3

PREREQUISITES: NONE

SYLLABUS: This course gives an overview of the land economy of the Caribbean. It introduces the nature of real property, land rent theory, locational theory, the role of the State in the land economy, land and property taxation, the real estate industry and the finance sector, land and property speculation, and the relationship between formal and informal economy. Also covered are property and real estate management, and project and programme financing and management. The project cycle is also investigated including management formulation and appraisal, project evaluation, public good vs. economic good, time value of money, internal rate of return, net present value and discounting and shadow pricing.

SEMESTER:
COURSE CODE: LAND 5003
COURSE TITLE: LAND LAW
NO. OF CREDITS: 3

PREREQUISITES: NONE

SYLLABUS: This course introduces Caribbean legal systems including introduction to case laws. Discussed are sources of land law including equity and statutes. Covered are doctrines of estates, reception of English law in the Caribbean and its evolution, the meaning of ‘law’, estates and interests including freehold, leasehold, absolute, co-ownership, joint tenancies, tenancies in common, profits-a-prendre. Also covered are easements, restrictive covenants, adverse possession, prescription, contracts for sale of land, the doctrine of part performance, pre-contract enquiries and inspection. An investigation of title of unregistered land, forms of deed and other documents, registration of deeds and other document, and registration of title including the Torrens system.

SEMESTER:
COURSE CODE: LAND 5004
COURSE TITLE: LAND INFORMATION MANAGEMENT
NO. OF CREDITS: 3

PREREQUISITES: NONE

SYLLABUS: This course examines the concept of systems, information systems, geographic systems, and land information systems. It discusses data in LIS, their acquisition, input, pre-processing, verification, structures, management, manipulation, analysis, output and quality. Hardware and software considerations are investigated including project specification and national systems, their design and development.

SEMESTER:
COURSE CODE: LAND 5006
COURSE TITLE: SPECIAL PROJECT
NO. OF CREDITS: 6

PREREQUISITES: NONE

SYLLABUS: Students will be expected to do a Special Project of approximately 10,000 - 15,000 words. The topic will be chosen in collaboration with the agencies sending students to make it relevant to their work situation.
SEMESTER:
COURSE CODE: LAND 5007
COURSE TITLE: CADASTRAL SYSTEMS
NO. OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: This course examines the importance of cadastral systems to land administration. The cadastral system as a foundational element of the land information system is discussed. The evolution of cadastral systems to their current role in the socio-economic development of a country is covered along with aspects of establishment, maintenance reform and re-engineering of systems.

SEMESTER:
COURSE CODE: PLAN 6014
COURSE TITLE: SMALL ISLAND DEVELOPING STATES (SIDS) RESOURCE MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: This course is aimed at giving the student an appreciation of the critical issues in land use and natural resources management, and to foster a solution-oriented approach to the management of these vital resources. The content of this course includes: The concept of ecosystems, Debates on development and the environment, Challenges of rural environments, The Brown Agenda, Land Use and integrated water resources management, Natural Hazards, Policy framework, Institutional

PGDip/MSc in Geoinformatics

Introduction
Geoinformatics is a nascent multidisciplinary field in which graduates must be prepared to apply knowledge in new contexts, work cooperatively and communicate effectively.

The Aims and Objectives
Aims
The goal of the MSc/PGDip Geoinformatics programmes is to provide high-quality professional graduate instructions in Geoinformatics that leads to productive careers and long life learning.

Objectives
The graduate with a MSc/PGDip in Geoinformatics will be able to:

• Explain the principles, theories, tools and techniques of Geoinformatics.
• Apply specialised knowledge of Geoinformatics to a wide range of disciplines.
• Use the skills required to work individually or as a member of a team.
• Apply creative and critical thinking in solving applications in multidisciplinary areas using Geoinformatics.
• Formulate and effectively communicate professional opinions on topical issues.

In addition to the above, the graduate with an MSc in Geoinformatics will be able to:

• Develop research capabilities to contribute to the further academic and professional development of Geoinformatics.

Entry Requirements
Applicants for the MSc or the PGDip in Geoinformatics programmes should have one of the following:

(a) A Second Class Honours BSc degree in Surveying and Land Information /Geomatics, or a degree in a related area from a recognised institution.

(b) A Second Class Honours BSc degree in Engineering, Natural Science, Agriculture or Geography, which includes Mathematics and Computer Science at levels equivalent to the respective courses in (a).

(c) An equivalent qualification acceptable to the Faculty of Engineering.

(d) A PGDip in Geoinformatics (for MSc Geoinformatics only)

A graduate student in these programmes is also expected to have a strong mathematical/analytical background and ability to use specialised software applications within this context.

Duration of Study and Award of Degree
The programme is geared towards full-time study. It is expected that full-time students will complete the PGDip in 9 months and the MSc programme in 18 months. Part-time is expected to take two (2) calendar years for the PGDip programme and two and a half (21/2) calendar years for the MSc programme. Upon completion of all course requirements, a candidate will be awarded a PGDip in Geoinformatics. With the additional completion of the research thesis, a candidate will be awarded the Master’s degree in Geoinformatics.

Structure of Programme
Offered both part-time and full-time

Course of Study
Students registered for the Postgraduate Diploma in Geoinformatics are expected to complete 26 credits of core courses and six credits of elective courses, while students registered for the MSc in Geoinformatics are expected to complete 38 credits of core courses and six credits of elective courses.

COURSE LISTING

CORE COURSES
The core courses for the PGDip/MSc Geoinformatics programmes are as follows:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GINF 6100</td>
<td>Principles of Geoinformatics</td>
<td>3</td>
</tr>
<tr>
<td>GINF 6015</td>
<td>Extraction and Management of</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Information from Geo-images</td>
<td></td>
</tr>
<tr>
<td>GINF 6020</td>
<td>Spatial Databases</td>
<td>4</td>
</tr>
<tr>
<td>GINF 6021</td>
<td>GIS and Society</td>
<td>4</td>
</tr>
<tr>
<td>GINF 6022</td>
<td>Spatial Analysis and Modeling</td>
<td>4</td>
</tr>
<tr>
<td>GINF 6023</td>
<td>Enterprise GIS Design and Development</td>
<td>4</td>
</tr>
<tr>
<td>GINF 6024</td>
<td>Research Methodology</td>
<td>3</td>
</tr>
<tr>
<td>GINF 6006</td>
<td>Research Project (MSc Geoinformatics only)</td>
<td>12</td>
</tr>
</tbody>
</table>
ELECTIVE COURSES
There are several courses available in the Department of Surveying and Land Information and other departments that may be selected to cover the elective courses that students are allowed to take. Elective courses may be taken in consultation with the Programme Coordinator or the Head of Department.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GINF 6009</td>
<td>Applications of GIS in Natural Resource Management</td>
<td>4</td>
</tr>
<tr>
<td>GINF 6010</td>
<td>Applications of GIS in Urban Development</td>
<td>4</td>
</tr>
<tr>
<td>GINF 6007</td>
<td>Issues and Application of Remote Sensing</td>
<td>4</td>
</tr>
<tr>
<td>GINF 6030</td>
<td>Independent Study in Geoinformatics</td>
<td>3</td>
</tr>
<tr>
<td>GINF 6025</td>
<td>Professional Internship (new)</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6011</td>
<td>Planning in the Coastal Zone</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6014</td>
<td>SIDS Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6006</td>
<td>Sustainable Housing and Settlements Planning</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6007</td>
<td>Community and Participatory Planning</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6008</td>
<td>Tourism Planning</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 6009</td>
<td>Transportation Planning</td>
<td>3</td>
</tr>
<tr>
<td>COMP 6100</td>
<td>Computer Communications Network</td>
<td>3</td>
</tr>
<tr>
<td>COMP 6150</td>
<td>Distributed Computing</td>
<td>3</td>
</tr>
<tr>
<td>ECNG 6613</td>
<td>Database Systems, Principles & Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Programme of Study
A typical schedule of courses for the PGDip and MSc Geoinformatics would look like the following;

Semester I
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GINF 6100</td>
<td>Principles of Geoinformatics</td>
<td>3</td>
</tr>
<tr>
<td>GINF 6020</td>
<td>Spatial Databases</td>
<td>4</td>
</tr>
<tr>
<td>GINF 6015</td>
<td>Extraction and Management of Information from Geo-images</td>
<td>4</td>
</tr>
<tr>
<td>GINF 6024</td>
<td>Research Methodology</td>
<td>3</td>
</tr>
<tr>
<td>GINF 6100</td>
<td>One Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester II
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GINF 6022</td>
<td>Spatial Analysis and Modeling</td>
<td>4</td>
</tr>
<tr>
<td>GINF 6023</td>
<td>Enterprise GIS Design and Development</td>
<td>4</td>
</tr>
<tr>
<td>GINF 6021</td>
<td>GIS and Society</td>
<td>4</td>
</tr>
<tr>
<td>GINF 6100</td>
<td>One Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester II
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GINF 6006</td>
<td>Research Project (MSc Geoinformatics only)</td>
<td>12</td>
</tr>
</tbody>
</table>

SYLLABUSES

SEMESTER: 1
<table>
<thead>
<tr>
<th>COURSE CODE: GINF 6007</th>
<th>COURSE TITLE: ISSUES & APPLICATIONS IN REMOTE SENSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO. OF CREDITS: 4</td>
<td>PREREQUISITES: GINF 6015 OR EQUIVALENT</td>
</tr>
<tr>
<td>SYLLABUS:</td>
<td>The course is intended to familiarise students with</td>
</tr>
<tr>
<td></td>
<td>the range of management and scientific problems that</td>
</tr>
<tr>
<td></td>
<td>may be addressed with remote sensing. Scale issues</td>
</tr>
<tr>
<td></td>
<td>in remote sensing, Multi-spectral image processing</td>
</tr>
<tr>
<td></td>
<td>methods, image interpretation, analysing spatial</td>
</tr>
<tr>
<td></td>
<td>patterns, issues in data integration, accuracy</td>
</tr>
<tr>
<td></td>
<td>assessment, remote sensing and GIS. Remote sensing</td>
</tr>
<tr>
<td></td>
<td>and change detection, remote sensing in the</td>
</tr>
<tr>
<td></td>
<td>Caribbean. Remote sensing and hazard assessment and</td>
</tr>
<tr>
<td></td>
<td>mitigation, remote sensing and biodiversity, remote</td>
</tr>
<tr>
<td></td>
<td>sensing and coastal zone management, global remote</td>
</tr>
<tr>
<td></td>
<td>sensing. New directions in remote sensing.</td>
</tr>
</tbody>
</table>

SEMESTER: 2
<table>
<thead>
<tr>
<th>COURSE CODE: GINF 6100</th>
<th>COURSE TITLE: APPLICATIONS OF GEOINFORMATICS IN URBAN DEVELOPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO. OF CREDITS: 4</td>
<td>PREREQUISITES:</td>
</tr>
<tr>
<td>SYLLABUS:</td>
<td>Introduction to GIS concepts; GIS application areas in urban</td>
</tr>
<tr>
<td></td>
<td>development; database design and development; building</td>
</tr>
<tr>
<td></td>
<td>applications in urban planning and development: site selection</td>
</tr>
<tr>
<td></td>
<td>models, locating landfill sites, estimating the carrying</td>
</tr>
<tr>
<td></td>
<td>capacity of land resources; urban crime analysis; modelling</td>
</tr>
<tr>
<td></td>
<td>equity in the distribution of social facilities.</td>
</tr>
</tbody>
</table>

SEMESTER: 1
<table>
<thead>
<tr>
<th>COURSE CODE: GINF 6100</th>
<th>COURSE TITLE: PRINCIPLES OF GEOINFORMATICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF CREDITS: 3</td>
<td>PREREQUISITES: NONE, COMPUTER SKILLS WOULD</td>
</tr>
<tr>
<td></td>
<td>BE AN ASSET</td>
</tr>
<tr>
<td>SYLLABUS:</td>
<td>Introduction to GIS: definitions of GIS, The Geography,</td>
</tr>
<tr>
<td></td>
<td>Information and Systems in the GIS, Current Issues and Views</td>
</tr>
<tr>
<td></td>
<td>of GIS, Spatial data issues- Acquisition and Input, introduction to</td>
</tr>
<tr>
<td></td>
<td>GNSS measurements and processing, Data Management, Data</td>
</tr>
<tr>
<td></td>
<td>Processing. GIS Data Structures, Raster GIS Capabilities,</td>
</tr>
<tr>
<td></td>
<td>Vector GIS capabilities, GIS and Network Analysis, GIS</td>
</tr>
<tr>
<td></td>
<td>functionality and applications, Manipulating and extracting</td>
</tr>
<tr>
<td></td>
<td>information, Spatial data quality issues, Hardware and</td>
</tr>
<tr>
<td></td>
<td>Software Systems, Introduction to designing and implementing</td>
</tr>
<tr>
<td></td>
<td>GIS.</td>
</tr>
</tbody>
</table>
SEMESTER: 2
COURSE CODE: GINF 6015
COURSE TITLE: EXTRACTION AND MANAGEMENT OF INFORMATION FROM GEO-IMAGES
NUMBER OF CREDITS:
PREREQUISITES: NONE

SEMESTER: 1
COURSE CODE: GINF 6020
COURSE TITLE: SPATIAL DATABASES
NUMBER OF CREDITS:
PREREQUISITES: NONE
SYLLABUS: A review of basic concepts of databases; Spatial database design; The Extended Entity-Relationship Model; Object-Oriented Database for GIS; Distributed and Networked Spatial Databases; Web-based GIS database design and management.

SEMESTER: 2
COURSE CODE: GINF 6021
COURSE TITLE: GIS AND SOCIETY
NUMBER OF CREDITS:
PREREQUISITES: NONE
SYLLABUS: This course examines the interrelationships between GIS and the structures of modern society. Through case studies of related to private and public organisations as well as the general public, the broader social implications of GIS will be examined. How GIS systems and spatial data are embedded in particular economic, political, social and legal structures create social barriers affecting the wider use of GIS, such barriers will be debated throughout the course. The way in which GIS is employed in society has the ability to influence values, perceptions and knowledge, the representation of knowledge in GIS will be discussed with particular reference to how information held by marginalised groups of society is represented. Other areas of importance include the impact of internet mapping, ethics and privacy and the use and misuse of GIS.

SEMESTER: 2
COURSE CODE: GINF 6022
COURSE TITLE: SPATIAL ANALYSIS AND MODELLING
NUMBER OF CREDITS:
PREREQUISITES: GINF 6100 OR EQUIVALENT
SYLLABUS: Introduction to spatial analysis; spatial phenomena types and relationships. Spatial analysis and GIS; raster and vector capabilities, network analysis, spatial phenomena and relationships; analysis for discrete entries, spatial data modelling; cartographic modelling, vector and raster overlay. Statistical analysis of attributes: univariate and bivariate descriptions. Spatial interpolation; polynomials, splines, TIN, Geostatistics; spatial correlation, modelling of a spatial process, geostatistical interpolation, semivariogram, kriging, Digital Elevation Models, surface analysis techniques. Spatial Analysis Applications.
DEPARTMENT OF MECHANICAL & MANUFACTURING ENGINEERING

RESEARCH
The Department offers the facilities to carry out research leading to the MPhil and PhD Degrees in a wide range of important areas: Mechanical, Industrial and Agricultural Engineering (Biosystems), Production Engineering & Management.

Research students register for the MPhil degree in the first instance and then, subject to the Faculty and University’s Regulations, may upgrade to the PhD degree. Students who already have a Master’s degree obtained through a substantial research project, may register directly for the PhD. A research student works in his chosen field of research under the guidance of a supervisor who has substantial expertise and experience in the field.

Persons interested in pursuing research leading to the MPhil or PhD degrees in Agricultural, Industrial, Mechanical or Production / Manufacturing Engineering & Management are invited to contact the Head of Department to discuss their research interests and for further information on research opportunities within the Department. The Department may be able to provide some financial support for specific research projects.

A sample of recent Research Theses and Projects are listed as follows:

i. Neural Network Model for a Cement Kiln.
ii. An Exergy Analysis of a Hydrocarbon Processing Unit.
vi. Deep Drawing with a Novel Technique for Blank Holding.
viii. Post-harvest Handling and Processing Systems for Peanuts, Nutmegs, etc.
ix. Refrigerated and Controlled Atmosphere Storage for Breadfruit, Mangoes, Carambola, etc.
x. Osmotic and Air-drying Behaviour of Fruit and Fish.
xi. A Reliability Centred Maintenance Programme.
xii. Induction Melting of Iron Carbide.
xiii. Strategic Remodelling of the Quality Systems of the Laboratories at the Caribbean Epidemiology Centre (CEC).

Master’s and Doctoral Programmes in Agricultural Engineering (Biosystems Engineering)

The Aims and Objectives
The main objective of these programmes is to offer sound, attractive Graduate degrees through both teaching and research in the three main areas of Agricultural Engineering viz:

i. Engineering Design
ii. Crop Processing, Food Engineering & Post-harvest Technology
iii. Soil & Water Engineering

These guidelines apply to Master’s and Doctoral Degree candidates and the number and nature of courses taken will be determined by both the background of the candidate and the Degree of interest.

All of the current rules, regulations and examination requirements for Postgraduate Degrees by Research in the University will apply, i.e., regulations for the MPhil and the PhD degrees.

The Degree in Engineering Design
The Research Degree in Engineering Design is aimed at training students to carry out research and development in the area of Tool and Equipment Design for agriculture and related industry. This will cover field equipment from hand tools and special accessories for local crops and products, to handling and pre-processing equipment for the food industry. Farm machinery design and development for small farm usage and for tropical crops will be encouraged.

The Degree in Crop Processing & Post-harvest Technology
The Research Degree in Crop Processing & Post-harvest Technology is aimed at training graduate students in post-harvest technology, crop processing and agribusiness development. The emphasis will be on primary crop processing and post-harvest technology of perishables (high moisture content, biological products, e.g., cereal grains, vegetables, fish and meat) and durable (lower moisture content, e.g., cereal grains, oilseeds). Product and process development will be encouraged all within a framework of agribusiness development for the Caribbean. Developing improved systems to process and store tropical crops/foods and by-products can lead to increased agribusiness activities in the Caribbean. These include packing-houses for fruits, vegetables, root crops and cut flowers both for domestic and export markets and food processing industries which utilise tropical fruits, vegetables, fish meat, etc.
The Degree in Soil & Water Engineering
The Research Degree in Soil & Water Engineering is aimed at the training of graduate students in Irrigation and Drainage Engineering, Soil Erosion and Conservation Engineering, Theory and Practices of Soil Cultivation and General Water Resources Planning and Development related to agriculture. Emphasis will be placed on modern methods of irrigation design and planning as well as on techniques of modifying the soil mechanical properties in order to improve soil workability by farm machinery and to minimise soil erosion. The research work in Soil & Water Engineering will also assess the effectiveness of new and existing techniques to reduce the related problems of soil erosion and degradation, poor drainage status and soil compaction under the impact of mechanical forces.

Degree Structure for MPhil and PhD
These being Research Degrees, students will be expected to produce a satisfactory Thesis (MPhil or PhD) as stipulated in the University’s regulations.

Additionally, students depending upon their academic background, will be required to take three (MPhil) or four (PhD) Departmental courses. These courses will be used to direct the student’s approach towards the research topic in particular, strengthening their knowledge base in their area of interest and to research methodology in general.

Finally, the student will be asked to give a mandatory research Seminar within three (MPhil) or four (PhD) Semesters of first registration.

The Degree structure therefore comprises the following:

i. An MPhil or PhD Thesis
ii. Departmental Courses (three for MPhil, four for PhD)
iii. A Research Seminar

COURSE LISTING
For all three Degrees, both at the MPhil and PhD levels, the structure is therefore as follows:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AENG 6000</td>
<td>Research Methodology (Agriculture Economics)</td>
</tr>
<tr>
<td>AENG 6001</td>
<td>Processing & Storage of Perishable Crops</td>
</tr>
<tr>
<td>AENG 6002</td>
<td>Processing & Storage of Durable Crops</td>
</tr>
<tr>
<td>AENG 6003</td>
<td>Physical Properties of Agricultural Products</td>
</tr>
<tr>
<td>AENG 6004</td>
<td>Special Topics in Design</td>
</tr>
<tr>
<td>AENG 6005</td>
<td>Reading Course in Agricultural Engineering</td>
</tr>
<tr>
<td>AENG 6006</td>
<td>Hydrology & Water Resources</td>
</tr>
<tr>
<td>AENG 6007</td>
<td>Irrigation & Drainage Engineering</td>
</tr>
<tr>
<td>AENG 6008</td>
<td>Soil Mechanics & Cultivation</td>
</tr>
<tr>
<td>AENG 6009</td>
<td>Soil & Water Conservation Engineering</td>
</tr>
<tr>
<td>AGBU 3000</td>
<td>Farm Business Management</td>
</tr>
<tr>
<td>AGBU 3006</td>
<td>Agricultural Project Appraisal & Implementation</td>
</tr>
<tr>
<td>MENG 6501</td>
<td>Statistical Methods in Engineering</td>
</tr>
</tbody>
</table>

Other suitable courses from the Faculties of Engineering and Science & Agriculture may also be taken, subject to Departmental approval.

Course	Title
AENG 6010 | Research Seminar |
AENG 7000 | MPhil Thesis |
AENG 8000 | PhD Thesis |

Duration of Study
It is envisaged that a Master’s programme of research and study can be completed by full-time postgraduate students in two to three (2-3) calendar years. This will be encouraged. The time limits for completion of postgraduate degrees (MPhil and PhD) however, are those as normally specified by the University.

Regulations and Entry Requirements
The normal University Regulations will apply for entry into the MPhil programme specifically an Honours Degree in any of the following disciplines viz.:–

- Engineering
- Natural Sciences
- Earth Sciences
- Food Science
- Agriculture
- Agricultural Economics

as well as any other suitable degree. The suitability of the applicant’s undergraduate training as generally specified above will be matched to the specific degree of interest. Students with Pass Degrees will be accepted only under special circumstances principally related to postgraduate experience.

SYLLABUSES
SEMESTER:
COURSE CODE: AENG 6000
COURSE TITLE: RESEARCH METHODOLOGY
NO. OF CREDITS: 3
PREREQUISITES:

SYLLABUS: Critical discussion of the application of scientific methodology to research in agricultural economics. The role of inductive and deductive logic in scientific research in the Caribbean.

SEMESTER:
COURSE CODE: AENG 6001
COURSE TITLE: PROCESSING & STORAGE OF PERISHABLE CROPS
NO. OF CREDITS: 3
PREREQUISITES:

SYLLABUS: Harvesting and handling of perishable crops; Post-harvest physiology; Crop pre-treatment for storage and processing; Water activity; Intermediate moisture foods; Principles of refrigeration and application to chilling and freezing; Thermal properties; Packing-house requirements; Packaging; Perishable process/Preservation principles.
SEMESTER:
COURSE CODE: AENG 6002
COURSE TITLE: PROCESSING & STORAGE OF DURABLE CROPS
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Crop physical properties and characteristics; Harvest methods; Transient heat and mass transfer; Psychrometrics; Handling; Cleaning; Drying and storage systems; Dehydration; Pest control; Primary processing operations; Milling; Separation and Extraction; Processing of selected tropical crops.

SEMESTER:
COURSE CODE: AENG 6003
COURSE TITLE: PHYSICAL PROPERTIES OF AGRICULTURAL PRODUCTS
NO. OF CREDITS:
SYLLABUS: Geometry and shape factors. Some flotation and aerodynamic properties. Elastic and viscoelastic behaviour including variation with moisture and temperature. Measurement of toughness, friction, impact strength, and other properties that may be used as quality indicators.

SEMESTER:
COURSE CODE: AENG 6004
COURSE TITLE: SPECIAL TOPICS IN DESIGN
NO. OF CREDITS:
SYLLABUS: This is a project course graded by coursework only. Students will be required to analyse problems and existing equipment and to carry out design or modification work.

SEMESTER:
COURSE CODE: AENG 6006
COURSE TITLE: HYDROLOGY & WATER RESOURCES
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Surface water hydrology and movement; Meteorology, Runoff measurement; Hydrograph analysis; Water balance studies; Groundwater resources; Pumping test; Bore hole design; Computer applications.

SEMESTER:
COURSE CODE: AENG 6007
COURSE TITLE: IRRIGATION & DRAINAGE ENGINEERING
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Surface, sprinkler and trickle irrigation, land grading; On-farm and scheme water requirements; Scheduling of irrigation; Design of canals and hydraulic structures; Drainage design theories; Drain spacing and depth requirement for irrigated areas; Drainage system monitoring; Computer applications.

SEMESTER:
COURSE CODE: AENG 6008
COURSE TITLE: SOIL MECHANICS & CULTIVATION
NO. OF CREDITS:
PREREQUISITES:
SYLLABUS: Soil shear strength; Coulomb equation; Mohr-Coulomb failure criteria; Active and passive Rankine states; Bearing capacity; The general soil mechanics equation; Techniques for predicting forces on soil engaging tools; Soil cultivation requirements and techniques for effective crop production.
The Aims and Objectives
The objectives of the MPhil/PhD programmes in Mechanical/Manufacturing/Industrial Engineering by research are:

a. To provide training at the postgraduate level in specialised Mechanical/Manufacturing/Industrial Engineering subject areas through teaching and to solve engineering problems through research.
b. To assist in the transfer of new, emerging and advanced technologies to the businesses of the Region through the mechanism of research projects.
c. To develop and augment the region’s pool of expertise in Mechanical/Manufacturing/Industrial Engineering.
d. To assist in the development of the Region through an outreach programme.

Entry Requirements

a. BSc Honours Degree in Industrial, Mechanical, Manufacturing or Electrical Engineering or equivalent. Only in exceptional circumstances will candidates with pass degrees be considered.
b. Normally, at least one (1) year of industrial experience is desirable.

DEGREE STRUCTURE FOR MPHIL AND PHD
The Degree structure comprises the following:

i. An MPhil or PhD Thesis
ii. Departmental Courses (three for MPhil, four for PhD)
iii. A Research Seminar (one for MPhil and two for PhD)

Research Thesis
These being Research Degrees, students will be expected to produce a satisfactory Thesis (MPhil or PhD) as stipulated in the University’s regulations.

Duration of Study
Part-time students: Normally expected to complete the examination requirements within four (4) semesters for MPhil and six (6) semesters for PhD, and complete the MPhil programme in accordance with the relevant University Regulations.

Full-time students: Normally expected to complete the course examination requirements within two (2) semesters for MPhil and three (3) semesters for PhD, and complete the programme in accordance with the relevant University Regulations.

Departmental Courses
Depending upon their academic background, students will be required to take three (MPhil) or four (PhD) Departmental courses. These courses will be used to direct the students’ approach towards the research topic in particular, strengthening their knowledge base in their area of interest and to research methodology in general.

A. COMPULSORY COURSE
MENG 6508 Research Methods

B. ELECTIVE COURSES IN PRODUCTION ENGINEERING AND MANAGEMENT / INDUSTRIAL ENGINEERING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IENG 6000</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>IENG 6001</td>
<td>Expert Systems (COMP 2800 OR IENG 3004)*</td>
</tr>
<tr>
<td>IENG 6002</td>
<td>Distributed Information Systems & Databases (IENG 3013)*</td>
</tr>
<tr>
<td>IENG 6003</td>
<td>Computer Integrated Manufacturing Systems</td>
</tr>
<tr>
<td>IENG 6004</td>
<td>Occupational Biomechanics</td>
</tr>
<tr>
<td>IENG 6005</td>
<td>Industrial Ergonomics</td>
</tr>
<tr>
<td>IENG 6006</td>
<td>Occupational Safety & Health</td>
</tr>
<tr>
<td>IENG 6007</td>
<td>Industrial Automation</td>
</tr>
<tr>
<td>IENG 6009</td>
<td>Robotic Technology & Applications</td>
</tr>
<tr>
<td>IENG 6100</td>
<td>Operations Research in Manufacturing I (IENG 3007)*</td>
</tr>
<tr>
<td>IENG 6101</td>
<td>Operations Research in Manufacturing II (IENG 3007)*</td>
</tr>
<tr>
<td>IENG 6102</td>
<td>Operations Research in Services (IENG 3007)*</td>
</tr>
<tr>
<td>IENG 6103</td>
<td>Directed Readings</td>
</tr>
<tr>
<td>MATH 3530</td>
<td>Mathematics III (MATH 2240)*</td>
</tr>
<tr>
<td>MENG 6506</td>
<td>Project Management</td>
</tr>
</tbody>
</table>

C. MECHANICAL / MANUFACTURING / PRODUCTION ENGINEERING AND MANAGEMENT ENGINEERING COURSES:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6200</td>
<td>Production Technology (MENG 2008)*</td>
</tr>
<tr>
<td>MENG 6201</td>
<td>Machine Tool Technology</td>
</tr>
<tr>
<td>MENG 6202</td>
<td>Applied Materials Technology</td>
</tr>
<tr>
<td>MENG 6203</td>
<td>Robotic Technology & Applications</td>
</tr>
<tr>
<td>MENG 6300</td>
<td>Applied Ergonomics</td>
</tr>
<tr>
<td>MENG 6301</td>
<td>Computer Applications in Manufacturing</td>
</tr>
<tr>
<td>MENG 6302</td>
<td>Design of Plant & Services</td>
</tr>
<tr>
<td>MENG 6303</td>
<td>Computer Control Systems</td>
</tr>
<tr>
<td>MENG 6400</td>
<td>Production Planning & Control</td>
</tr>
<tr>
<td>MENG 6401</td>
<td>Advanced Production Management</td>
</tr>
<tr>
<td>MENG 6402</td>
<td>Human Resource Management I</td>
</tr>
<tr>
<td>MENG 6403</td>
<td>Human Management II</td>
</tr>
<tr>
<td>MENG 6404</td>
<td>Maintenance Engineering & Management</td>
</tr>
<tr>
<td>MENG 6405</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>MENG 6500</td>
<td>Industrial Marketing</td>
</tr>
<tr>
<td>MENG 6501</td>
<td>Statistical Methods in Engineering</td>
</tr>
<tr>
<td>MENG 6502</td>
<td>Financial Management</td>
</tr>
<tr>
<td>MENG 6503</td>
<td>Applied Operations Research</td>
</tr>
<tr>
<td>MENG 6504</td>
<td>Technology & Product Development</td>
</tr>
<tr>
<td>MENG 6505</td>
<td>Health, Safety & The Environment</td>
</tr>
<tr>
<td>MENG 6506</td>
<td>Project Management for Mechanical Engineers</td>
</tr>
<tr>
<td>MENG 6508</td>
<td>Research Methods</td>
</tr>
<tr>
<td>MENG 6600</td>
<td>Final Project</td>
</tr>
</tbody>
</table>

The above courses build upon the foundations laid at the undergraduate level and are thus vertically integrated with the undergraduate programme.
D. RESEARCH SEMINAR - IENG 6015
This is compulsory and must be completed within three (3) (MPhil) or four (4) (PhD) Semesters of first registration.

SYLLABUSES

SEMESTER:
COURSE CODE: IENG 6000
COURSE TITLE: TOTAL QUALITY MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER:
COURSE CODE: IENG 6001
COURSE TITLE: EXPERT SYSTEMS
NO. OF CREDITS: 3
PREREQUISITES: COMP 2800 OR IENG 3004

SEMESTER:
COURSE CODE: IENG 6002
COURSE TITLE: DISTRIBUTED INFORMATION SYSTEMS & DATABASES
NO. OF CREDITS: 3
PREREQUISITES: IENG 3013
SYLLABUS: Information systems in business/industry. Systems planning, requirements analysis. Systems analysis and design methods including structured methodologies. Data communications and distributed processing. Distributed database system, Management support systems.

SEMESTER:
COURSE CODE: IENG 6003
COURSE TITLE: COMPUTER INTEGRATED MANUFACTURING SYSTEM
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER:
COURSE CODE: IENG 6004
COURSE TITLE: OCCUPATIONAL BIOMECHANICS
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER:
COURSE CODE: IENG 6005
COURSE TITLE: INDUSTRIAL ERGONOMICS
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER:
COURSE CODE: IENG 6006
COURSE TITLE: OCCUPATIONAL SAFETY & HEALTH
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER:
COURSE CODE: IENG 6007
COURSE TITLE: INDUSTRIAL AUTOMATION
NO. OF CREDITS: 3
PREREQUISITES:
SEMESTER:
COURSE CODE: IENG 6009
COURSE TITLE: ROBOTIC TECHNOLOGY & APPLICATIONS
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER:
COURSE CODE: IENG 6010
COURSE TITLE: OPERATIONS RESEARCH IN MANUFACTURING I
NO. OF CREDITS: 3
PREREQUISITES: IENG 3013
SYLLABUS: Application of operations research methodology to Strategy, Planning, Scheduling, Sequencing, and distribution decisions in manufacturing organisations.

SEMESTER:
COURSE CODE: IENG 6011
COURSE TITLE: OPERATIONS RESEARCH IN MANUFACTURING II
NO. OF CREDITS: 3
PREREQUISITES: IENG 3007
SYLLABUS: Application of operations research methodology to distribution, Independent inventory, layout and handling, and Maintenance decisions in manufacturing organisations.

SEMESTER:
COURSE CODE: IENG 6012
COURSE TITLE: OPERATIONS RESEARCH IN SERVICES
NO. OF CREDITS: 3
PREREQUISITES: IENG 3007
SYLLABUS: Application of operations research methodology to strategy, facilities, logistics, and scheduling decisions in service organisations.

SEMESTER:
COURSE CODE: IENG 6013
COURSE TITLE: DIRECTED READINGS
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: A critical review of the current literature in a special topic of importance to Industrial Engineering.

SEMESTER:
COURSE CODE: MATH 3530
COURSE TITLE: MATHEMATICS III
NO. OF CREDITS: 3
PREREQUISITES: MATH 2240

SEMESTER:
COURSE CODE: MENG 6200
COURSE TITLE: PRODUCTION TECHNOLOGY
NO. OF CREDITS: 3
PREREQUISITES: MENG 2008
SYLLABUS: This course follows on from the fundamental principles of the manufacturing process and design in the undergraduate programme and emphasises the broader aspects of the production systems as opposed to the processes themselves. Topics will include welding design considerations and specifications, foundry systems, metal-forming equipment, polymer technology, machining system, automation and Computer Integrated Manufacturing.

SEMESTER:
COURSE CODE: MENG 6201
COURSE TITLE: MACHINE TOOL TECHNOLOGY
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Functional study of different types of machine tool elements such as spindles drives, bedways, bearings, tool holders, and work holding devices; effect of vibrations and methods of controlling vibrations; lubrication and cooling; acceptance test for machine tools; machine tools for newer machining techniques; large machine tool systems, numerical control of machine tools.

SEMESTER:
COURSE CODE: MENG 6202
COURSE TITLE: APPLIED MATERIALS TECHNOLOGY
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: This course follows on from the fundamental principles in the undergraduate programme and goes further into the more applied aspects of materials performance. The emphasis would be on preventive and investigative methods and would include such topics as inspection techniques, failure mechanisms and analysis.

SEMESTER:
COURSE CODE: MENG 6203
COURSE TITLE: ROBOTIC TECHNOLOGY & APPLICATIONS
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Basic structure of robots; Classification and structure of robotic systems; Drives and control systems; Co-ordinate transformation and kinematic analysis; Trajectory planning and control; Programming; Intelligent robotic systems; Robotic applications and installation. Programmable Logic Controls.

SEMESTER:
COURSE CODE: MENG 6300
COURSE TITLE: APPLIED ERGONOMICS
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Effect of heat on workers, acclimatisation; noise in industry, hearing loss, noise control; Colours in working environments; Light sources, illumination standards, brightness and contrast, visual fatigue; Levers, dials and controls; Human vibration control; Man-machine systems; Work design, hand-tool design, work-station design; Wider application of ergonomics.
SEMESTER:
COURSE CODE: MENG 6301
COURSE TITLE: COMPUTER APPLICATIONS IN MANUFACTURING
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: This course provides an overview of how computers are used to improve competitiveness in manufacturing enterprises. It takes a holistic viewpoint, tying together more detailed considerations of elements of the manufacturing business that are presented in other courses. Understanding how computers and especially modelling and simulation have transformed product and process development is a key theme. Another is how computer applications are used in management of production operations and support functions.

SEMESTER:
COURSE CODE: MENG 6302
COURSE TITLE: DESIGN OF PLANT & SERVICES
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Product, process and schedule design, line balancing; Activity relationships and space requirements; Personnel requirements; Material handling including robotic and automatic-guided vehicles; Plant layout; Computer-aided plant layout; Receiving and shipping; Storage and warehousing; Office planning; Facility services - electricity, water, air-conditioning communications.

SEMESTER:
COURSE CODE: MENG 6303
COURSE TITLE: COMPUTER CONTROL SYSTEMS
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Concepts of computer control; Process modelling, solution of difference equations; Stability analysis; System inputs and generating functions; System response; Discrete controller design, stability and realisability; sample period selection, feed forward control and cascade control; control computers; computer interfacing and sensors for computer control.

SEMESTER:
COURSE CODE: MENG 6400
COURSE TITLE: PRODUCTION PLANNING & CONTROL
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Computer-controlled production and inventory systems; Computer-aided process planning techniques; Database configuration and techniques for forecasting and implementation of aggregate plans; Groups Technology for planning and control; Manufacturing Automation Protocol at the Shop Floor; Computer-controlled scheduling and sequencing techniques; Computerised costing systems.

SEMESTER:
COURSE CODE: MENG 6401
COURSE TITLE: ADVANCED PRODUCTION MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES: IENG 3006 FOR THE PROJECT MANAGEMENT COURSE ONLY
SYLLABUS: Designing, managing and improving operations in competitive environments; Supply chain management/logistics in operations; Management of the global business/operations environment; Managing technology and innovation for competitive advantage.

SEMESTER:
COURSE CODE: MENG 6402
COURSE TITLE: HUMAN RESOURCE MANAGEMENT I
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Formal and informal organisation; The bureaucratic model; The organisational environment; Modern organisation theory; The individual in the organisation; SKAO; Theories of motivation and leadership industrial relations; IRA, RSBA; Communication in organisations; Performance appraisal systems.

SEMESTER:
COURSE CODE: MENG 6403
COURSE TITLE: HUMAN RESOURCE MANAGEMENT II
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: External staffing; Internal staffing; Base wage and salary systems; Training and development; Job evaluation systems; HRM planning; OD and change; Occupational health and safety; Future issues.

SEMESTER:
COURSE CODE: MENG 6404
COURSE TITLE: MAINTENANCE ENGINEERING & MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Objectives and policies of maintenance; Reliability, availability, and maintainability; Failure statistics and analysis; Terotechnology and life cycle costing; Preventive maintenance; Condition-based and scheduled maintenance; Corrective maintenance and overhauls; Plant turnarounds; Work-planning and control; Performance and productivity analysis; Quantitative technique; Computer in maintenance.
SEMESTER:
COURSE CODE: MENG 6405
COURSE TITLE: TOTAL QUALITY MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Philosophy and principles of total quality management; Customer satisfaction; Quality systems; Quality tools; Continuous improvement; Employee involvement and empowerment; Supplier partnerships; Benchmarking; Quality function deployment; Statistical process control; Taguchi’s quality engineering; Experimental design.

SEMESTER:
COURSE CODE: MENG 6500
COURSE TITLE: INDUSTRIAL MARKETING
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Nature and scope of marketing; Characteristics of industrial marketing; Organisational buyer behaviour; Industrial marketing research; Industrial marketing planning; Product planning, industrial innovation and new product strategies; Choice of channels and physical distribution; Price determination; Industrial advertising and sales promotion; Personal selling; Marketing audit, cost analysis and controls.

SEMESTER:
COURSE CODE: MENG 6501
COURSE TITLE: STATISTICAL METHODS IN ENGINEERING
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Probability distributions; Estimation and hypothesis testing; Correlation and regression analysis of variance; Experimental design; Multivariate statistics.

SEMESTER:
COURSE CODE: MENG 6502
COURSE TITLE: FINANCIAL MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Analysis of financial statements; Financial forecasting and planning; Risk, return and valuation; Capital budgeting; Financial structure and leverage; Cost of capital; Financing mix decisions; Current asset management; Cash, marketable securities, accounts receivables, inventory and short-term financing; Long-term financing; Common stock, debt, preferred stock, term loans, and leasing; Dividend policy.

SEMESTER:
COURSE CODE: MENG 6503
COURSE TITLE: APPLIED OPERATIONS RESEARCH
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Modelling and optimisation of large scale systems; Linear and non-linear models, stochastic models, multi-criteria models; Use of computer software packages; Decision support systems.
MSc Programmes in:
Production Engineering &
Management,
Production Management,
Engineering Management

All taught MSc programmes in the Department of Mechanical and Manufacturing Engineering are accredited to CEng (Chartered Engineer) level by the Institution of the Mechanical Engineers (UK). Therefore these programmes satisfy fully the engineering education requirements for Chartered Engineer at (CEng) level 2.

THE AIMS AND OBJECTIVES

a) To provide advanced education and training for graduates in Engineering, Science and related areas to meet current and future needs of manufacturing and allied industries.

Three areas of specialisation are identified to enable students to pursue a course of study closely related to the needs of their organisations and their personal career advancement:

i. MSc in Production Engineering & Management
To provide graduates in Mechanical and Industrial Engineering with an in-depth understanding of the technical, economic and managerial factors and their integration in the specification, design and operation of manufacturing systems.

Output: A competent Production Engineer capable of combining technical and managerial functions.

ii. MSc in Production Management
To provide graduates in Engineering and Science with a thorough understanding of the analysis, planning and control of production systems.

Output: A competent Production Manager capable of profitable operations of manufacturing enterprises.

iii. MSc in Engineering Management
To enable graduates in Engineering to strengthen and enhance their managerial capabilities.

Output: A competent Engineering Manager capable of effective management of engineering functions and services.

REGULATIONS

1. The General Regulations of the University and Faculty of Engineering Regulations for MSc Degrees shall apply.

2. Candidates are required to pass both coursework and written examinations in each course offered.

3. In respect of each candidate who fails the examination in any course, the Examiners shall recommend to the Board for Graduate Studies whether a second attempt at the examination should be permitted.

4. A full-time candidate who fails not more than two (2) courses in a semester may be allowed a second attempt at the examinations in those courses.

5. A part-time candidate who fails not more than one (1) course in a semester may be allowed a second attempt at the examination in that course.

6. Candidates will not normally be permitted to repeat the examination of any one (1) course on more than one subsequent occasion.

Entry Requirements

The requirements for admission to the Programme are as follows:

i. MSc in Production Engineering & Management:
A BSc Degree in Mechanical, Industrial or Production Engineering or an equivalent.

ii. MSc in Production Management:
BSc Degree in Engineering or Science or an equivalent. Candidates with other qualifications will be considered if they have at least ten (10) years industrial experience in the area of Production Management. Qualifying examinations may also be prescribed for such candidates.

iii. MSc in Engineering Management:
BSc in Engineering or an equivalent. Candidates with other qualifications will be considered if they have at least ten (10) years industrial experience in the area of Engineering Management. Qualifying examinations may also be prescribed for such candidates.

ii. Normally, at least one (1) year of industrial experience is desirable.

STRUCTURE OF PROGRAMME

Duration of Study

Part-time students: Normally expected to complete the examination requirements within four (4) semesters and complete the Project in accordance with the relevant University Regulations.

Full-time students: Normally expected to complete the examination requirements within two (2) semesters and complete the Project in accordance with the relevant University Regulations.

The Programme consists of a set of courses grouped under four (4) major Subject Groups and a Final Project. Each course is taught over one (1) semester and carries three (3) credits and the Final Project carries nine (9) credits. MENG 6508 Research Methods is a compulsory course for all MSc programmes in the Department.
COURSE LISTING

A. Production Technology and Materials

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6200</td>
<td>Production Technology</td>
</tr>
<tr>
<td>MENG 6201</td>
<td>Machine Tool Technology</td>
</tr>
<tr>
<td>MENG 6202</td>
<td>Applied Materials Technology</td>
</tr>
<tr>
<td>MENG 6203</td>
<td>Robotic Technology & Applications</td>
</tr>
</tbody>
</table>

B. Production Systems Design

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6300</td>
<td>Applied Ergonomics</td>
</tr>
<tr>
<td>MENG 6301</td>
<td>Computer Applications in Manufacturing</td>
</tr>
<tr>
<td>MENG 6302</td>
<td>Design of Plant & Services</td>
</tr>
<tr>
<td>MENG 6303</td>
<td>Computer Control Systems</td>
</tr>
</tbody>
</table>

C. Production Management & Control

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6400</td>
<td>Production Planning & Control</td>
</tr>
<tr>
<td>MENG 6401</td>
<td>Advanced Production Management MENG 3006</td>
</tr>
<tr>
<td>MENG 6402</td>
<td>Human Resource Management I</td>
</tr>
<tr>
<td>MENG 6403</td>
<td>Human Resource Management II</td>
</tr>
<tr>
<td>MENG 6404</td>
<td>Maintenance Engineering & Management</td>
</tr>
<tr>
<td>MENG 6405</td>
<td>Total Quality Management</td>
</tr>
</tbody>
</table>

D. Engineering Management & Optimisation

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6500</td>
<td>Industrial Marketing</td>
</tr>
<tr>
<td>MENG 6501</td>
<td>Statistical Methods in Engineering</td>
</tr>
<tr>
<td>MENG 6502</td>
<td>Financial Management</td>
</tr>
<tr>
<td>MENG 6503</td>
<td>Applied Operations Research</td>
</tr>
<tr>
<td>MENG 6504</td>
<td>Technology & Product Development (MENG 3013)</td>
</tr>
<tr>
<td>MENG 6505</td>
<td>Health, Safety & The Environment</td>
</tr>
<tr>
<td>MENG 6506</td>
<td>Project Management</td>
</tr>
<tr>
<td>MENG 6600</td>
<td>Final Project</td>
</tr>
<tr>
<td>MENG 6508</td>
<td>Research Methods</td>
</tr>
</tbody>
</table>

In addition, undergraduate options, not more than the equivalent of nine (9) credits, may be taken from the following list in each of the subject groups:

Group A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 2008</td>
<td>Manufacturing Technology</td>
</tr>
<tr>
<td>MENG 3014</td>
<td>Computer-aided Design & Manufacture</td>
</tr>
<tr>
<td>MENG 3015</td>
<td>Materials Technology</td>
</tr>
</tbody>
</table>

Group B

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IENG 2000</td>
<td>Work Study & Ergonomics</td>
</tr>
<tr>
<td>IENG 3004</td>
<td>Control Systems Technology</td>
</tr>
<tr>
<td>IENG 3006</td>
<td>Automation</td>
</tr>
</tbody>
</table>

Group C

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6006</td>
<td>Production Management</td>
</tr>
</tbody>
</table>

Group D

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IENG 2002</td>
<td>Operations Research I</td>
</tr>
<tr>
<td>IENG 3007</td>
<td>Operations Research II</td>
</tr>
<tr>
<td>IENG 3008</td>
<td>Simulation</td>
</tr>
</tbody>
</table>

OTHER INFORMATION

Requirements for Award of MSc

Candidates are required to obtain a total of 36 credits, as given below, in coursework and complete an industry-oriented project, MENG 6600, equivalent to nine (9) credits.

1. **MSc in Production Engineering & Management:**
 - 18 credits from Subject Groups A and B
 - 18 credits from Subject Groups C and D.

2. **MSc in Production Management:**
 - 24 credits from Subject Groups B and C
 - 12 credits from Subject Group D.

3. **MSc in Engineering Management:**
 - 12 credits from Subject Groups A and B
 - 24 credits from Subject Groups C and D.

There are mandatory courses for each of the programmes that must be taken by students. These are essential for students to matriculate for the award of an MSc in each of the programmes listed above. Selection of courses is subject to the approval of the Department.

Who Should Enrol?

The Programmes would be most useful to Engineers and Managers holding responsibilities for Planning, Design and Development, Production/Operations, Plant Maintenance, and Projects in Manufacturing and Service Industries.

Graduates in Engineering or Science wishing to pursue careers in Production/Operations Management may also apply.
MSc In Engineering Asset Management

THE AIMS AND OBJECTIVES
To provide advanced education and training for graduates in Engineering to meet current and future needs of Engineering Asset Management (EAM) which enables effective maintenance of physical plant in a wide range of engineering and production organisations including, energy, utilities, manufacturing (all sectors), production and processing plans.

This area of specialisation has been identified in close consultation with local industry that aims to enable students to pursue a course of study closely related to the needs of their organisations and their personal career advancement in the domain of EAM to provide graduates with an in-depth understanding of the technical, economic and managerial factors and their integration in the specification, design and operation of EAM systems.

Output: A competent EAM Engineer capable of combining technical and managerial functions.

The graduates would be provided with in depth theoretical and practical knowledge and skills required to:
- Develop, deploy and control strategic plans and programmes to support organizational strategies
- Formulate and implement maintenance programmes for physical assets based on their criticality to operations
- Design organizational structures and procedures for managing physical assets
- Implement and control work processes and procedures to optimize use of resources
- Develop measurement and reporting systems for the assessment of performance of assets and operations
- Formulate and execute long and medium term plans for continuous improvement in asset performance
- Measure and improve asset reliability and maintainability to meet changes in the operating environment
- Select and use computerized maintenance management information systems to support fact based decisions.
- Integrate safety and environmental factors in the implementation of work methods and procedures
- Implement project management technology for the timely execution of work assignments
- Implement systems and procedures for the assessment and development of human resources to support changing needs
- Prepare and implement annual budgetary control programs

REGULATIONS
1. The General Regulations of the University and Faculty of Engineering Regulations for MSc Degrees shall apply.
2. Candidates are required to pass both coursework and written examinations in each course offered.
3. In respect of each candidate who fails the examination in any course, the Examiners shall recommend to the Board for Graduate Studies whether a second attempt at the examination should be permitted.

4. A full-time candidate who fails not more than two (2) courses in a semester may be allowed a second attempt at the examinations in those courses.
5. A part-time candidate who fails not more than one (1) course in a semester may be allowed a second attempt at the examination in that course.
6. Candidates will not normally be permitted to repeat the examination of any one (1) course on more than one subsequent occasion.

ENTRY REQUIREMENTS
The requirements for admission to the Programme are as follows:
- BSc in Engineering a related degree. Candidates with other qualifications will be considered if they have at least ten (10) years industrial experience in the area of Engineering Asset Management. Qualifying examinations may also be prescribed for such candidates.
- Normally, at least one (1) year of relevant industrial experience is desirable. This may be waived in cases of high class of first degree from a recognised institution (i.e. first or upper second class honours).

STRUCTURE OF PROGRAMME OFFERED PART-TIME AND FULL-TIME

Duration of Study
Part-time students: Normally expected to complete the examination requirements within four (4) semesters and complete the Project in accordance with the relevant University Regulations.

Full-time students: Normally expected to complete the examination requirements within two (2) semesters and complete the Project in accordance with the relevant University Regulations.

The Programme consists of twelve (12) courses and a Final Project. Each course is taught over one (1) semester and carries three (3) credits and the Final Project carries nine (9) credits. MENG 6508 Research Methods is a compulsory course for all MSc programmes in the department.

COURSE LISTING
The structure and the courses for each type will consist of the following courses:

A. FULL-TIME PROGRAMME STRUCTURE:

CORE COURSES

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MENG 6700</td>
<td>Strategic Asset Management</td>
</tr>
<tr>
<td></td>
<td>MENG 6701</td>
<td>Asset Maintenance Technologies</td>
</tr>
<tr>
<td></td>
<td>MENG 6705</td>
<td>Maintainability Engineering & Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MENG 6702</td>
<td>Work Planning and Scheduling</td>
</tr>
<tr>
<td></td>
<td>MENG 6703</td>
<td>Condition Monitoring and Diagnostics</td>
</tr>
<tr>
<td></td>
<td>MENG 6704</td>
<td>Maintenance Analysis and Optimisation</td>
</tr>
<tr>
<td></td>
<td>MENG 6706</td>
<td>Asset Reliability Management</td>
</tr>
<tr>
<td></td>
<td>MENG 6508</td>
<td>Research Methods</td>
</tr>
</tbody>
</table>
Optional Courses

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6505</td>
<td>Health, Safety and the Environment</td>
</tr>
<tr>
<td>MENG 6708</td>
<td>Reliability Centered Maintenance</td>
</tr>
<tr>
<td>MENG 6506</td>
<td>Project Management</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6707</td>
<td>Asset Performance Management</td>
</tr>
<tr>
<td>MENG 6405</td>
<td>Total Quality Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6600</td>
<td>Final Project</td>
</tr>
</tbody>
</table>

(On successful completion of 12 courses)

B. Part-Time Programme Structure: Core Courses

Year 1

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6700</td>
<td>Strategic Asset Management</td>
<td></td>
</tr>
<tr>
<td>MENG 6701</td>
<td>Asset Maintenance Technologies</td>
<td></td>
</tr>
<tr>
<td>MENG 6402</td>
<td>Human Resource Management I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6702</td>
<td>Work Planning and Scheduling</td>
<td></td>
</tr>
<tr>
<td>MENG 6703</td>
<td>Condition Monitoring and Diagnostics</td>
<td></td>
</tr>
<tr>
<td>MENG 6706</td>
<td>Asset Reliability Management</td>
<td></td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6705</td>
<td>Maintainability Engineering and Management</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6704</td>
<td>Maintenance Analysis and Optimisation</td>
<td></td>
</tr>
<tr>
<td>MENG 6508</td>
<td>Research Methods</td>
<td></td>
</tr>
</tbody>
</table>

Optional Courses

Year 2

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6505</td>
<td>Health, Safety and the Environment</td>
<td></td>
</tr>
<tr>
<td>MENG 6506</td>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td>MENG 6708</td>
<td>Reliability Centered Maintenance</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6707</td>
<td>Asset Performance Management</td>
<td></td>
</tr>
<tr>
<td>MENG 6405</td>
<td>Total Quality Management</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6600</td>
<td>Final Project</td>
</tr>
</tbody>
</table>

(On successful completion of 12 courses)

Other Information

Requirements for Award of MSc

Candidates are required to obtain a total of 36 credits, as given in the part-time and full-time programme structure and courses above, in coursework and complete an industry-oriented project, MENG 6600, equivalent to nine (9) credits.

Who Should Enrol?

The Programmes would be most useful to Engineers and Managers holding responsibilities for Asset Management, Plant and Project maintenance, Reliability and Operational Efficiency and Projects in Engineering, Manufacturing and Service Industries.

Graduates in Engineering or Science wishing to pursue careers in Engineering Asset Management may also apply.

MSC in Manufacturing Engineering & Management (MEM)

The Aims

i. To provide graduate students with the advanced and specialized knowledge in the areas of Manufacturing Engineering and Management with a focus on the conventional and computer integrated manufacturing fields.

ii. To prepare graduates with the knowledge of product design processes and rapid product development approaches required to support the local and regional economy with a particular emphasis on integration of computer aided design (CAD), computer aided engineering (CAE) and computer aided manufacturing (CAM) tools and techniques.

iii. To produce graduates capable of developing lean management plans and just in time (JIT) manufacturing systems.

iv. To produce graduates capable of implementing and managing modern manufacturing initiatives.

The Learning Outcomes

On completion of the programme, the graduates will be able to:

i. Apply systematic approach for appropriate design and evaluation of manufacturing planning and control (MPC) systems, manufacturing data communication networks, product data management (PDM) models, automated guided vehicles (AGVs) and automated material storage/retrieval systems (AS/RS) in the context of local and regional manufacturing.

ii. Identify various elements of computer integrated manufacturing (CIM), and evaluation of their interactions for introduction of integrated systems in the context of Caribbean industry.

iii. Apply an integrated modeling approach to design innovative product models by deploying total quality tools and techniques to arrive at an innovative product design that fulfills the Caribbean requirements.

iv. Use the principles of computer numerical control (CNC) and rapid prototyping (RP) for effective operation and utilization of the Caribbean resources.
Regulations and Entry Requirements

A) The General Regulations of the University, the Faculty of Engineering and the Department of Mechanical and Manufacturing Engineering for MSc Degrees shall apply.

B) The requirements for admission to the programme are as follows:

• A BSc Degree in Mechanical, Manufacturing, Production, Industrial Engineering or an equivalent with at least a Lower Second Class degree.

• At least one (1) year of industrial experience is desirable. This may be waived for Recent Graduates with a First or Upper Second Class Honours degree, who wish to complete the programme on a Full-Time basis.

• Applicants with Third Class or Pass degrees require at least three (3) years industrial experience.

A graduate student in this Programme is also expected to have a strong mathematical and analytical background and ability to use specialized software applications within this context.

Structure of Programme

Offered part-time and full-time

Duration of Study

Part-time students: Normally expected to complete the examination requirements within four (4) semesters and complete the Project in accordance with the relevant University Regulations.

Full-time students: Normally expected to complete the examination requirements within two (2) semesters and complete the Project in accordance with the relevant University Regulations.

No. of Credits Required: 45

<table>
<thead>
<tr>
<th>Course Type</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Six (6) Compulsory Courses</td>
<td>18</td>
</tr>
<tr>
<td>Four (4) Optional Courses</td>
<td>12</td>
</tr>
<tr>
<td>Final Project</td>
<td>9</td>
</tr>
</tbody>
</table>

Other information

The programme consists of a set of six (6) compulsory courses and four (4) optional courses and a final project. All courses are three (3) credits unless otherwise specified.

The programme stresses university-industry linkages. Student projects will normally be provided and sponsored by companies in which a joint advisory committee of Faculty members and corporate personnel will provide guidance.

COURSE LISTING

COMPULSORY COURSES:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6200</td>
<td>Production Technology</td>
</tr>
<tr>
<td>MENG 6207</td>
<td>Computer Integrated Manufacturing</td>
</tr>
<tr>
<td>MENG 6306</td>
<td>Advanced CAD/CAM for Product Realization</td>
</tr>
<tr>
<td>MENG 6400</td>
<td>Production Planning & Control</td>
</tr>
<tr>
<td>MENG 6504</td>
<td>Technology and Product Development</td>
</tr>
<tr>
<td>MENG 6508</td>
<td>Research Methods</td>
</tr>
<tr>
<td>MENG 6600</td>
<td>Final Project</td>
</tr>
</tbody>
</table>

OPTIONAL COURSES:

Group A: Manufacturing Engineering

Two (2) courses to be chosen from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6203</td>
<td>Robotic Technology & Applications</td>
</tr>
<tr>
<td>MENG 6302</td>
<td>Design of Plant & Services</td>
</tr>
<tr>
<td>MENG 6305</td>
<td>Finite Elements Analysis in Manufacturing</td>
</tr>
<tr>
<td>MENG 6307</td>
<td>Design & Simulation of manufacturing Systems</td>
</tr>
</tbody>
</table>

Group B: Manufacturing Management

Two (2) courses to be chosen from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENG 6505</td>
<td>Health, Safety & The Environment</td>
</tr>
<tr>
<td>MENG 6405</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>MENG 6506</td>
<td>Project Management</td>
</tr>
</tbody>
</table>

Requirements for Award of MSc

Candidates are required to obtain a total of thirty (30) credits from six (6) Compulsory courses (18 credits) and four (4) Optional courses, two courses from each Subject Groups A & B (12 credits) and complete an industry-oriented project, MENG 6600 (9 credits).

Regulations

The General Regulations of the University and Faculty of Engineering for MSc Degrees shall apply.

SYLLABUSES

SEMESTER:

COURSE CODE: ENGR 6701
COURSE TITLE: MANAGEMENT & LEADERSHIP
NO. OF CREDITS: 3
PREREQUISITES:

SYLLABUS: Leadership and Team-Building; Decision Making, Communication and Presentation; Motivation and People Management; Time and Project Management; Business Processes; New Venture Development; Supply Chain Management; other related areas.

SEMESTER:

COURSE CODE: MENG 6200
COURSE TITLE: PRODUCTION TECHNOLOGY
NO. OF CREDITS: 3
PREREQUISITES: MENG 2008

SYLLABUS: This course follows on from the fundamental principles of the manufacturing process and design in the undergraduate programme and emphasises the broader aspects of the production systems as opposed to the processes themselves. Topics will include welding design considerations and specifications, foundry systems, metal-forming equipment, polymer technology, machining system, automation and Computer Integrated Manufacturing.
SEMESTER:
COURSE CODE: MENG 6202
COURSE TITLE: APPLIED MATERIALS TECHNOLOGY
NO. OF CREDITS: 3
PREREQUISITES: MENG 3015
SYLLABUS: This course follows from the fundamental principles of materials technology and goes further into the more applied aspects of materials performance. The emphasis would be on preventive and investigative methods and would include such topics as inspection and analytical techniques, failure mechanisms and analysis.

SEMESTER:
COURSE CODE: MENG 6203
COURSE TITLE: ROBOTIC TECHNOLOGY & APPLICATIONS
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Basic structure of robots; Classification and structure of robotic systems; Drives and control systems; Co-ordinate transformation and kinematics analysis; Trajectory planning and control; Programming; Intelligent robotic systems; Robotic applications and installation; Programmable Logic Controls.

SEMESTER:
COURSE CODE: MENG 6204
COURSE TITLE: ADVANCED MACHINING METHODS & ANALYSIS;
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Overview of methods and systems for material removal; Machining methods employing tools of defined geometry; Mechanics of orthogonal and oblique cutting; Nature of contact between chip and tool; Thermal aspects; Tool wear and Tool life; Machinability; Cutting fluids; Analysis of turning, drilling and milling processes; Abrasive machining processes; Developments in non-traditional machining methods; Economics of machining.

SEMESTER:
COURSE CODE: MENG 6205
COURSE TITLE: ADVANCED FORMING METHODS & ANALYSIS
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Stress and strain analysis; Yield conditions; Stress-strain relations in elastic and plastic deformations; Workhardening; Formulation of elastic and plastic problems; Methods of solution: Slab method; Slip-line fields and extremum principles; Applications of theory of plasticity to metal-working operations viz: wire drawing, extrusion, rolling, forging, deep drawing, spinning, etc; Friction in metal-forming; Recent developments in technology and theory of metal-forming.

SEMESTER:
COURSE CODE: MENG 6206
COURSE TITLE: PLASTICS PROCESSING
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Properties and applications of common and engineering plastics; Manufacturing methods for products of thermosetting and thermoplastic polymers; Design for production and development of tooling for Extrusion, Injection moulding; Thermoforming; Calendering; Rotational moulding; Compression moulding; Transfer moulding; Blow moulding; Film blowing; Analysis of polymer melt-flow; Processing of reinforced plastics.

SEMESTER:
COURSE CODE: MENG 6207
COURSE TITLE: COMPUTER INTERGRATED MANUFACTURING
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Introduction to CIM; Role of the computer in manufacturing; Hardware and software components of computer automation; Advanced computer architectures used in manufacturing; Computer Aided Design (CAD); Computer Aided Manufacturing (CAM); Linking CAD with CAM; Control of manufacturing equipment; Computer controlled parts handling and assembly; Simulation of manufacturing processes; Quality in CIM perspective; Programmable factory.

SEMESTER:
COURSE CODE: MENG 6208
COURSE TITLE: PRODUCT TOOL & MANUFACTURING ENGINEERING
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Product domain/process domain; Product design/ product quality; Process flow chart; Sheet metal forming design considerations; Metal cast parts design; Plastic component design; Wood products design; Design for assembly; Finishes; Detailed tool, dye and mould design; Equipment selection; Manufacturing support systems.

SEMESTER:
COURSE CODE: MENG 6302
COURSE TITLE: DESIGN OF PLANT & SERVICES
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Product, process and schedule design, line balancing; Activity relationships and space requirements; Personnel requirements; Material handling including robotic and automatic-guided vehicles; Plant layout; Computer-aided plant layout; Receiving and shipping; Storage and warehousing; Office planning; Facility services - electricity, water, air-conditioning communications.
SEMESTER:
COURSE CODE: MENG 6305
COURSE TITLE: FINITE ELEMENT ANALYSIS IN MANUFACTURING
NO. OF CREDITS: 3
PREREQUISITES:

SEMESTER:
COURSE CODE: MENG 6306
COURSE TITLE: ADVANCED CAD/CAM FOR PRODUCT REALIZATION
NO. OF CREDITS: 3
PREREQUISITES: MENG 3014

SEMESTER:
COURSE CODE: MENG 6307
COURSE TITLE: DESIGN & SIMULATION OF MANUFACTURING SYSTEMS
NO. OF CREDITS: 3
PREREQUISITES: MATH 2240 INDUSTRIAL STATISTICS OR A SIMILAR COURSE

SEMESTER:
COURSE CODE: MENG 6400
COURSE TITLE: PRODUCTION PLANNING AND CONTROL
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Introduction to Manufacturing Systems and Lean Thinking, Aggregate Production Planning (app), Materials Requirements Planning (MRP), Material and Inventory Management Techniques, and Sequencing & Scheduling problems.

SEMESTER:
COURSE CODE: MENG 6401
COURSE TITLE: ADVANCED PRODUCTION MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES: MENG 3006
SYLLABUS: Designing, managing and improving operations in competitive environments by focusing on key elements: Quality, productivity and technology; Supply chain management/logistics operations environment; Management of the global business/operations environment; Integrated flow of funds, data and materials; Industrial ecology process and product audits, EIA and ISO 14000; Management and the legal environment.

SEMESTER:
COURSE CODE: MENG 6402
COURSE TITLE: HUMAN RESOURCE MANAGEMENT I
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Forming and informal organisations; The bureaucratic model; The organisational environment; Modern organisation theory; The individual in the organisation; SKAO; Theories of motivation and leadership; Industrial relations; IRA, RSBA; Communication in organisations; Performance appraisal systems.

SEMESTER:
COURSE CODE: MENG 6405
COURSE TITLE: TOTAL QUALITY MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Philosophies and principles of total quality management; Customer satisfaction; Quality systems; Quality tools; Continuous improvement; Employee involvement and empowerment; Supplier partnerships; Benchmarking; Quality function deployment; Statistical process control; Taguchi’s quality engineering; Experimental design.

SEMESTER:
COURSE CODE: MENG 6504
COURSE TITLE: TECHNOLOGY & PRODUCT DEVELOPMENT
NO. OF CREDITS: 3
PREREQUISITES: MENG 3013
SYLLABUS: Relationship between technology transfers, technological change and economic development. Technology diffusion and innovation industry; Technology selection and capacity planning; Design axioms and corollaries; Features in design and manufacturing; Management of product development; Strategic approval; Integration of expert systems; Databases and CAD; Neural networks in design of products.
SEMESTER:
COURSE CODE: MENG 6505
COURSE TITLE: HEALTH, SAFETY & THE ENVIRONMENT
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Hazards associated with manual work, machinery, mechanical systems, construction and other common industrial scenarios; Safety technology and engineering controls; Electricity and fire; Principles of industrial hygiene; Occupational health hazards; Personal Protective Equipment; Ergonomics; Welfare issues - the working environment; Risk assessment and hazard analysis; Job safety analysis; Safe systems of work, including permit to work systems; Inspection techniques; Accidents: causation, investigation, reporting and costs; Communication; Motivation and training; Psychological factors in safe behaviour; Safety and health legislation (in Trinidad and Tobago, and key legislation in the UK and USA).

SEMESTER:
COURSE CODE: MENG 6506
COURSE TITLE: PROJECT MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Project identification in the context of investment programmes at national and sectoral levels; Pre-investment studies; Project management, development and evaluation; Project organisation; Project analysis and evaluation (market, technical, economic, financial, social and environmental); Project implementation (procurement/contracts programming and control); Export evaluation.

SEMESTER:
COURSE CODE: MENG 6507
COURSE TITLE: ENTREPRENEURSHIP & INNOVATION
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Entrepreneurship (Theory and Practice); Entrepreneurship in small businesses; Entrepreneurial ventures; Creative design and innovation (Ideas to Product to Market); Design, marketing and the consumers; Diffusion and transfer of technology and innovation; Strategic planning (Business Planning and New Ventures).

SEMESTER:
COURSE CODE: MENG 6508
COURSE TITLE: RESEARCH METHODS
NO. OF CREDITS: 3
PREREQUISITES:

COURSE CODE: MENG 6700
COURSE TITLE: STRATEGIC ASSET MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:

YEAR: 1
SEMESTER: 1
COURSE CODE: MENG 6701
COURSE TITLE: ASSET MAINTENANCE TECHNOLOGIES
NO. OF CREDITS: 3
PREREQUISITES:

YEAR: 1
SEMESTER: 2
COURSE CODE: MENG 6702
COURSE TITLE: WORK PLANNING AND SCHEDULING
NO. OF CREDITS: 3
PREREQUISITES:

YEAR: 1
SEMESTER: 2
COURSE CODE: MENG 6703
COURSE TITLE: CONDITION MONITORING AND DIAGNOSTICS
NO. OF CREDITS: 3
PREREQUISITES:
OFFICE OF THE DEAN
MSc in Project Management

This is a Campus programme involving the Faculty of Engineering, Faculty of Social Sciences (Department of Management Studies) and the Institute of Business, and it is administered in the Faculty by the Department of Civil & Environmental Engineering through a Programme Coordinator. It is academically managed by a Campus-based team led by the Dean of the Faculty. This MSc is a two-year evening programme. The Degree will be awarded with Pass or Distinction, following the normal University requirements for taught Master’s Programmes.

The Aims and Objectives
To train and produce Graduates who will be able to:
• Solve real-world management problems associated with the project cycle and to exercise sound management judgment through practical application of Project Management concepts and skills;
• Apply management principles to business situations;
• Develop and communicate project financial and performance objectives;
• Accurately develop Master Plans for projects and programmes, including tasks, budget and resource requirements;
• Effectively monitor, control and report project costs, the scheduled and quality/performance levels needed to meet agreed milestones and required levels of earned value; and
• Provide effective leadership and promote a true environment that will help motivate team members and resolve conflicts.

Entry Requirements
A first degree from an approved University in Project Management, Information Technology, Planning, Agriculture, Accounting, Engineering, Management Sciences, Economics, Architecture, Quantity Surveying, Land Surveying, Construction Management. Applicants must possess sufficient related work experience that would assist the candidate in becoming eligible for registration in related professional associations and institutions. Candidates with a good first degree in other areas will be entertained on a case-by-case basis.

Structure of Programme
Offered Part-time only
The programme will be an evening programme with lectures and tutorials being delivered between 4.00 pm and 8.00 pm on weekdays, and will involve an interactive approach to learning embracing real life problems and experiences. Group discussions and pursuit of topics and assignments will be an essential feature of the delivery format.

Duration of Study:
A minimum of four (4) semesters or a maximum of six (6) semesters.
No. of Credits Required: 45

No. of Credits
Eight (8) core courses to be done over the first two semesters 24
Project (over the third and fourth semesters) 9
Four (4) electives over the third and fourth semesters 12
Total 45

Course Listing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRMG 6001</td>
<td>Project Leadership & Organisational Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6003</td>
<td>Project & Programme Management</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6004</td>
<td>Project Accounting & Finance</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6002</td>
<td>Project Management Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6006</td>
<td>Strategic Project Planning</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6007</td>
<td>Procurement Management, Logistics & Contracting</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6010</td>
<td>Risk Management for Project Managers</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6015</td>
<td>Contract Management & Contract Law for Project Managers</td>
<td>3</td>
</tr>
</tbody>
</table>

Candidates will be required to deliver seminar presentations for three (3) of the eight (8) core courses.

Electives
The following is a list of the Elective Courses from which the candidate is required to complete four (4) by the end of the fourth semester. Other courses may be selected from graduate programmes but must be approved by the Programme Coordinator.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COEM 6016</td>
<td>Natural Hazards Management</td>
<td>3</td>
</tr>
<tr>
<td>IENG 6006</td>
<td>Occupational Safety & Health</td>
<td>3</td>
</tr>
<tr>
<td>MENG 6405</td>
<td>Total Quality Management</td>
<td>3</td>
</tr>
<tr>
<td>MENG 6505</td>
<td>Health, Safety & The Environment</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6005</td>
<td>Marketing Management & Business Communication</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6008</td>
<td>Project Estimating & Cost Management</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6009</td>
<td>Managing Information</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6011</td>
<td>Advanced Project Management Practice</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6012</td>
<td>Value Engineering & Management</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6013</td>
<td>International Project Management</td>
<td>3</td>
</tr>
<tr>
<td>GINF 5002</td>
<td>Geographic Information Systems 1</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6014</td>
<td>Project Management Research Project</td>
<td>9</td>
</tr>
<tr>
<td>PRMG 6016</td>
<td>Ethics for the Project Manager</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6017</td>
<td>Project Management for Small & Medium Size Organisations</td>
<td>3</td>
</tr>
<tr>
<td>PRMG 6018</td>
<td>Financial Risk Management & Regulatory Compliance (Banks and Financial Institution)</td>
<td>3</td>
</tr>
</tbody>
</table>

Designated courses are already delivered within the Campus Units involved.

PROJECT MANAGEMENT RESEARCH PROJECT

This project-based course carries nine (9) credits, and provides the student with the opportunity to integrate knowledge and skills learned throughout the programme, and should normally be taken as the last course in the delivery of the programme. Conceptual work on the Project will begin at the end of the first semester, and the project should be completed by the end of the fourth semester. Students develop, design and present a project; plan and justify the project; work to satisfy performance, schedule and budget requirements; adjust for unplanned occurrences; and provide status reports.

As an alternative, the student may opt to pursue an internship project, within the mainstream of their area of specialisation, that is approved by the Academic Unit involved.

SYLLABUSES FOR CORE COURSES

SEMESTER: 1

COURSE CODE: PRMG 6001
COURSE TITLE: PROJECT LEADERSHIP & ORGANISATIONAL BEHAVIOUR
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: This course examines interpersonal and intrapersonal dynamics as they affect the achievement of corporate goals. Topics include: leadership, theories of organisational behaviour including motivation, group dynamics, organisational communication processes, leadership skills for project managers (profile of effective project managers), project leadership, developing a project vision, leadership and team building, team dynamics and cultural diversity, Project organisational design and structure, managing stress, negotiation, understanding conflict in the project environment, managing change in a complex domestic and international environment, leadership, power, influence and politics in project management.

SEMESTER: 2

COURSE CODE: PRMG 6002
COURSE TITLE: PROJECT MANAGEMENT INFORMATION SYSTEMS (PMIS)
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: This course addresses project management principles and methods from the standpoint of the project and programme manager who must organise, plan, implement and control non-routine activities to achieve schedule, budget and performance objectives. Topics include: project life cycles, definition of PMIS, the planning system and the control systems, networking systems, performance management systems, cost and resource management systems, capacity planning systems. Evaluating systems, project management procedures, system selection and implementation, project management software, earned value techniques and project audits are studied.
SEMESTER: 1
COURSE CODE: PRMG 6003
COURSE TITLE: PROJECT & PROGRAMME MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: This course addresses the culture, principles and techniques of project and programme management. The following are covered: What is a project? What is project management? The project life cycles for different industries, project context: Planning the project (project selection - tools and techniques), scope management defining the project. Project planning, work breakdown structures, Gantt chart, PERT chart, CPM, preparing the master plan, project budgeting, responsibility matrix, communication plan, project criterion for success, project control [project baseline, status reporting, control cycle, monitoring and control tools, resource grading, change control, resource levelling, variance reporting tools, project audit], implementation, Project Finalisation and close-out. Project cost, risk and quality management. What is programme management, benefits of programme management, programme management organisation/programme planning, benefits management, stakeholder management, programme management processes, effective project and programme teams, the project support office, audit, applications of project management software, e-business programme management.

SEMESTER: 1
COURSE CODE: PRMG 6004
COURSE TITLE: PROJECT ACCOUNTING & FINANCE
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: The objective of this course is to apply principles, concepts, tools and techniques of accounting and finance to the different phases of project conception, imitation and planning, scheduling and control and implementation, termination and post-evaluation; financial statements and analysis; accounting principles and policies, valuing projects - engineering economic analysis, financial methods (NPV, IRR, profitability index), multi-criteria methods of evaluation, real options analysis, social cost-benefit analysis and development impacts, cost capacity relationships/life cycle costing, earned value approach, the costing of products and services (product-costing, job-costing), projects budgets in planning, cost control and performance evaluation.

SEMESTER: 2
COURSE CODE: PRMG 6007
COURSE TITLE: PROCUREMENT MANAGEMENT, LOGISTICS & CONTRACTING
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Principles and concepts essential to effecting large procurement programmes. Planning, sourcing and contractual design for diverse acquisitions. This course examines processes through which works, goods and services are acquired in the project management. Topics include: What is procurement management, contract and procurement strategies [IDB, WB, EEC, CDB, private sector and public sector]; legal issues, contracting pricing alternatives; writing terms; reference, technical, managerial and commercial requirements, request for proposals (RFP) development, source selection, invitation to bid, bid evaluation (process criteria report), risk assessment, contract negotiation and administration, contract close out and case studies.

SEMESTER: 2
COURSE CODE: PRMG 6010
COURSE TITLE: RISK MANAGEMENT FOR PROJECT MANAGERS
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: This course will emphasise risks and risk management processes in projects and firms that are involved in project management. It will discuss and explore the concept of risk management both from the strategic and tactical levels. Topics: Why project risk management? The risk management cycle, the nature of risk management, risk and decision-makers, integration, general approach and definitions, risk identification, risk assessment methods and documentation, management of contingency allowances, managing the risks of the project environment dealing with risks in contracts and project risk analysis and management (tools and techniques) e.g. assumption analysis, check lists, prompt lists, brainstorming, Delphi technique, probability impact tables, interviews, risk register, decision trees, influence diagrams, Monte Carlo simulation, sensitivity analysis, PERT and control techniques. The practical use of statistics in collecting, organising, analysing, interpreting and presenting data both descriptive and inferential techniques are covered. The perspective will be aimed at medium and upper level project managers in various organisations.
SEMESTER: 1
COURSE CODE: PRMG 6015
COURSE TITLE: CONTRACT MANAGEMENT & CONTRACT LAW
FOR PROJECT MANAGERS
NO. OF CREDITS: 3

SYLLABUSES FOR ELECTIVES
SEMESTER: 2
COURSE CODE: PRMG 6005
COURSE TITLE: MARKETING MANAGEMENT & BUSINESS COMMUNICATION
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: This course presents a structured approach to understanding the marketing function. Each student chooses a product or service and develops a written marketing plan to learn how to determine and integrate the elements of marketing strategy. Topics include: marketing segregation, targeting and positioning, market research, product decisions, pricing, channels of distribution, sales management, advertising, marketing budgets. Business communication emphasises communication competencies that can help ensure business success. Topics covered include how to conduct research, analyse information and prepare business reports, deliver effective information and persuasive oral presentations, work successfully with an assigned group and communicate effectively in a global workplace.

SEMESTER: 1
COURSE CODE: PRMG 6008
COURSE TITLE: PROJECT ESTIMATING & COST MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: This course addresses the need for project managers to understand and apply advance tools and techniques to the development and management of project financial plans. Topics include project cost and benefit estimation, project financial analysis, project simulation, budgeting, cost/schedule integration, the cost breakdown structure, the cost commitment profile, techniques for monitoring and controlling project cost, methods of payment and their uses, types of estimate, estimates at different stages of the project life cycle, estimating methods such as: parametric, comparative, bottom-up estimating, computerised tools, analytical, accuracy of estimates, earned value management systems.

SEMESTER: 2
COURSE CODE: PRMG 6009
COURSE TITLE: MANAGING INFORMATION TECHNOLOGY PROJECTS
NO. OF CREDITS: 3
PREREQUISITE: PRMG 6002
SYLLABUS: This course addresses all areas of IT project management, hardware, software, systems integration, and human resources. It extends traditional project management concepts into the IT arena. Topics covered: IT project phases, strategies for IT projects, Project initiation and requirements definition, establishing IT project teams, project planning estimation, project execution and control, project close-out, managing hardware and telecommunications projects, managing software projects, managing systems, integration projects.

SEMESTER: 2
COURSE CODE: PRMG 6011
COURSE TITLE: ADVANCED PROJECT MANAGEMENT PRACTICE
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Advanced PM practice and professional exam preparation examines current topics in the project management field and provides a comprehensive review of the project management body of knowledge PMBOK (USA) and BOK (Europe). Topics include: global project management, leadership, virtual teams and project information systems.

SEMESTER: 1
COURSE CODE: PRMG 6012
COURSE TITLE: VALUE ENGINEERING & MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: This course provides students with central concepts and practical tools and techniques in Value Engineering (VE), Value Management (VM) and Value Analysis (VA). Topics include: the value concept, value engineering methodology [information phase, speculative phase, analytical phase, proposal phase and final report phase]. Several techniques for project selection e.g., breakdown analyses, cost modelling techniques, delphi techniques, energy modelling, lifecycle cost model. Life cycle costing methodology. Value management plan, keys to successful VE implementation and programme management strategy for a VE/VA programme.

SEMESTER: 1
COURSE CODE: PRMG 6013
COURSE TITLE: INTERNATIONAL PROJECT MANAGEMENT
NO. OF CREDITS: 3
PREREQUISITES:
SYLLABUS: Geography, culture and society, transnational commerce and finance; international principles and regulations for procurement of finance, goods and services, tendering procedures; project preparation, planning, financing and execution; international contract law and operations in the conduct of transnational projects, preparing contracts, negotiating contracts, dispute resolution; transnational joint ventures and the management of resources for project execution and closure.
Financial risk management practices. The course uses case studies as the principal vehicle of treating with issues e.g. Efficient Market Hypothesis; Mean Variance Portfolio Theory, various statistical measures within risk analysis. It also discusses special and regulatory legislation. It explores the relevance and application of discussing the question of due diligence and the role of central banks in banks, insurance companies and other financial institutions. It identifies the source of risks especially organization and shareholder value. It identifies the key risks facing small business and seeks to answer the question; does small business require a separate and distinct managerial strategy and distinct tools?

SEMESTER: 2
COURSE CODE: PRMG 6017
COURSE TITLE: PROJECT MANAGEMENT FOR SMALL AND MEDIUM SIZE ORGANISATIONS
NO OF CREDITS: 3
PREREQUISITES: NONE
SYLLABUS: The course discusses the business environment within the informal sector, small and medium enterprises, sole traders, the NGOs, and CBOs. It discusses the unique challenges to the conduct of business within this sector. It treats with the principal weaknesses of management operations and practice in the sector and the role of documentation, availability and use of technology, written and oral communication and the preparation of a business plan as well as managing finance, organizational structure, applications of management tools in respect of time, cost and quality management. It discusses the unique challenges of applying management tools to this sector. The course is about identifying and studying the unique nature of small business and seeks to answer the question; does small business require a separate and distinct managerial strategy and distinct tools?

SEMESTER: 2
COURSE CODE: PRMG 6018
COURSE TITLE: FINANCIAL RISK MANAGEMENT AND REGULATORY COMPLIANCE (BANKS AND FINANCIAL INSTITUTIONS)
NO OF CREDITS: 3
PREREQUISITE: PRMG 6010 RISK MANAGEMENT FOR PROJECT MANAGERS
PRMG 6004 PROJECT ACCOUNTING AND FINANCE
SYLLABUS: The course is offered as a specialist course in Risk Management as it applies to the financial sector. It provides knowledge and understanding of the key elements of risk management and their ability to protect business organizations and add value to the organization and shareholder value. It identifies the key risks facing financing services institutions and identifies the source of risks especially in banks, insurance companies and other financial institutions. It discusses the question of due diligence and the role of central banks and regulatory legislation. It explores the relevance and application of various statistical measures within risk analysis. It also discusses special issues e.g. Efficient Market Hypothesis; Mean Variance Portfolio Theory, Arbitrage Pricing Theory and Factor Models and Risk Adjusted Measures. The course uses case studies as the principal vehicle of treating with financial risk management practices.

MPhil/PhD DEGREES IN PROJECT MANAGEMENT REGULATIONS:

MPhil in Project Management
The Regulations for the MPhil in Project Management are the same as the General Regulations for the MPhil, except that the candidates applying for registration should normally have either:
(a) A Bachelor’s degree with Second Class Honours in Project Management, Civil Engineering, Construction Engineering and Management or
(b) An equivalent qualification in the field of Management Studies

PhD in Project Management
The Regulations for the PhD in Project Management are the same as the University and Faculty of Engineering regulations for the Degree of Doctor of Philosophy except that Candidates applying should normally have either:
(a) An MPhil Degree in Project Management or
(b) An MSc in Project Management awarded at the level of Distinction

THE AIM AND OBJECTIVES
Technical deepening and broadening beyond the level covered by the taught MSc degree in Project and Programme Management by research into the specific problem that arise in a wide range of industries and sectors in the economy:

(i) To immerse the student in first hand contact with the many challenges in project and programme management.

(ii) To expose the student to advanced theoretical and applied analysis in the field of project and programme management.

(iii) To provide the student with the intellectual environment to be able to conceptualise real challenges into a problem format, then apply rigorous analysis within the context of the project management discipline to be able to produce a theoretical formulation to problem solutions.

(iv) To provide the context within which the student can generate new innovative and novel solutions to real problems encountered by project management practitioners.

FOR FURTHER INFORMATION, CONTACT
The Project Management Office
Tel: 1 (868) 662-2002; ext: 83838
SECTION 2
REGULATIONS FOR POSTGRADUATE DIPLOMAS

GENERAL REGULATIONS
The Postgraduate Diploma shall be awarded on the basis of an examination by written papers and/or approved combinations of written papers and coursework which may include a Project. The duration of the programme shall be not less than one (1) calendar year for full-time study and not less than two (2) calendar years for part-time study. The appropriate University Regulations for the Postgraduate Diploma shall apply.

Normally entry is available to those who have a Lower Second Class Honours degree or its equivalent in the specified subject area or in a related area with a record of experience in the subject area.

Applicants holding non-engineering Bachelor’s degrees may be required to pass a qualifying examination.

All applications must be approved by the Board for Graduate Studies and Research and a candidate may be required to satisfy such prerequisites as are deemed necessary before proceeding to the Postgraduate Diploma programme.

No candidate will be allowed to proceed to a Project before successfully completing the written papers of the examination unless the Board of Examiners decides otherwise.

Candidates with full-time registration who start their Projects after completing their written papers of the examination may be allowed to change their registration to part-time provided they are in full-time employment and that they make the necessary request to the Registry.

There shall be at least one External Examiner and his role and duties shall be identical to those for the BSc (Eng) Examination.

Boards of Examiners shall be established by the Board of the Faculty of Engineering. The Faculty Board shall establish from time to time, guidelines for the Board of Examiners.

The Board of Examiners shall make recommendations to the Chairman of the Campus Committee on Graduate Studies and Research on passes and failures in the examination. Permission to repeat all or part of the examination shall be at the discretion of the Board for Graduate Studies and Research.

The results of the examination shall be published in a Pass Lists in which names of the successful candidates shall be arranged alphabetically as follows:

i. Distinction

ii. Pass

The Board for Graduate Studies and Research may recommend to the Senate the withdrawal of any candidate whose performance it considers to be unsatisfactory.

REGULATIONS FOR MASTER’S/MASc DEGREES

GENERAL REGULATIONS
The Master’s (Eng) Degree shall be awarded on the basis of an examination by written papers and/or approved combinations of written papers and course work which may include a Project. The duration of the programme shall be not less than one (1) calendar year for full-time study and not less than two (2) calendar years for part-time study. The appropriate University Regulations for the Master’s Degree shall apply.

Normally entry is available to those who have a Lower Second Class Honours degree or its equivalent in the specified subject area or in a related area with a record of experience in the subject area.

Applicants holding non-engineering Bachelor’s Degrees may also be considered provided they hold passes, not lower than Second Class Honours level, in appropriate or equivalent Engineering subjects. Such candidates may also be required to pass qualifying examinations.

All applications must be approved by the Board for Graduate Studies and Research and any candidate may be required to satisfy such prerequisites as are deemed necessary before proceeding to the Master’s Degree programme.

No candidate will be allowed to proceed to a Project before successfully completing the written papers of the examination unless the Board of Examiners decides otherwise.

Candidates with full-time registrations who start their project after completing their written papers of the examination may be allowed to change their registration to part-time provided they are in full-time employment and that they make the necessary request to the Registry.

There shall be at least one External Examiner and his role and duties shall be identical to those for the BSc (Eng) Examination.

A Board of Examiners shall be established by the Board of the Faculty of Engineering. The Faculty Board shall establish from time to time, guidelines for the Board of Examiners.

The Board of Examiners shall make recommendations to the Chairman of the Campus Committee of Board for Graduate Studies and Research on passes and failures in the examination. Permission to repeat all or part of the examination shall be at the discretion of the Board for Graduate Studies and Research.

The results of the examination shall be published in a Pass List in which names of the successful candidates shall be arranged alphabetically as follows:

i. Distinction

ii. Pass

The Board for Graduate Studies and Research may recommend to the Senate the withdrawal of any candidate whose performance it considers to be unsatisfactory.
REGULATIONS FOR MSc PROGRAMMES

- Master’s in Civil Engineering (MSc)
- Master’s in Civil with Environmental Engineering (MSc)
- Master’s in Manufacturing Engineering & Management (MSc)

GENERAL REGULATIONS
These programmes are specially designed for candidates seeking to fulfill the academic requirements for advancement to practise as a registered professional engineer and are of twelve (12) months duration, full-time.

ADMISSION
Candidates for admission to these programmes should have a Bachelor's degree, normally at the level of at least Second Class Honours in the relevant discipline.

Qualified candidates opting to pursue these Master’s programmes immediately following completion of the BSc programmes in Engineering, will not be required to submit an application for entry, but be allowed to progress seamlessly into these programmes.

A student who has completed the Level 2 programme at the Bachelor’s level with a weighted average of a minimum of 50% may be granted provisional direct entry into these Master’s programmes.

COURSE OF STUDY
The course of study for these Master’s programmes include in addition to the courses of instruction, examination by written papers, supervised design/research work which may be industry-based and oral and written presentations.

Full-time Master’s students must complete and submit project requirements at the time stipulated by the Departments. All project work must have been completed within one (1) calendar year of the start of the programme.

Candidates failing the examination in any course or the project may be allowed a second attempt at the examination on the recommendation of the Board of Examiners.

A proportion of the marks which make up the final result of a particular course examined by a written Paper may be derived from the candidate’s performance in course work assignments, in course tests, etc. All such assignments must be completed and submitted to the examiners before the date of the written examination.

Candidates must pass both the written examination and the course work component with at least a 50% mark to be credited with a Pass.

Candidates whose work is at any time reported by their Supervisors to be unsatisfactory or who do not satisfy the Examiners on Courses or Project Work that form part of the programme will be required to withdraw and will be removed from the Register of Postgraduate students.

Such students shall not normally be readmitted for at least two (2) years thereafter. Students readmitted to these programmes shall be eligible for credits for those courses passed creditably during their previous registration, provided that not more than five (5) years have elapsed since the applicants withdrew from the University and that the course content has not changed significantly in the interval.

REGULATIONS FOR RESEARCH DEGREES

GENERAL REGULATIONS
A candidate for the MPhil degree is required to read courses totaling a minimum of six (6) credits. A candidate for the PhD degree is required to read courses totaling a minimum of nine (9) credits. Candidates are required to pass both the coursework and the written examinations before submitting the thesis.

Where graduate students write undergraduate examinations for graduate credit, or where they are writing qualifying or departmental examinations, they must pass both components of the course (i.e. coursework and written examination) in accordance with the University's marking scheme before proceeding to graduate work.

Master of Philosophy
The MPhil Degree shall be awarded on the basis of an examination by thesis and the appropriate University Regulations for the Master's Degree shall apply.

Candidates applying for registration should normally be holders of a Bachelor’s Degree in Engineering or other appropriate field of at least the standard of at least an Upper Second Class Honours Degree of The University of the West Indies. Holders of lower class Degrees or a General Bachelor's Degree must normally pass qualifying examinations.

Doctor of Philosophy
The appropriate University and Faculty of Engineering Regulations for the Degree of Doctor of Philosophy shall apply.

Attendance at the oral examination for the PhD Degree in the Faculty of Engineering shall be open to the academic and professional community. A minimum of seven days notice shall be given before the examination.
REGULATIONS FOR MPhil QUALIFYING EXAMINATIONS

GENERAL REGULATIONS
Any person wishing to proceed to MPhil in the Faculty of Engineering must take a qualifying examination unless:

a) He/she possesses at least a an Upper Second Class Honours Degree or equivalent in the area in which he/she is working or in a related area;

or

b) He/she has been appointed to the post of Assistant Lecturer or higher in the Faculty;

or

c) The Board for Graduate Studies and Research exempts him/her on the recommendation of the Faculty Sub-committee of the Board for Graduate Studies and Research.

The qualifying examination shall consist of at least two (2) papers lasting three (3) hours each.

Normally, one of the papers shall be taken from the BSc (Eng) Degree Examination or be of equivalent standard and one will be specific paper in the specialist area of interest.

There shall be a Moderator appointed by the Dean on the recommendation of the Head of Department from among persons not working in the Department(s) involved in the research.

The Head of the Department will assign the responsibility for the preparation of the question papers and the marking of the scripts.

The Moderator mentioned in the Regulations above shall be required to examine the question papers before the examination and to examine the scripts after they have been marked. He may, if he wishes, require an oral examination. In order for the candidate to pass, the Examiners must certify to the Board for Graduate Studies and Research that the candidate has reached at least a standard equivalent to Second Class Honours in the papers examined and the Moderator must give his approval of the examination.

REGULATIONS FOR PART-TIME POSTGRADUATE STUDENTS

GENERAL REGULATIONS
A part-time postgraduate student is anyone who, while reading for the Master's or PhD Degrees or any other Postgraduate Degree or Diploma, spends an average of nine or more hours a week in any paid employment. A part-time student will not, except in very special circumstances, be permitted to register for PhD in Engineering without having previously achieved the Master's in Engineering of this University.

Applicants for registration for part-time study towards a postgraduate degree will be required to meet all the academic requirements for admission into full-time postgraduate studies.

Those applicants who are required to pass qualifying examinations will sit such examinations under existing Faculty Regulations.

On acceptance for postgraduate studies a part-time student shall be assigned to one or more supervisors to whom the student shall report in person or in writing not less than once every term.

All part-time postgraduate students may be required to attend such postgraduate seminars as may be arranged by the department in the Faculty of Engineering during the academic year.

Not less than five (5) calendar years (unless the Faculty relaxes this requirement if it can be shown that the candidate’s employment is such that his normal work is the same as the research work for his degree) after passing the qualifying examination a part-time student for the MPhil will present a dissertation and may also be orally examined on the general field of study or on the dissertation.

A part-time student for the PhD will submit a thesis and be orally examined in the general field of study and on the thesis not less than seven (7) calendar years (unless the Faculty relaxes this requirement if it can be shown that the candidate’s employment is such that his normal work is the same as the research work for his degree) after registration for the degree.

The award to a part-time student of the postgraduate degree, be it Master’s or PhD Degree, will be subject to the conditions of award to full-time postgraduate students.

For part-time students, an MPhil thesis must be submitted normally not later than five (5) years after the date of registration. Similarly, a PhD thesis must be submitted not later than seven (7) years after the date of registration.
REGULATIONS FOR
CERTIFICATE COURSES

GENERAL REGULATIONS
Construction Engineering and/or Management

Before registration as a student of the University proceeding to a Certificate in Construction Engineering and/or Management, a candidate must:
a. Satisfy the matriculation requirements of the University, and
b. Have, in the opinion of the Faculty, practical experience, or other qualifications or general standard of education of special relevance to the course of study.

Any candidate for the Certificate may be required by the Faculty to sit an entrance examination and/or successfully complete an introductory course before being granted permission to read the Certificate.

Candidates for the Certificate will be required to follow the prescribed course of study for a period of not less than one (1) academic year (full-time) or two (2) academic years (part-time).

They will also be required to carry out coursework as prescribed.

The examination will be conducted by means of written papers and course work. Candidates may be orally examined on any part of the examinations.

Part-time students will be required to take examinations in two (2) courses in the first year and the third course in the second year.

The Board of the Faculty of Engineering may recommend to the Senate the withdrawal of any candidate whose performance it considers unsatisfactory.

Successful completion of the examination will lead to the award of a Certificate in Construction Engineering or Construction Management or Construction Engineering & Management. The designation will depend on the course combinations.

The results of the examinations shall be published in a Pass List in which the names of the successful candidates shall be arranged alphabetically.

The reports of the examiners and the Pass List shall be laid before the Senate for approval.

A Certificate in Construction Engineering or Construction Management or Construction Engineering & Management under the seal of the University shall be sent thereafter to each successful candidate.

GUIDELINES FOR POSTGRADUATE PROGRAMMES:
MSc/MASc/DIPLOMA

GUIDELINE FOR POSTGRADUATE PROGRAMMES: MSc

The following are the approved guidelines for the conduct of Graduate Programme in the Faculty of Engineering.

Registration
A full-time candidate will not normally be permitted to register for more than 18 credits per semester, and a part-time candidate for not more than 9 credits.

A full-time student should complete all the course requirements (including project) within two (2) years, a part-time student within four (4) years.

Total Number of Credits in Master’s Programme
The total number of credits should normally be set at 45 in accordance with the recommendations of the Board for Graduate Studies.

Value of a Course Credit
A course credit is defined as one (1) contact hour per week OR one (1) 2 hour lab per week OR one (1) hour supervised research per week.

Performance of Students:
Qualifying candidates may normally be allowed one (1) attempt at the original examination for any one course. Master’s/Diploma candidates may normally not have more than two (2) attempts at an examination for any one course. To maintain registration, candidates should normally pass a minimum of 50% of the course load in each semester.

University Regulations state that candidates may not have more than two (2) attempts at an examination.

Oral Examination
Students may be orally examined at the discretion of the Department, subject to the approval of The Office of Graduate Studies and Research.

Marking System
Examiners must observe the University guidelines for report marking. Marks awarded for each section should be indicated in the report together with brief comments. Where this is not done, the report will be sent back to the examiner for re-examination.
Procedure for Examination Reports
The Faculty will continue to submit all project reports to External Examiners in cases where the projects constitute more than 25% of the programme credit ratings. Project Reports are to be submitted simultaneously to all examiners. For a student to pass (i.e. average project mark is \(\geq 50\% \)) all examiners should normally concur. Where there is no-agreement among examiners, the Board of Examiners will decide on the appropriate action to be taken. For programmes with less than 25% project credit rating, the use of an external examiner could be avoided.

Withdrawal
A candidate required to withdraw will not be considered for re-admission within two (2) years of their withdrawal, but within five (5) years after withdrawal. The candidate will retain credits for courses already successfully completed. Candidates who voluntarily withdraw may be allowed to re-enter at the next available opportunity. In this case, all credits previously accumulated will be retained by the candidate (normally for up to five (5) years thereafter, at the discretion of the department).

No extensions will be granted to students beyond three (3) years full-time and six (6) years of part-time.

GUIDELINES FOR STAFF AND STUDENTS ON PLAGIARISM
Plagiarism is frowned upon in the University and as such penalties will be applied to any person found guilty of plagiarism. The following is an extract from The University of the West Indies’ Policy on Graduate Student Plagiarism approved by the Board for Graduate Studies and Research at its meeting in October 2010:

Definition of Plagiarism
Plagiarism is defined as the unacknowledged use of the words, ideas or creations of another. The principal categories of unacknowledged use are unacknowledged quotation, which is failure to credit quotations of another person's spoken or written words; and unattributed borrowing, which is failure to credit another person's ideas, opinions, theories, graphs or diagrams. Unattributed borrowing also includes the failure to credit another person's work when paraphrasing from that work. Cosmetic paraphrasing is also plagiarism. This occurs when, even with acknowledgment, the words are so close to the original that what is deemed to have been paraphrased is, in fact a modified quote, but is not presented as such. A more technical form of plagiarism is wrongly attributed borrowing, where one does not acknowledge the work from which one obtained an idea, but quotes, instead, the original source without having read it. This may well convey a broader research effort than that actually expended and may perpetuate misinterpretation.

GUIDELINES
• It is now a requirement for all students to pass their written assignments, be it coursework, theses, research papers, project reports through plagiarism detection software. In the case of theses, research papers and project reports, supervisors are required to sit with their students and run the thesis, research paper or project report through Turnitin in order to provide guidance on any revisions that may be required as a result of this process.
• Supervisors must then sign the relevant forms indicating that the student has indeed run their work through a plagiarism detection software.
• Post Graduate Students submitting theses, research papers or project reports for examination must submit an electronic copy of the Turnitin report to the Office of Graduate Studies and Research.
• The similarity index in the Turnitin report should not be higher than 9%.
• Please note that if it exceeds 9% the thesis, project report or research paper will not be accepted for examination by the Office of Graduate Studies and Research.

TURNITIN
• The University has created an account to allow you to check your papers for plagiarism. Here are some instructions for creating a new student account:
 1. Visit Turnitin’s website at www.turnitin.com then click on Create Account
 2. Under New Students Start Here click on Create a User Profile
 3. Below Have you Ever Used Turnitin? Scroll down until you see Create A New Account click on Student (N.B. the credentials will not work in any other instance).
 4. Under Create A New Student Account, insert the credentials (i.e. Class ID and enrolment password), complete the rest of the form and follow the instructions.

• In order to obtain the credentials necessary to create your new student account please visit the Office of Graduate Studies and Research to pick up your UWI Grip Card.

Useful Turnitin Links
• Getting Started: http://www.turnitin.com/en_us/training/getting-started
• For further assistance with Turnitin, please e-mail www.turnitin.com/help