TABLE OF CONTENTS

HOW TO USE THIS HANDBOOK ... 3

ACADEMIC CALENDAR 2016-2017 ... 4

MESSAGE FROM THE DEAN ... 5

SECTION I - STAFF LISTING ... 6
- OFFICE OF THE DEAN.. 6
- NATIONAL HERBARIUM OF TRINIDAD AND TOBAGO 7
- DEPARTMENT OF CHEMISTRY .. 7
- DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY .. 10
- DEPARTMENT OF LIFE SCIENCES 11
- DEPARTMENT OF MATHEMATICS AND STATISTICS 14
- DEPARTMENT OF PHYSICS .. 15

SECTION II – INTRODUCTION ... 17
- PROGRAMME OFFERING IN THE FACULTY OF SCIENCE AND TECHNOLOGY ... 17
- COURSES OFFERED AND THEIR WEIGHTING 18
- CO-CURRICULAR CREDITS ... 19
- DEAN’S HONOUR ROLL .. 19
- THE STUDENT LIFE AND DEVELOPMENT DEPARTMENT (SLDD) .. 20
- INFORMATION RESOURCES AT THE ALMA JORDAN LIBRARY .. 20

SECTION III - GLOSSARY .. 22

SECTION IV - FACULTY REGULATIONS 24
- QUALIFICATIONS FOR ADMISSION INTO THE FACULTY .. 24
- APPLICATION PROCEDURE .. 25
- LIST OF EXEMPTIONS .. 25
- REGISTRATION ... 25
- PROGRESS THROUGH THE PROGRAMME 26
- STUDY ABROAD/EXCHANGE PROGRAMMES 26
- EXAMINATIONS .. 27
- PLAGIARISM DECLARATION .. 27
- GENERAL REQUIREMENTS FOR THE AWARD OF THE DEGREE .. 27
- DECLARATION OF MAJORS, MINORS AND SPECIAL OPTIONS .. 28
- TIME LIMITS FOR COMPLETION AND ENFORCED WITHDRAWALS ... 28
- LEAVE OF ABSENCE & VOLUNTARY WITHDRAWAL 29
- GPA AND CLASS OF DEGREE AWARDED 30
- GRADING SCHEME .. 30
- CLASS OF HONOURS .. 30
- AEGROTAT DEGREE .. 30

SECTION V - REGULATIONS GOVERNING THE FST SUMMER SCHOOL PROGRAMME 31

SECTION VI – GENERAL REGULATIONS GOVERNING THE PRE-SCIENCE (N1) PROGRAMME 33

SECTION VII – APPROVED SCIENCE CAPE/GCE A-LEVEL SUBJECTS .. 34

SECTION VIII - PRE-REQUISITES FOR CROSS FACULTY COURSES .. 34

SECTION IX – LIST OF ANTI-REQUISITES .. 36

SECTION X - UNIVERSITY REGULATIONS ON PLAGIARISM .. 37

PLAGIARISM DECLARATION .. 39

SECTION XI - PRIZES .. 42
- FACULTY PRIZES ... 42
- DEPARTMENT OF CHEMISTRY ... 42
- DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY .. 42
- DEPARTMENT OF LIFE SCIENCES 42
- DEPARTMENT OF MATHEMATICS & STATISTICS 43
- DEPARTMENT OF PHYSICS ... 43

SECTION XII - PROGRAMME OUTLINES .. 44

OFFICE OF THE DEAN .. 44

DEPARTMENT OF CHEMISTRY ... 44
- COURSE LISTING ... 44
- MAJORS, MINORS, and SPECIAL OPTIONS 46
- Major in Chemistry .. 46
- Major in Industrial Chemistry 47
- Minor in Chemistry ... 47
- Minor in Analytical Chemistry 47
- Minor in Industrial Chemistry 48
- Minor in Chemical Biology .. 48
- Minor in Materials Chemistry 48
- BSc CHEMISTRY (SPECIAL) ... 49
- BSc CHEMISTRY AND MANAGEMENT (SPECIAL) 50

DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY .. 51
- New Computer Science Students – 2016/2017 52
- BSc COMPUTER SCIENCE (SPECIAL) 52
- BSc COMPUTER SCIENCE WITH MGMT (SPECIAL) 52
- BSc GENERAL (Major in Computer Science) 52
- BSc GENERAL (Minor in Computer Science) 52
- Course Information for New Computer Science Students entering in 2016/2017 53
BSc INFORMATION TECHNOLOGY (SPECIAL)53
BSc INFORMATION TECHNOLOGY WITH MANAGEMENT (SPECIAL) ..53
BSc GENERAL (Minor in Information Technology)53
Course Information for Returning Students - Level I, Level II, and Level III ..54
COURSE LISTING for Returning Students55
COURSES NOT OFFERED IN 2016/201755
Major in Computer Science (Returning Students)56
Minor in Computer Science (Returning Students)56
Major in Information Technology (Returning Students)56
BSc INFORMATION TECHNOLOGY (SPECIAL) (Returning Students) ..57
BSc COMPUTER SCIENCE (SPECIAL) (Returning Students)58
BSc COMPUTER SCIENCE AND MANAGEMENT (SPECIAL) (Returning Students) ..58

DEPARTMENT OF LIFE SCIENCES59
COURSE LISTING ...59
Majors & Minors ..61
Major in Biochemistry ...61
Major in Biology ..62
Major in Environmental Science ..63
BSc BIOLOGY WITH SPECIALISATIONS63
BSc ENVIRONMENTAL SCIENCE AND SUSTAINABLE TECHNOLOGY (SPECIAL) ..65
Minors ...65
Minor in Biochemistry ...65
Minor in Biology ..66

DEPARTMENT OF MATHEMATICS & STATISTICS67
COURSE LISTING ...67
Majors and Special Options ..68
Major in Mathematics ...68
BSc ACTUARIAL SCIENCE (SPECIAL)68
BSc MATHEMATICS (SPECIAL) ..69
BSc MATHEMATICS AND APPLIED STATISTICS (SPECIAL) ..70
BSc STATISTICS (SPECIAL) ..71
BSc STATISTICS AND ECONOMICS (SPECIAL)72
Minor in Mathematics ...73
Minor in Statistics ...73

DEPARTMENT OF PHYSICS ...74
MAJORS, MINORS, AND SPECIAL OPTION..........................76
Major in Electronics ...76
Major in Physics ..76
Minor in Electronics ..77
Minor in Environmental Physics ...77
Minor in Materials Science ..77
Minor in Medical Physics & Bioengineering78
BSc BIOMEDICAL TECHNOLOGY (SPECIAL)78

SECTION XIII: COURSE DESCRIPTIONS80
ACCOUNTING: ACCT ..80
ACTUARIAL: ACTS ...80
AGRICULTURE: AGRI ..81
BIOCHEMISTRY: BIOC ..82
BIOLOGY: BIOL ..85
BIOMEDICAL: BMET ..99
CHEMISTRY: CHEM ...103
CHINESE : CHIN ..116
COMPUTER SCIENCE: COMP116
ELECTRICAL & COMPUTING: ECNG124
ECONOMICS: ECON ..126
ENVIRONMENTAL SCIENCE: ESST127
FOUNDATION COURSES: FOUN136
FRENCH: FREN ..137
FACULTY COURSE: FST ..137
INFORMATION TECHNOLOGY: INFO138
JAPANESE: JAPA ..143
MATHEMATICS: MATH ...144
MANAGEMENT: MGMT ..154
MARKETING: MKTG ...157
PHYSICS: PHYS ..158
SPANISH: SPAN ..169
STATISTICS: STAT ..169
HOW TO USE THIS HANDBOOK

The Faculty handbooks (also known as Faculty Booklets) are available on the Campus website in PDF format at http://sta.uwi.edu/faculty-booklet-archive. The handbooks include:

- Relevant Faculty Regulations – eg. Admission Criteria, Exemptions, Progression, GPA, Leave of Absence, etc.
- Relevant University Regulations including the Plagiarism Regulations and Declaration Forms
- Other Information on Co-Curricular courses, Language courses and Support for Students with physical and other disabilities or impairments.
- Programme Descriptions and Course Listings which include the list of courses to be pursued in each programme (degrees, diplomas and certificates), sorted by level and semester; course credits and credits to be completed for each programme – majors, minors and specials.
- Course Descriptions which may include details such as prerequisites and methods of assessment.

Students should note the following:
The Regulations and Syllabuses issued in the Faculty Handbooks should be read in conjunction with the following University Regulations:

- The Undergraduate Regulations and Syllabuses should be read in conjunction with the University regulations contained in the Undergraduate Handbook
- The Postgraduate Regulations and Syllabuses should be read in conjunction with the University regulations contained in the Postgraduate Handbook and the Board for Graduate Studies and Research Regulations for Graduate Diplomas and Degrees (with effect from August 2014)

Progress through a programme of study at the University is governed by Faculty Regulations and University Regulations. Should there be a conflict between Faculty Regulations and University Regulations, University Regulations shall prevail.

Notwithstanding the contents of the Faculty Handbooks, the University reserves the right to modify, add or altogether remove from a Programme, certain aspects of any course offered by the University, as described in either the Handbooks, Course outlines or any other Course materials provided.
ACADEMIC CALENDAR 2016-2017

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>SEMESTER 1 AUGUST - DECEMBER 2016</th>
<th>SEMESTER 2 JANUARY - MAY 2017</th>
<th>SUMMER MAY - JULY 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester BEGINS</td>
<td>August 28, 2016</td>
<td>January 15, 2017</td>
<td>May 28, 2017</td>
</tr>
<tr>
<td>Registration</td>
<td>August 22 – September 16, 2016</td>
<td>January 09 – February 03, 2017</td>
<td>May 22 – June 17, 2017</td>
</tr>
<tr>
<td>Teaching BEGINS</td>
<td>September 05, 2016</td>
<td>January 16, 2017</td>
<td>May 29, 2017</td>
</tr>
<tr>
<td>Orientation and Ice Breaker (UWILIFE)</td>
<td>September 02, 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late registration / Late Payment Fee of TT$200.00 APPLIES</td>
<td>September 12 -16, 2016</td>
<td>January 30 – February 03, 2017</td>
<td>June 12 -17, 2017</td>
</tr>
<tr>
<td>Application to Carry Forward Coursework ENDS</td>
<td>September 09, 2016</td>
<td>February 03, 2017</td>
<td>June 17, 2017</td>
</tr>
<tr>
<td>Change in Registration (ADD/DROP) ENDS</td>
<td>September 09, 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application for Credit and Exemptions ENDS</td>
<td>September 22 – September 13, 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty Overrides (submission of overrides and deadline for entry in Banner)</td>
<td>September 22 – September 13, 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching ENDS</td>
<td>December 02, 2016</td>
<td>April 13, 2017</td>
<td>July 08, 2017</td>
</tr>
<tr>
<td>Examinations BEGIN and END</td>
<td>December 05 – 21, 2016</td>
<td>April 28 – May 19, 2017</td>
<td>July 11 – 21, 2017</td>
</tr>
<tr>
<td>Semester ENDS</td>
<td>December 21, 2016</td>
<td>May 19, 2017</td>
<td>July 21, 2017</td>
</tr>
</tbody>
</table>

| Semester II Break | | April 18 – 23, 2017 | |

| English Language Proficiency Test (ELPT): | August 22, 2016 | February 16, 2017 | |
| Scheduled for the following dates | | | |

| SPECIALLY-ADMITTED 2016/2017 | SEMESTER I | SEMESTER 2 | ENTIRE ACADEMIC YEAR |

| CEREMONIES | | September 15, 2016 | |

Matriculation Ceremony

Graduation Dates

- October 08, 2016 (Open Campus)
- October 20 - 22, 2016 (St. Augustine)

Revised June 22, 2016
This calendar is subject to change by the appropriate authorities.
For the full and most up-to-date calendar, visit https://sta.uwi.edu/registration/academiccalendar.asp
MESSAGE FROM THE DEAN

Welcome to the Faculty of Science & Technology (FST), The University of the West Indies, St. Augustine. We are extremely proud and delighted that you have chosen the FST for your tertiary education. This Faculty which partially replaced the former Faculty of Science & Agriculture, will continue to focus on traditional and important disciplines in science such as Mathematics, Physics, Chemistry, Computer Science and Biological Sciences. We have also begun new programmes in exciting and important areas of technology such as, Environmental Technology, Information Technology, Renewable Energy Technology, Biotechnology, Electronics, Computer Science & Technology, Environmental Science, Biomedical Technology and Biomedical Physics.

The FST is the second largest faculty at the St Augustine Campus and also the most diverse in terms of academic programmes offered. At the FST there are highly qualified and competent academic, administrative, technical and support staff, and many state-of-the-art laboratories. We promise to offer you an educational experience that is second to none.

This booklet contains important information on Faculty Regulations as well as details on our various programmes and courses. We encourage you to become very familiar with it. We have put in place several support systems in order to facilitate your success in your chosen field of study. We encourage you to visit your academic advisor on a regular basis to seek assistance in planning your academic programme of study. We also have a Student Services Unit and a dedicated Deputy Dean (Student Matters) who is readily available to assist in addressing problems that you may encounter from time to time.

On behalf of the staff of the FST, I wish you a warm welcome as well as an enjoyable and successful stay in our Faculty.

Professor Indar Ramnarine
DEAN
SECTION I - STAFF LISTING

OFFICE OF THE DEAN

DEAN
Professor Indar Ramnarine
BSc (UWI), MSc (Wales), MBA (Heriot-Watt), PhD (UWI)
Ext. 84484
Email: deanfst@sta.uwi.edu

DEPUTY DEANS
Dr Judith Gobin
BSc, MPhil (UWI), PhD (Exeter)
Undergraduate Student Matters
Exts. 84507, 82046
Email: fstdeputydean.ug@sta.uwi.edu

Dr Shirin Haque (on Scholarly Leave- Semester I, 2016/2017)
BSc, MPhil in Physics, MPhil (Psychology), PhD (UWI)
Outreach
Exts. 84504, 83123
Email: shirin.haque@sta.uwi.edu

Dr Margaret Bernard
BSc, MPhil, PhD (UWI)
Graduate Studies, Research and Innovation
Exts. 84504, 83098
Email: margaret.bernard@sta.uwi.edu

Dr Russel Ramsewak
BSc, PhD (UWI)
Physical Facilities & Safety
Exts. 84504, 83536
Email: russel.ramsewak@sta.uwi.edu

SECRETARIAT:
ADMINISTRATIVE OFFICER
Mrs Indira Ousman
BSc, MSc (UWI)
Ext. 84479
Email: indira.ousman@sta.uwi.edu

DEAN’S SECRETARY
Mrs Wendy-Ann Wellington
BSc (UWI)
Ext. 84481
Email: wendy-ann.wellington@sta.uwi.edu

SECRETARY
Mrs Laneta Teemal
BSc (UWI)
Ext. 84480
Email: laneta.teemal@sta.uwi.edu

ACCOUNTING ASSISTANT
Mrs Claire Licorish
BSc (UWI)
Ext. 84477
Email: claire.licorish@sta.uwi.edu

OFFICE ATTENDANT
Ms. Helga Boucher
Ext. 84476
Email: helga.boucher@sta.uwi.edu

CLEANER
Ms. Peerlette Jordan
Ext. 84476
Email: peerlette.jordan@sta.uwi.edu

STUDENT SERVICES, SUPPORT & DEVELOPMENT UNIT:
ADMINISTRATIVE ASSISTANT
Mrs Tara Sookhoo
BSc (UWI)
Ext. 84483
Email: tara.sookhoo@sta.uwi.edu

ADMINISTRATIVE ASSISTANT
Mrs Laura Rambaran-Seepersad
BSc, MBA (UWI)
Ext. 84508
Email: laura.rambaran-seepersad@sta.uwi.edu

SECRETARY
Ms. Kereen Olivier
BSc, MSc (UWI)
Ext. 84478
Email: kereen.olivier@sta.uwi.edu

CLERICAL ASSISTANT
Mrs Sue-Ann Lee Willock
Ext. 84509
Email: sue-ann.lee@sta.uwi.edu

INFORMATION COMMUNICATION MANAGEMENT UNIT:
LAN ADMINISTRATOR
Mr. Krishna Ramdass
BSc Gen., Dip. Ed (UWI). MSc (Portsmouth Univ)
Ext. 84482
Email: krishna.ramdass@sta.uwi.edu

Mr. Naresh Seegobin
BSc, MSc (UWI)
Ext. 84482
Email: naresh.seegobin@sta.uwi.edu
PC NETWORK SUPPORT TECHNICIAN
Mr. Darren Granger
BSc. (UWI)
Ext. 84473
Email: darren.granger@sta.uwi.edu

FACILITIES SUPPORT UNIT
FACILITIES ATTENDANTS
Mr. Russell Thomas
Ext. 84474
Email: russell.thomas@sta.uwi.edu

Mr. Deron McKenzie
Ext. 84525
Email: deron.mckenzie@sta.uwi.edu

Nicholas Durity
Ext. 84525
Email: nicholas.durity@sta.uwi.edu

PRE-SCIENCE (N1) PROGRAMME
ADMINISTRATIVE ASSISTANT
Ms. Afiya Jules
BSc (UWI)
Ext. 84474
Email: afiya.jules@sta.uwi.edu

CLERICAL ASSISTANT
Ms. Sabrina Ragoo
BSc (UWI)
Ext. 84505
Email: sabrina.ragoo@stu.uwi.edu

FOUN 1210 CO-ORDINATOR
Dr Indira Omah-Maharaj
BSc (UK), MSc (UK), PhD (UWI)
Ext. 84497
Email: indira.omah-maharaj@sta.uwi.edu

NATIONAL HERBARIUM OF TRINIDAD AND TOBAGO
2nd Floor, Frank Stockdale Building
Tel: (868) 662-2002 Ext. 83326
Tel: (Direct Line) (868) 645-3509
Fax: (868) 663-9686
Email: herbarium@sta.uwi.edu

CURATOR
Mrs Yasmin Baksh-Comeau
Ext. 83326
Email: yasmin.baksh-comeau@sta.uwi.edu

SENIOR SECRETARY
Mrs Prudence Coelho-Roberts
Ext. 83326
Email: prudence.roberts@sta.uwi.edu

DEPARTMENT OF CHEMISTRY
MAIN OFFICE
Ground Floor, C3 Building
Tel: (868) 662-2002 Ext. 83570/82091
Tel: [Direct Line] 662-6013
Fax: (868) 645-3771
Email: chemistry.department@sta.uwi.edu

HEAD OF DEPARTMENT
Dr Lebert Grierson
BSc, PhD (Lond)
Ext. 82091 / 83523
Email: lebert.grierson@sta.uwi.edu

SENIOR ADMINISTRATIVE ASSISTANT
Mrs Roxanne Ali-Hassan
BSc (UWI)
Ext. 83785
Email: roxanne.ali-hassan@sta.uwi.edu

ADMINISTRATIVE ASSISTANT
(Occupational Environmental Safety and Health MSc Programme)
Ms. Tamika Elcock-John
BSc (Lond), MSc (UWI)
Ext. 83269
Email: tamika.elcock@sta.uwi.edu

SECRETARY
Mrs Charmaine Joseph-Peters
Ext. 83570, 82091; 662-6013
Email: charmaine.joseph-peters@sta.uwi.edu

ACADEMIC STAFF/ DEVELOPMENT ENGINEERS
Beckles, Denise
AB (Harvard), MSc, PhD (Rice University)
Lecturer, Environmental Chemistry
Exts. 83534/ 82456
Email: denise.beckles@sta.uwi.edu

Bent, Grace-Anne
BSc, PhD (UWI)
Lecturer, Analytical Chemistry
Ext. 83533
Email: grace-anne.bent@sta.uwi.edu
Cox, Leonette
BS (Morgan); MS, PhD (Astate)
Contract Officer III - Research Consulting & Analytical Services
Ext. 84334
Email: leonette.cox@sta.uwi.edu

Fairman, Richard
BSc, PhD (UWI)
Lecturer, Inorganic Chemistry
Ext. 82281
Email: richard.fairman@sta.uwi.edu

Forde, Michael
MChem (Edin), PhD (Cardiff)
Lecturer in Chemistry
Ext. 83544
Email: michael.forde@sta.uwi.edu

Grierson, Lebert
BSc, PhD (Lond)
Lecturer, Physical Chemistry
Ext. 83523
Email: lebert.grierson@sta.uwi.edu

Jalsa, Nigel
BSc, PhD (UWI)
Lecturer, Biological Chemistry
Ext. 83546
Email: nigel.jalsa@sta.uwi.edu

Julien, Franklyn
BSc Chem Engineering (Hampton)
BSc Electrical Engineering (Ryerson)
Development Engineer - Mass Spectrometry Services
Ext. 84150
Email: franklyn.julien@sta.uwi.edu

Kumar, Arvind
MSc (Gorakhpur); PhD (Tripura)
Lecturer, Inorganic Chemistry
Ext. 83261
Email: arvind.kumar@sta.uwi.edu

Lawrence, Wendy
B.Sc, MPhil (UWI) and MBA (Henley) – Coordinator - Occupational and Environmental Safety and Health Programme
Ext. 83268
Email: wendy.lawrence@sta.uwi.edu

Mohammed, Terry
BSc, PhD (UWI), MBA (Herriot-Watt)
Lecturer, Analytical Chemistry
Ext. 82283
Email: terry.mohammed@sta.uwi.edu

Pingal, Ramish
BSc, PhD (UWI)
Lecturer/ Lab Manager
Ext. 83535
Email: ramish.pingal@sta.uwi.edu

Ramsewak, Russel
BSc, PhD (UWI)
Senior Lecturer, Organic Chemistry
Ext. 83536
Email: russel.ramsewak@sta.uwi.edu

Seepersaud, Mohindra
BSc, MPhil (UWI), PhD (CUNY)
Lecturer, Bioorganic Chemistry
Ext. 83570
Email: mohindra.seepersaud@sta.uwi.edu

Singh, Gurdial (on Scholarly Leave – Semester I, 2016/2017)
BSc (Liv.), PhD (Man)
Professor of Chemistry
Ext. 83538
Email: gurdial.singh@sta.uwi.edu

Singh, Nadia
BSc, PhD (UWI)
Development Engineer - NMR Services
Ext. 84053
Email: nadia.singh@sta.uwi.edu

Stephenson, David
B.A. (York), MPhil (CNAA), PhD (Lond)
Senior Lecturer, Physical Chemistry
Ext. 83260
Email: david.stephenson@sta.uwi.edu

Taylor, Richard
BSc, PhD (UWI)
Lecturer, Inorganic Materials Chemistry
Ext. 82272
Email: richard.taylor@sta.uwi.edu

Wilson, Ann
BSc, PhD (UWI)
Lecturer, Physical/Corrosion Chemistry
Ext. 82283
Email: ann.wilson@sta.uwi.edu

Chan, Wilfred
BSc, MSc, (Lond-UCWI), PhD (Lond)
Professor Emeritus
Ext. 83268
Email: wilfred.chan@sta.uwi.edu
Mootoo, Baldwin
BSc (Lond-UCWI), MSc (Lond), PhD (UWI)
Professor Emeritus
Ext. 83873
Email: baldwin.mootoo@sta.uwi.edu

Pelter, Andrew
BSc, PhD, D.Sc. (Brist)
Honorary Professor

Seaforth, Compton
BSc (Lond-UCWI), PhD (Wales)
Honorary Lecturer

ATS STAFF
Ms. Ashaki Andrews
Ext. 84333
Email: ashaki.andrews@sta.uwi.edu

Mr. St. Bernard Antoine
Ext. 83265
Email: st.bernard.antoine@sta.uwi.edu

Mr. Ronald Baksh
Ext. 83271
Email: ronald.baksh@sta.uwi.edu

Mr. Ganesh Beepath
Ext. 82354
Email: ganesh.beepath@sta.uwi.edu

Mr. Robinson Constantine
Ext. 83265
Email: robinson.constantine@sta.uwi.edu

Mr. Keegan Dial
Ext. 84053
Email: keegan.dial@sta.uwi.edu

Ms. Racquel Dolly
Ext. 82092
Email: racquel.dolly@sta.uwi.edu

Ms. Shirlyln Fernandez
Ext. 83570
Email: shirlyln.fernandez@sta.uwi.edu

Mr. Darrin Grenade
Ext. 83271
Email: darrin.grenade@sta.uwi.edu

Ms. Joan Hernandez
Ext. 83266
Email: joan.hernandez@sta.uwi.edu

Mr. Shurland James
Ext. 83273
Email: shurland.james@sta.uwi.edu

Mr. Sheldon Lancaster
Ext. 82355
Email: sheldon.lancaster@sta.uwi.edu

Mr. Hilton Lashley
Ext. 83265
Email: hilton.lashley@sta.uwi.edu

Mr. Faisal Mohammed
Ext. 83273, 84051
Email: faisal.mohammed@sta.uwi.edu

Mr. Pernel Mohammed
Ext. 82355
Email: jade.mohammed@sta.uwi.edu

Ms. June Nurse
Ext. 83570
Email: june.nurse@sta.uwi.edu

Mr. Kerron Ottley
Ext. 82353
Email: kerron.ottley@sta.uwi.edu

Mr. Deosaran Persad
Ext. 82352
Email: deosaran.persad@sta.uwi.edu

Mrs Denyse Phillip
Ext. 82351
Email: denyse.phillip@sta.uwi.edu

Ms. Avion Prospere
Ext. 83570
Email: avion.prospere@sta.uwi.edu

Mr. Andrew Ramudit
Ext. 82350
Email: andrew.ramudit@sta.uwi.edu

Mr. Dereck Sealey
Ext. 83570
Email: dereck.sealey@sta.uwi.edu

Ms. Pamela Swamber
Ext. 83570
Email: pamela.swamber@sta.uwi.edu

Ms. Marisha Tang-Kai
Ext. 84053
Email: marisha.tang-kai@sta.uwi.edu

Dr Simone Walcott
Ext. 85007
Email: simone.walcott@sta.uwi.edu
DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY
2nd Floor, Natural Sciences Building
Tel: (868) 662-2002 Exts. 83080, 83640
Email: dct@sta.uwi.edu
Website: http://sta.uwi.edu/fst/dcit/

HEAD OF DEPARTMENT
Dr Permanand Mohan
BSc (UWI), MSc (Sask), PhD (UWI)
Ext. 83101
Email: head.dcit@sta.uwi.edu

ADMINISTRATIVE ASSISTANT
Mrs Avril Patterson-Pierre
BA (HW)
Ext. 85382
Email: avril.patterson-pierre@sta.uwi.edu

SECRETARY
Mrs Stacey Greene-McNeil
BSc (UWI), IMBA (UWI)
Exts. 83080, 83538
Email: stacey.greene-mcneil@sta.uwi.edu

ACADEMIC STAFF
Bernard, Margaret
BSc, MPhil, PhD, (UWI)
Senior Lecturer, Computer Science
Ext. 85387
Email: margaret.bernard@sta.uwi.edu
Web: http://www2.sta.uwi.edu/~mbernard/

Goodridge, Wayne (on Sabbatical Leave 2016/2017)
BSc, MPhil (UWI), PhD (Dalhousie)
Lecturer, Computer Science
Ext. 85395
Email: wayne.goodridge@sta.uwi.edu

Hosein, Michael
BSc, MPhil (UWI), PhD (UWI)
Lecturer, Computer Science
Ext. 85390
Email: michael.hosein@sta.uwi.edu

Hosein, Patrick (on Scholarly Leave – Semester I, 2016/2017)
BSc, BSc, MSc, EE, PhD (MIT)
Professor, Computer Science
Ext. 85388
Email: patrick.hosein@sta.uwi.edu

Jordan, René
BSc (UWI), MSc, PhD (Leeds)
Lecturer, Computer Science
Ext. 85391
Email: rene.jordan@sta.uwi.edu

Kalicharan, Noel
BSc (UWI), MSc (Br Col), PhD (UWI)
Senior Lecturer, Computer Science
Ext. 85386
Email: noel.kalicharan@sta.uwi.edu

Kieu, Duc The
BSc, MSc (La Trobe), PhD (Feng Chia)
Lecturer, Computer Science
Ext. 85396
Email: duc.kieu@sta.uwi.edu

Mohan, Permanand
BSc (UWI), MSc (Sask), PhD (UWI)
Senior Lecturer, Computer Science
Ext. 85398
Email: permanand.mohan@sta.uwi.edu

Nikov, Alexander
MSc, PhD (TU Sofia) Dr habil. (TU Braunschweig)
Senior Lecturer, Computer Science
Exts. 85389
Email: alexander.nikov@sta.uwi.edu
Web: http://www2.sta.uwi.edu/~anikov/

Sultan, Salys
BSc (UWI), MSc (Univ. Of Trento), MSc (Univ. of Rwth Aachen)
Assistant Lecturer, Computer Science
Ext. 85397
Email: salys.sultan@sta.uwi.edu

NETWORK SYSTEMS ADMINISTRATOR
Seegobin, Naresh
BSc, MSc (UWI)
Ext. 82299
Email: naresh.seegobin@sta.uwi.edu

ATS STAFF
Mr Nirvan Bhagwandeen
Ext. 85384
Email: nirvan.bhagwandeen@sta.uwi.edu

Mr Garvin Cadogan
BSc (SAM)
Ext. 82299
Email: garvin.cadogan@sta.uwi.edu

Ms Sacha Callender
Ext. 83640
Email: sacha.callender@sta.uwi.edu

Mr Russell Joseph
Ext. 82299
Email: russell.joseph@sta.uwi.edu
Ms. Niala Ragoo
BSc (UH)
Ext. 83640
Email: niala.ragoo@sta.uwi.edu

Mr. Chris Sammy
Ext. 82299
Email: chris.sammy@sta.uwi.edu

DEPARTMENT OF LIFE SCIENCES
MAIN OFFICE
Ground Floor Natural Sciences Building
PBX: 1 868 662 2002; Exts 83095; 83111; 83789; 82045
FAX: 1 868 663 5241; 663-5409

HEAD OF DEPARTMENT
Dr Adesh Ramsubhag
BSc, PhD (UWI)
Ext. 83095
Email: adesh.ramsubhag@sta.uwi.edu

SENIOR ADMINISTRATIVE ASSISTANT
Mrs Deborah Alleyne
BSc, MA (UWI)
Ext. 83789
Email: deborah.alleyne@sta.uwi.edu

SECRETARIES
Mrs Paulette Belfonte-Paul
BSc (UWI)
Ext. 83111
Email: paulette.belfonte@sta.uwi.edu

Mrs Casandra James-De Freitas
Ext. 82045
Email: cassandra.james@sta.uwi.edu

ACADEMIC STAFF
Agard, John B.R.
BSc (UWI), MSc (Manch.), PhD (UWI)
Professor, Tropical Island Ecology
Ext. 85603
Email: john.agard@sta.uwi.edu

Alkins-Koo, Mary
BSc (UWI), MSc (Lond.), PhD (UWI)
Senior Lecturer, Zoology
Ext. 83094
Email: mary.alkins-koo@sta.uwi.edu

Baksh-Comeau, Yasmin S.
BSc, MPhil (UWI)
Curator, National Herbarium of Trinidad and Tobago
Ext. 83326
Email: yasmin.baksh-comeau@sta.uwi.edu

Bowrin, Valerie J.
BSc (UWI), PhD (Purdue)
Lecturer, Biochemistry
Ext. 82079
Email: valerie.bowrin@sta.uwi.edu

Briggs, Georgette C.
BSc (UWI), MSc. (University of Toronto), PhD (McGill), MEd. (UWI)
Lecturer, Plant Sciences
Ext. 83090
Email: georgette.briggs@sta.uwi.edu

Cockburn, Brian N.
BSc, PhD (UWI)
Senior Lecturer, Biochemistry
Ext. 83541
Email: brian.cockburn@sta.uwi.edu

Deacon, Amy
BA (Oxon), MSc (Bangor), PhD (St Andrews)
Lecturer, Zoology
Ext. 83093
Email: amy.deacon@sta.uwi.edu

Duncan, E. Julian
BSc (Lond - UCWI), PhD (St. Andrews)
Professor Emeritus (Botany)
Ext. 83739
Email: julian.duncan@sta.uwi.edu

Elibox, Winston
BSc, PhD (UWI)
Lecturer, Genetics
Ext. 83108
Email: winston.elibox@sta.uwi.edu

Farrell, Aidan D.
BSc (Edinburgh); P.Dip, PhD (Trinity College, Dublin)
Lecturer, Plant Physiology
Ext. 83110
Email: aidan.farrell@sta.uwi.edu

Gobin, Judith
BSc, MPhil (UWI) PhD (Exeter)
Senior Lecturer, Zoology
Ext. 82046
Email: judith.gobin@sta.uwi.edu

Hailey, Adrian
BSc (Lond), PhD (Nottingham)
Professor, Zoology
Ext. 82206
Email: adrian.hailey@sta.uwi.edu

Return to Table of Contents
Halfhide, Trina
BSc (UWI) M.S, Ph.D. (USF)
Lecturer, Environmental Sciences
Ext. 83096
Email: trina.halfhide@sta.uwi.edu

Haraksingh, Rajini
SB (Biology, MIT), SB (Mathematics, MIT), MSc (Yale), PhD (Yale)
Lecturer, Biotechnology
Ext. 85243
Email: rajini.haraksingh@sta.uwi.edu

Jayaraman, Jayaraj
BSc, MSc, PhD (Annamalai)
Professor, Biotechnology and Plant Microbiology
Ext. 83092
Email: jayaraj.jayaraman@sta.uwi.edu

Khan, Ayub
BSc, PhD (UWI)
Senior Lecturer, Plant Sciences
Ext. 83087
E-mail: ayub.khan@sta.uwi.edu

Lennon, Adrian M.
BSc, DPhil (Sussex)
Lecturer, Biochemistry
Ext. 83216
Email: adrian.lennon@sta.uwi.edu

Mechkarska, Milena
MSc (SU, Bulgaria), MSc (SMU DDE, India), PhD (WIAS, The Netherlands)
Lecturer, Biochemistry
Ext. 83086
Email: milena.mechkarska@sta.uwi.edu

Mohammed, Azad
BSc, PhD (UWI)
Lecturer, Ecotoxicology
Ext. 82046
Email: azad.mohammed@sta.uwi.edu

Oatham, Mike P.
BSc (Western Aust.), PhD (Kent)
Lecturer, Plant Sciences
Ext. 83088
Email: mike.oatham@sta.uwi.edu

Phillip, Dawn A.T.
BSc, MPhil (UWI), PhD (St. Andrews)
Lecturer, Life Sciences
Ext. 82208
Email: dawn.phillip@sta.uwi.edu

Ramnarine, Indar W.
BSc (UWI), MSc (Wales), PhD (UWI), MBA (Heriot-Watt)
Professor, (Fisheries & Aquaculture)
Ext. 84484
Email: indar.ramnarine@sta.uwi.edu

Rampersad, Sephra N.
BSc (UWI), PhD (UWI)
Senior Lecturer, Biochemistry
Ext. 83109
Email: sephra.rampersad@sta.uwi.edu

Ramsubhag, Adesh
BSc, PhD (UWI)
Senior Lecturer, Microbiology and Plant Pathology
Ext. 83095
Email: adesh.ramsubhag@sta.uwi.edu

Rouse-Miller, Judy
BSc, MPhil, PhD (UWI)
Lecturer, Plant Sciences
Ext. 83089
Email: judy.rouse-miller@sta.uwi.edu

Rutherford, Mike G.
BSc (Glasgow); MSc (James Cook)
Museum Curator
Ext. 82231
Email: mike.rutherford@sta.uwi.edu

CHIEF LABORATORY TECHNICIAN
Mrs Karen Boodoo-Dhun
BSc, EMBA (UWI)
Ext. 83097
Email: karen.dhun@sta.uwi.edu

ATS STAFF
Mrs Beverley Adams-Baptiste
BSc, MLIS (UWI)
Ext. 84500
Email: beverley.adams@sta.uwi.edu

Ms Renee Ali
BSc (UWI), MSc. (NTU)
Ext. 83091
Email: ali.renee@sta.uwi.edu

Mr. Jason Andrews
Ext. 83885
Email: jason.andrews@sta.uwi.edu

Ms. Geeta Badloo
Ext. 83788
Email: geeta.badloo@sta.uwi.edu
Mr. Rishi Baksh
Ext. 82595
Email: rishi.baksh@sta.uwi.edu

Ms. Marcell Boisson
BSc (UWI)
Ext. 83569, 83415
Email: marcell.boisson@sta.uwi.edu

Mr. Caran Chowtee
Ext. 82205
Email: caran.chowtee@sta.uwi.edu

Mr. Brent Daniel
Ext. 82205
Email: brent.daniel@sta.uwi.edu

Mr. Kerth Daniel
Ext. 82240
Email: kerth.daniel@sta.uwi.edu

Mr. Kharran Deonarine Singh
Ext. 83083
Email: kharran.deonarineSingh@sta.uwi.edu

Mrs. Christine Fraser
Ext. 83091
Email: christine.fraser@sta.uwi.edu

Mrs. Verena Gajadhar Singh
BSc (UWI)
Ext. 83569
Email: verena.gajadharSingh@sta.uwi.edu

Mrs. Claire Gonzales
Ext. 83083, 82047

Mrs. Kathleen Hernandez
Ext. 82047
Email: kathleen.hernandez@sta.uwi.edu

Ms. Tricia Jacob
Ext. 82205

Ms. Marcia Jacobs
Ext. 82080, 82045

Ms. Leela Jagdeo
Ext. 82045
Email: leela.jagdeo@sta.uwi.edu

Mrs. Abigail Joefield
BSc (USC)
Ext. 82047
Email: abigail.joefield@sta.uwi.edu

Ms. Leisha Joseph
Ext. 82080
E-mail: leisha.joseph@sta.uwi.edu

Mr. Alvin Khelawan
Ext. 82055
Email: alvin.khelawan@sta.uwi.edu

Mr. Rajindra Mahabir
Ext. 82239
Email: rajendra.mahabir@sta.uwi.edu

Mr. Anton Manoo
BSc (UWI)
Ext. 82629
E-mail: anton.manoo@sta.uwi.edu

Ms. Keisha Manaure
BSc MSc (UWI)
Ext. 84498
Email: keisha.manaure@sta.uwi.edu

Mr. Fareed Mohammed
Ext. 82595

Mr. Kelvin Nakhid
Ext. 82595

Mr. Stephen Narine
Ext. 83083
Email: stephan.narine@sta.uwi.edu

Mr. Kwesi Noreiga
Ext. 82217
Email: kwesi.noreiga@sta.uwi.edu

Ms. Jennalee Ramnarine
BSc (UWI)
Ext. 82237
Email: jennalee.ramnarine@sta.uwi.edu

Ms. Diyaday Ramsaran
Ext. 83091
Email: diyaday.ramsaran@sta.uwi.edu

Mr. Hubindra Seebarath
Ext. 82595
Email: hubindra.seebarath@sta.uwi.edu

Mr. David Seenath
Ext. 83111, 82045
Email: david.seenath@sta.uwi.edu

Mr. Mahabir Sumair
Ext. 82606
Email: mahabir.sumair@sta.uwi.edu
Ms. Debbie-Ann Timothy
Ext. 83111, 82080

Mrs Susan Wisdom
BSc (UWI)
Ext. 83083
Email: susan.wisdom@sta.uwi.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS
2nd Floor, Natural Sciences Building
Tel: (868) 662-2002 Exts.82049, 83553, 83641
Fax: (868) 645-7132
Email: dms@sta.uwi.edu
Website: http://sta.uwi.edu/fst/dms

HEAD OF DEPARTMENT
Dr Donna Comissiong
BSc, MPhil, (UWI), PhD (Northwestern Univ.)
Senior Lecturer, Mathematics
Ext. 82049
Email: donna.comissiong@sta.uwi.edu

ADMINISTRATIVE ASSISTANT
Mrs Deloris Adams-Carrington
BSc (UWI)
Ext. 83780
Email: deloris.adams@sta.uwi.edu

SECRETARY
Ms. Nisha Hazelwood
Exts. 82048, 82049
Email: nisha.hazelwood@sta.uwi.edu

ACADEMIC STAFF
Antoine, Robin (on Sabbatical Leave 2016/2017)
BSc, MSc (UWI), MS, PhD (FSU)
Senior Lecturer, Mathematics
Ext. 83098
Email: robin.antoine@sta.uwi.edu

Bhatt, Balswaroop
BSc, MSc, PhD (University of Rajasthan), FIMA
Professor Emeritus
Ext. 83859
Email: bal.bhatt@sta.uwi.edu

Comissiong, Donna
BSc, MPhil, (UWI), PhD (Northwestern Univ.)
Senior Lecturer, Mathematics
Ext. 83099
Email: donna.comissiong@sta.uwi.edu

Daaga, Akhenaton
BSc, MPhil (UWI)
Instructor
Ext. 82592
Email: akhenaton.daaga@sta.uwi.edu

de Matas, Charles
BSc, MPhil (UWI), MA (Pgh), PhD (UWI)
Lecturer, Mathematics
Ext. 83499
Email: charles.dematas@sta.uwi.edu

Dialsingh, Isaac
B.Sc, M.Sc (UWI), PhD (PSU)
Lecturer, Mathematics
Ext. 83554
Email: isaac.dialsingh@sta.uwi.edu

Doctor, Dane (on Sabbatical Leave 2016/2017)
BSc, MSc (UWI), ASA
Lecturer, Actuarial Science
Ext. 83947
Email: dane.doctor@sta.uwi.edu

Farrell, Edward J.
BSc (UWI), M.Math. PhD (Wat), FTICA
Professor Emeritus
Ext. 83553
E-mail: edward.farrell@sta.uwi.edu

Gunakala, Sreedhara Rao (on Scholarly Leave – Semester 1, 2016/2017)
BSc(Acharya Nagarjuna Univ.-India),
MSc (Osmania Univ. - India),
MPhil (Madurai Kamaraj Univ. - India), PhD (Sri Venkateswara Univ. - India)
Lecturer, Mathematics
Ext. 84491
Email: sreedhara.rao@sta.uwi.edu

Mohammed, Asad
B.Math (Waterloo), MSc (UWI)
Lecturer, Actuarial Science
Ext. 83554

Rahaman, Karim
BSc, PhD (UWI)
Senior Lecturer, Mathematics
Ext. 83082
Email: karim.rahaman@sta.uwi.edu

Ramkissoon, Harold
BSc (UWI), MSc (Tor), PhD (Calg)
Professor Emeritus
Ext.82529
Email: harold.ramkissoon@sta.uwi.edu
Shirley, Angela
BSc (UWI), MSc, PhD (Northeastern)
Lecturer, Mathematics
Ext. 82495
Email: angela.shirley@sta.uwi.edu

Smart, Stokeley
H.B.Sc (Univ. of Toronto), LL.B (Univ. of London), FSA, CERA, PRM
Senior Lecturer, Actuarial Science
Ext. 83778
Email: stokeley.smart@sta.uwi.edu

Sinanan, Shavak
BSc (UWI), MSc (Oxford), PhD (Warwick)
Instructor
Ext. 83102
Email: shavak.sinanan@sta.uwi.edu

Tripathi, Vrijesh
BSc, MSc PhD (Agra)
Senior Lecturer, Statistics
Ext. 83872
Email: vijesh.tripathi@sta.uwi.edu

Tweedle, David
BMATH, MMATH, PhD (Waterloo)
Lecturer
Ext. 83102
Email: david.tweedle@sta.uwi.edu

Wahid, Shanaz
BSc, MPhil, PhD, (UWI), FTICA
Senior Lecturer, Mathematics
Ext. 83081
Email: shanaz.wahid@sta.uwi.edu

ATS STAFF
Mr. Kevin Awai
BSc (UWI)
Ext. 83553
Email: kevin.awai@sta.uwi.edu

Mrs Joan Campbell-Flemming
Ext. 83553
Email: joan.campbell-flemming@sta.uwi.edu

Mr. Jason Chamaroo
Ext: 83130
Email: jason.chamaroo@sta.uwi.edu

Ms. Trisha Prince
Ext. 83641
Email: trisha.prince@sta.uwi.edu

DEPARTMENT OF PHYSICS
3rd Floor, Natural Sciences Building
Tel: (868) 662-2002 Exts. 82050, 82051
Fax: (868) 662-9904
Email: physics@sta.uwi.edu

HEAD OF DEPARTMENT
Dr Ricardo Clarke
BSc, MPhil, PhD (UWI)
Ext. 82050
Email: physics@sta.uwi.edu

ADMINISTRATIVE ASSISTANT
Mrs Zuwena Williams-Paul
BA, MSc (UWI)
Ext: 83846
E-mail: zuwena.williams-paul@sta.uwi.edu

SECRETARY
Mrs Virginia Briggs
BSc (UWI)
Ext: 82593
Email: virginia.sadd-nagim@sta.uwi.edu

ACADEMIC STAFF
Andrews, Roger
BSc, PhD (Lond.)
Lecturer, Quantum Physics
Ext. 83114
Email: roger.andrews@sta.uwi.edu

Chadee, Xsitaaz T
BSc, MPhil, PhD (UWI)
Lecturer, Renewable Energy and Environmental Physics
Exts. 83116, 83844
Email: xsitaaz.chadee@sta.uwi.edu

Clarke, Ricardo
BSc, MPhil, PhD (UWI)
Lecturer, Environmental Physics
Ext. 83121
Email: ricardo.clarke@sta.uwi.edu

De Souza, Keith
BSc, MSc, (UWI), PhD (Southampton)
Lecturer, Electronics
Ext. 83103
Email: keith.desouza@sta.uwi.edu

Haque, Shirin (on Scholarly Leave- Semester I, 2016/2017)
BSc, MPhil (Physics), MPhil (Psychology), PhD (UWI)
Senior Lecturer, Astronomy
Ext. 83123
E-mail: shirin.haque@sta.uwi.edu
Haraksingh, Indra
BSc, Dip.Ed, PhD (UWI)
Lecturer, Environmental Physics
Ext. 83122
Email: indra.haraksingh@sta.uwi.edu

Sekhon, Satpal
BSc (GNDU), MSc, PhD (Punjabi)
Professor, Physics
Ext. 82591
Email: satpal.sekhon@sta.uwi.edu

Sharma, Davinder Pal (on Sabbatical Leave 2016/2017)
BSc, MSc, PhD (GNDU)
Lecturer, Electronics
Ext. 83105
Email: davinder.sharma@sta.uwi.edu

Williams, Sybele
BSc, MPhil (UWI), MSc (Lough.), PhD (RWTH Aachen)
Lecturer, Bioengineering and Ergonomics
Ext. 83124
Email: sybele.williams@sta.uwi.edu

Zyuzikov, Nikolay
BSc (MEPHI), MSc (QMUL), PhD (MRRC)
Lecturer, Medical Physics
Ext. 85604
Email: nikolay.zyuzikov@sta.uwi.edu

SENIOR ELECTRONICS MAINTENANCE OFFICER
Electronics Workshop
Charles, Michael N (ASEET)
Tel: 662-2002 Ext 82317
Email: noel.charles@sta.uwi.edu

DEVELOPMENT ENGINEER
Electron Microscopy Unit
Hinds, David (BSc)
Tel: (868)-663-7846
E-mail: david.hinds@sta.uwi.edu

ATS STAFF
CHIEF LABORATORY TECHNICIAN
Mr. Shazaad Ali Shah
(BSc, MPhil)
Ext. 82651
Email: shazaad.ali-shah@sta.uwi.edu

CHIEF TECHNICIAN MECHANICAL WORKSHOP
Mr. Kirk Gowrie
Ext. 83106
Email: kirk.gowrie@sta.uwi.edu

Mr. Taarik Ali
(BSc)
Ext. 82649
Email: taarik.ali@sta.uwi.edu

Mr. Leo Amour
Ext. 83115
Email: leo.amour@sta.uwi.edu

Ms. Cheryl Bain-King
Ext. 82614
Email: cheryl.king@sta.uwi.edu

Mr. Joseph Baksh
Ext. 82176
Email: joseph.baksh@sta.uwi.edu

Ms. Rosanna Beharry
(BSc)
Ext. 82656
Email: rosanna.beharry@sta.uwi.edu

Ms. Solange Callender
(BSc)
Ext. 83113; 82150
Email: solange.callender@sta.uwi.edu

Ms. Mei Gui Cen
(BSc)
Ext. 82317
Email: mei-gui.cen@sta.uwi.edu

Mr. Leon Charles
Ext. 82317
Email: leon.charles@sta.uwi.edu

Mr. Tyrone Corbin
(Dipl. Telecomm. Tech., Major Electronics)
Ext. 82317
Email: tyrone.corbin@sta.uwi.edu

Mr. Adrian Gayah
(BSc)
Ext. 82615
Email: adrian.gayah@sta.uwi.edu

Ms. Denell Granderson
Ext. 82150
Email: denell.granderson@sta.uwi.edu

Ms. Sadira Khan
(BSc, NEBOSH Cert., NEBOSH Dipl., Cert. PV Generation Tech.)
Ext. 82656
Email: sadira.khan@sta.uwi.edu
SECTION II – INTRODUCTION

A. PROGRAMME OFFERING IN THE FACULTY OF SCIENCE AND TECHNOLOGY

1. The Faculty of Science and Technology (FST) offers the following undergraduate programmes leading to the award of BSc degrees:

<table>
<thead>
<tr>
<th>DISCIPLINE</th>
<th>MAJORS</th>
<th>MINORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td>Biochemistry</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Biology</td>
<td>Biology</td>
<td>Biology</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Chemistry</td>
<td>Chemistry</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>Industrial Chemistry</td>
</tr>
<tr>
<td></td>
<td>Analytical Chemistry</td>
<td>Chemical Biology</td>
</tr>
<tr>
<td></td>
<td>Materials Chemistry</td>
<td>Materials Chemistry</td>
</tr>
<tr>
<td>Computer Science</td>
<td>Computer Science</td>
<td>Computer Science</td>
</tr>
<tr>
<td>(Multidisciplinary)</td>
<td>Environmental Science</td>
<td></td>
</tr>
<tr>
<td>Information Technology</td>
<td>Information Technology</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>Mathematics</td>
<td>Mathematics Statistics</td>
</tr>
<tr>
<td>Physics</td>
<td>Electronics Physics</td>
<td>Electronics (Not available to students pursuing the Major in Electronics)</td>
</tr>
<tr>
<td></td>
<td>Environmental Physics</td>
<td>Environmental Physics</td>
</tr>
<tr>
<td></td>
<td>Materials Science</td>
<td>Materials Science</td>
</tr>
<tr>
<td></td>
<td>Medical Physics & Bioengineering</td>
<td>Medical Physics & Bioengineering</td>
</tr>
</tbody>
</table>

NOTE: For detailed information on special options/ majors/ minors, please refer to the relevant Departmental sections of this booklet.
BSc IN THE FOLLOWING SPECIAL OPTIONS:

i. Actuarial Science (Special)

ii. Biology with specialisations in:
 a) Plant Biology
 b) Zoology
 c) Ecology & Environmental Biology
 d) Biotechnology
 e) Marine Biology
 f) Microbiology

iii. Biomedical Technology (Special)

iv. Chemistry (Special)

v. Chemistry and Management (Special)

vi. Computer Science (Special)

vii. Computer Science with Management (Special)

viii. Environmental Science & Sustainable Technology (Special)

ix. Information Technology (Special)

x. Information Technology with Management (Special)

xi. Mathematics (Special)

xii. Mathematics & Applied Statistics (Special)

xiii. Statistics (Special)

xiv. Statistics and Economics (Special)

The Faculty also offers a BSc (General) degree with major(s) and minor(s) in various disciplines as shown in TABLE 1.

2. The degree of Bachelor of Science is awarded on the basis of a programme of studies selected from courses in the Science disciplines together with certain Foundation courses and in some cases a number of approved courses from other Faculties.

3. The FST offers the following BSc degrees (the terms Major, Minor, and Special Option are defined in the Glossary):

 (a) **A BSc (General) degree with:**
 i. a single major in a FST discipline.
 ii. a joint major in two disciplines only, one of which may be from a Faculty other than the FST.
 iii. a single major in a FST discipline PLUS one or two minors from FST and/or other Faculties.

 (b) **BSc Special Option** comprising a prescribed set of departmental, inter-departmental FST or out-of-faculty courses.

 (c) All students admitted to the FST to read the BSc Special Options listed hereunder are required to register for courses in the Faculty of Social Sciences and must be familiar with the list of cross faculty pre-requisites and equivalencies listed in SECTION VIII.
 i. BSc Actuarial Science (Special)
 ii. BSc Chemistry and Management (Special)
 iii. BSc Computer Science with Management (Special)
 iv. BSc Statistics and Economics (Special)

 (d) **FOUNDATION COURSES:**
 i. In order to qualify for the award of a BSc degree in the FST, all students must pass a minimum of nine (9) credits of Foundation Courses. These courses are Level I courses and are designed to augment the general education of students.
 ii. The three Foundation Courses (3 credits each) required to be taken by the FST students are:
 - FOUN 1101 - Caribbean Civilisation
 - FOUN 1105 -Scientific and Technical Writing
 - FOUN 1301 - Law, Governance, Economy and Society
 iii. The Foundation Course, FOUN 1210 (Science, Medicine and Technology in Society) will NOT count for credit towards programmes in FST.
 iv. On entry into the FST a student may be required to pass the English Language Proficiency Test (ELPT) before s/he can register for FOUN 1105. However, students with the following qualifications can register directly for FOUN 1105:

B. COURSES OFFERED AND THEIR WEIGHTING

4. The following courses which may consist of both theoretical and/or practical components are offered by the University:

 (a) **FST FACULTY COURSES:**
 These are courses offered by the FST (in-faculty courses). These include Level zero (0) (or Preliminary) courses in Physics, Chemistry, Mathematics and Biology, Level I (or Introductory) and Levels II & III (or Advanced) courses. Preliminary courses may be used to satisfy matriculation requirements or pre-requisites for Level I, II or III courses. Preliminary courses, however, do not contribute towards the credit requirements for the award of the BSc degree but contribute towards a semester credit loading (6 credits each).

 (b) **SERVICE COURSES:**
 These provide students with basic technical and analytical skills.

 (c) **OUT-OF-FACULTY COURSES:**
 These are courses offered by Faculties other than FST which may contribute towards the requirements for the award of a degree. Approval must be granted by the Dean before a student can pursue an out-of-Faculty course if such course is not part of the candidate's degree programme.

 (d) **FOUNDATION COURSES:**
 i. In order to qualify for the award of a BSc degree in the FST, all students must pass a minimum of nine (9) credits of Foundation Courses. These courses are Level I courses and are designed to augment the general education of students.
 ii. The three Foundation Courses (3 credits each) required to be taken by the FST students are:
 - FOUN 1101 - Caribbean Civilisation
 - FOUN 1105 -Scientific and Technical Writing
 - FOUN 1301 - Law, Governance, Economy and Society
 iii. The Foundation Course, FOUN 1210 (Science, Medicine and Technology in Society) will NOT count for credit towards programmes in FST.
 iv. On entry into the FST a student may be required to pass the English Language Proficiency Test (ELPT) before s/he can register for FOUN 1105. However, students with the following qualifications can register directly for FOUN 1105:
• Grade I in CSEC English Language, or
• Grade I or II in CAPE Communication Studies, or
• Grade A or B in General Paper in the GCE A-Level Examination.

5. Courses normally extend over one (1) semester, but in special cases may extend over two (2) semesters (year-long courses).

6. The weight of a course is expressed in terms of credit hours, and the credit-weighting of a course is determined by the Faculty which administers the courses. In general, a course with one contact hour per week for one semester has a weighting of one credit.

C. CO-CURRICULAR CREDITS

7. Courses involving independent, supervised activities which would earn the student co-curricular credits may be pursued upon approval by the Campus Academic Board. The co-curricular programme allows you to choose from a range of non-academic courses that help you to acquire characteristics to excel in life in the 21st century. These courses are practical in nature and help you to develop attributes which are critical for your success.

i. Students are eligible to register for co-curricular credits after their first semester of studies.

ii. Each student is eligible to count no more than three (3) credits towards his/her degree for involvement in co-curricular activities.

iii. The programme of co-curricular activities must have the approval of the Faculty and Academic Board before it is undertaken by the student.

iv. The Deputy Dean with responsibility for Outreach (Dr Shirin Haque) is the Faculty’s Coordinator for the co-curricular programme. Please consult with the Coordinator if you are interested in pursuing co-curricular activities.

v. Co-curricular credits will be awarded on the following basis:
 • students must be involved in the activity for at least one (1) semester
 • explicit learning outcomes must be identified for each activity
 • there must be clearly defined mode(s) of assessment for each activity

vi. The grading of co-curricular activities will be on a pass/fail basis and will not contribute to a student’s GPA.

vii. For further details on co-curricular offerings, please consult the Deputy Dean (Outreach) or visit the website at http://sta.uwi.edu/cocurricular/

8. Eligibility for inclusion on the Dean’s Honour Roll

The following guidelines are applicable:

(a) Inclusion on the Dean’s Honour Roll will be on a Semester basis. The Summer School will not be considered.

(b) Students must obtain a Semester GPA of 3.60 and above in any semester

(c) Full-time students must have passed a minimum of 15 credits in the semester. Part-time and Evening University students must have passed a minimum of 9 credits in the semester.

Credits gained for the following will NOT be taken into consideration in computing the Dean’s Honour Roll:
• Co-curricular offerings
• Internship programmes

The following co-curricular courses are available*:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COCR 1001</td>
<td>Minding SPEC: Exploring Sports, Physical Education and Health & Wellness</td>
<td>3</td>
</tr>
<tr>
<td>COCR 1012</td>
<td>Workplace Protocol for Students</td>
<td>3</td>
</tr>
<tr>
<td>COCR 1013</td>
<td>Financial Literacy and Training</td>
<td>3</td>
</tr>
<tr>
<td>COCR 1030</td>
<td>Technology Literacy</td>
<td>3</td>
</tr>
<tr>
<td>COCR 1031</td>
<td>Managing My High (MY High): Alcohol, Drugs and Addictive Behaviours</td>
<td>2</td>
</tr>
<tr>
<td>COCR 1032</td>
<td>Living and Learning: Professional development through community service</td>
<td>2</td>
</tr>
<tr>
<td>COCR 1033</td>
<td>Mind the Gap: Towards Psychological Health & Wellness</td>
<td>1</td>
</tr>
<tr>
<td>COCR 1034</td>
<td>Public Speaking and Voice Training: Towards a More Confident You</td>
<td>3</td>
</tr>
<tr>
<td>COCR 1036</td>
<td>Ethics And Integrity: Building Moral Competencies</td>
<td>3</td>
</tr>
</tbody>
</table>

Microsoft Office 2013

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COCR1025</td>
<td>Microsoft Word</td>
<td>2</td>
</tr>
<tr>
<td>COCR1026</td>
<td>Microsoft Excel</td>
<td>2</td>
</tr>
<tr>
<td>COCR1027</td>
<td>Microsoft PowerPoint</td>
<td>2</td>
</tr>
<tr>
<td>COCR1028</td>
<td>Microsoft Outlook</td>
<td>2</td>
</tr>
<tr>
<td>COCR1029</td>
<td>Microsoft Access</td>
<td>2</td>
</tr>
</tbody>
</table>

*NOTE: All co-curricular course codes begin with COCR. Visit http://sta.uwi.edu/cocurricular/ for course descriptions, availability and registration instructions. New courses are to be introduced so keep checking the website for updates during the academic year.

D. DEAN’S HONOUR ROLL
THE FACULTY OF SCIENCE & TECHNOLOGY

20

Return to Table of Contents

- Audited courses
- Summer courses
- Not-for-credit courses

Repeal courses will be included in the computation of the Semester GPA towards the Dean’s Honour Roll.

Special consideration will be given to students who are differently-abled and who have obtained a semester GPA of 3.60 and above but who have registered for less than 15 credits. Such students must declare and provide supporting documents as evidence of their disability at the start of the semester. Decisions for inclusion of such differently-abled students in the Dean’s Honour Roll will be taken at the Faculty’s Board of Examiners Meeting. In addition, such students must be registered with the Academic Support/Disabilities Liaison Unit (ASDLU).

E. THE STUDENT LIFE AND DEVELOPMENT DEPARTMENT (SLDD)

9. The Department is the first and most important stop for high quality academic support for the diverse populations of students throughout The University including full-time, part-time and evening and mature students, international and regional students, student athletes and students with special needs (disabilities).

10. The Department now provides the following services:
- Disability Support
- Academic Support
- International and Regional Student Support
- Postgraduate and Mature Student Support
- Counselling and Psychological Services (CAPS)

(a) Support Services for STUDENTS WITH SPECIAL NEEDS (Temporary and Permanent)
- Provision of aids and devices such as laptops, USB drives, tape recorders and special software
- Special accommodation for examinations
- Classroom accommodations
- Liaison with faculties and departments, Deans, HODs, Lecturers

Students with special needs should make contact before or during registration. Every effort will be made to facilitate your on-campus requirements in terms of mobility, accommodation, coursework, examinations, and other areas. No student of The UWI will be discriminated against on the basis of having special needs. Sharing your needs before registration will enable us to serve you better as a part of the Campus Community.

(b) Academic Support Services for ALL STUDENTS
- Educational Assessment – LADS (dyslexia) – LASSI (Study Skills)
- Time Management
- Examination Strategies
- Workload Management
- Career Planning
- Study Skills
- Peer Tutoring
- Peer-Pairing
- Counselling Services (CAPS)

(c) How do I register at SLDD?
- Visit SLADD to make an appointment to meet the Manager.
- Complete the required registration form
- Students with disabilities must submit a medical report from a qualified medical professional
- An assessment of the student’s needs will be conducted
- The required assistance will be provided

All Students experiencing academic challenges should communicate with Ms. Jacqueline Huggins, Manager, Student Life and Development Department (SLDD), Heart Ease Building, Heart Ease Car Park, Wooding Drive, St. Augustine Campus
Tel: 662-2002 Exts 83866, 83921, 83923, 84254.
Email: sldd.office@sta.uwi.edu

Registration forms are available at the office or from the website at www.sta.uwi.edu/sldd

F. INFORMATION RESOURCES AT THE ALMA JORDAN LIBRARY

A crucial part of your undergraduate training is learning when you need information, what kind of information you need, what information is available as well as how to search for, select and obtain relevant information. Such information literacy skills will equip you well for your assignments, examinations and career.

Our wide-ranging collection spans several subject areas relevant to the Faculty of Science and Technology, including Actuarial Science, Agricultural Sciences, Astronomy, Biomedical Technology, Chemistry, Computer Science,
Information Technology, Life Sciences, Mathematics, Physics, Statistics and Environmental Science. Aside from holding over 430,000 books, 800 print journal titles, and 55,300 bound journal issues. We offer access to more than 67,000 electronic journals, 35,200 e-books and 252 databases—much of this material is not available freely on the Internet. Online resources can be accessed on and off-campus. Moreover, a sizeable body of regional research may be accessed from maps, newspapers, theses and other materials in the West Indiana and Special Collections Division.

In addition to providing resources you may consult and borrow, the Library offers audio-visual, computing, photocopying and printing facilities, as well as areas for quiet study and seminars. Our Reference Service can assist you with your research questions.

You may attend specialist information literacy training and arrange for consultation sessions that will help you to improve your research and citation skills. Do attend our Library orientation session and tour to ensure, from the start, that you have access to essential support for your studies.

For further information, please visit the second floor of the Alma Jordan Library or contact:

Ms. Michelle Gill
BSc (Chem), MLIS (UWI)
Faculty Liaison Librarian (Food & Agriculture and Science & Technology)
Science and Agriculture Division
The Alma Jordan Library
Tel.: 662 2002, ext. 83596, 83395
Email: michelle.gill@sta.uwi.edu
Alma Jordan Library: http://libraries.sta.uwi.edu/ajl
SECTION III - GLOSSARY

<table>
<thead>
<tr>
<th>TERM</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-requisite</td>
<td>Two mutually exclusive courses of which credit may be granted for only one.</td>
</tr>
<tr>
<td>Co-requisite</td>
<td>A course which must be taken along with another specified course, in order to ensure the attainment of the complementary and/or independent competencies.</td>
</tr>
<tr>
<td>Course</td>
<td>A body of knowledge circumscribed by a syllabus to be imparted to students by sundry teaching methods and usually followed by an examination. A course may be either compulsory or elective.</td>
</tr>
<tr>
<td>Credit</td>
<td>A measure of the workload required of students. 1 Credit Hour is equivalent to 1 hour lecture/tutorial/problem class per week OR 2 hours of laboratory session per week for a semester.</td>
</tr>
<tr>
<td>Cumulative GPA</td>
<td>Grade point average obtained by dividing the total grade points earned by the total quality hours for which the student has registered for any period of time excluding courses taken on a Pass/Fail basis, audited courses, courses taken for Preliminary credit, incomplete and in-progress courses.</td>
</tr>
<tr>
<td>Discipline</td>
<td>A body of knowledge distinguishable from other such bodies on the basis of criteria such as method of enquiry, axioms, area of application.</td>
</tr>
<tr>
<td>Elective</td>
<td>A course within a programme taken by choice of the student.</td>
</tr>
<tr>
<td>Faculty courses</td>
<td>All courses except Foundation and Co-curricular courses.</td>
</tr>
<tr>
<td>In-faculty courses</td>
<td>All faculty courses originating in the Science Faculties</td>
</tr>
<tr>
<td>Level</td>
<td>A state in a programme for which courses are designed (at UWI it is denoted by the first digit in a course code). For example BIOL 2062 is a Level II course whereas BIOL 3864 is a Level III course.</td>
</tr>
<tr>
<td>Major</td>
<td>A specified number of credits (normally 30) including prescribed courses from Level II & III from a single discipline (see Departmental course listing).</td>
</tr>
<tr>
<td>Marginal failure</td>
<td>45% to 49% in the overall examination.</td>
</tr>
<tr>
<td>Minor</td>
<td>A specified number of credits (normally 15) including prescribed courses from Levels II & III from a single discipline.</td>
</tr>
<tr>
<td>Option</td>
<td>A prescribed combination of Levels I, II and III courses, within the Faculty or across Faculties, leading to a degree.</td>
</tr>
<tr>
<td>Out-of-faculty courses</td>
<td>All faculty courses originating in faculties other than the Faculty of Science and Technology</td>
</tr>
<tr>
<td>Part</td>
<td>Portion of a programme defined by the regulations governing the programme.</td>
</tr>
<tr>
<td>Plagiarism</td>
<td>The unauthorized and/or unacknowledged use of another person’s intellectual efforts and creations howsoever recorded, without proper and unequivocal attribution of such source(s), using the conventions for attributions or citing used in this University.</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td>A course which must be passed before the course for which it is required may be pursued.</td>
</tr>
<tr>
<td>Programme</td>
<td>A selection of courses (designed to achieve pedagogical goals) the taking of which is governed by certain regulations and the satisfactory completion of which (determined by such regulation) makes a candidate eligible for the award of a degree/ diploma/certificate.</td>
</tr>
<tr>
<td>Preliminary Course</td>
<td>A Level 0 course used to satisfy entry requirements but does not contribute towards the requirements for the award of the degree.</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Remedial Course</td>
<td>A course that is offered in Summer School only for students who have failed this course during the semester.</td>
</tr>
<tr>
<td>Science Faculties</td>
<td>The Faculties of Science and Technology.</td>
</tr>
<tr>
<td>Semester GPA</td>
<td>GPA computed on the basis of all courses done in a semester, without reference to weighting except in terms of credits. (The terms Grade Point, GPA, Quality Hours, Honours GPA, Cumulative GPA and Quality Points are defined in the UWI Grade Point Average Regulations Booklet).</td>
</tr>
<tr>
<td>Subject</td>
<td>An area of study traditionally assigned to the purview of a department.</td>
</tr>
<tr>
<td>Students:</td>
<td></td>
</tr>
<tr>
<td>Part-Time Student</td>
<td>A part-time student will normally be expected to register for 6 to 9 credits of courses per semester. These courses may be scheduled at any time of the day on the timetable.</td>
</tr>
<tr>
<td>Full-time Student</td>
<td>A full-time student will normally be expected to register for 12 to 15 credits per semester.</td>
</tr>
<tr>
<td>Evening Student</td>
<td>A student registered in an Evening University Programme will be required to attend classes on weekdays between the hours of 5:00pm - 10:00pm and on Saturdays between the hours of 8:00am - 8:00pm.</td>
</tr>
<tr>
<td>Specially Admitted Student</td>
<td>Students admitted to pursue a limited number of courses.</td>
</tr>
<tr>
<td>Study Abroad/ Student</td>
<td>An exchange programme which allows students to spend one or two semesters at universities Exchange abroad in order to broaden their experience, understanding and perception of science in a different environment where a wider range of courses is available including independent study projects.</td>
</tr>
<tr>
<td>Supplemental Oral</td>
<td>An oral examination, offered on recommendation of Departments and Faculty, to students who have registered a marginal failure in an advanced course.</td>
</tr>
<tr>
<td>Weighted GPA</td>
<td>Weighted grade point average used to determine the class of degree. This GPA is computed on the basis of all courses done in the Advanced Part (Levels 2 & 3) of the Degree programme.</td>
</tr>
</tbody>
</table>
SECTION IV - FACULTY REGULATIONS

All students of the University are subject to University Regulations approved by the Senate of the UWI. Where there is conflict between the regulations of any Faculty and the University Regulations, the University Regulations shall prevail.

G. QUALIFICATIONS FOR ADMISSION INTO THE FACULTY

11. In order to be admitted to the three-year degree programme, candidates must satisfy the University requirements for Matriculation (see the University Regulations for Undergraduate Students) and have passed the CSEC General Proficiency Level examination at Grades I, II or, since 1998, Grade III (or equivalent qualifications) in Mathematics, English Language and three additional subjects listed in SECTION VII.

12. Candidates must also:
 (a) have obtained passes in a minimum of two two-unit subjects at CAPE (or GCE A-Level or equivalent qualification), OR
 (b) have an approved Associate Degree or equivalent certification with a minimum GPA of 2.5 in a relevant programme from a tertiary level institution recognised by UWI, OR
 (c) have any other appropriate qualifications acceptable to the FST.

13. In addition to the above general qualifications for admission, candidates must also satisfy the specific subject requirements for entry into the various FST programmes they wish to pursue. These are listed in TABLE 2:

<table>
<thead>
<tr>
<th>PROGRAMME</th>
<th>CAPE SUBJECT(S) (GCE A-LEVEL OR EQUIVALENT) REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc General with majors in:</td>
<td></td>
</tr>
<tr>
<td>Biochemistry</td>
<td>Chemistry and Biology</td>
</tr>
<tr>
<td>Biology</td>
<td>Two (2) subjects including Biology</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Two (2) subjects including Chemistry</td>
</tr>
<tr>
<td>Industrial Chemistry</td>
<td>Two (2) subjects including Chemistry</td>
</tr>
<tr>
<td>Computer Science</td>
<td>Two (2) subjects including one (1) Science, Accounting or Economics</td>
</tr>
<tr>
<td>Electronics</td>
<td>Two (2) subjects including Physics and Mathematics</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>Two (2) subjects including Biology, Geography or Environmental Science</td>
</tr>
<tr>
<td>Information Technology</td>
<td>Two (2) subjects including one (1) Science, Accounting or Economics</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Two (2) subjects including Mathematics</td>
</tr>
<tr>
<td>Physics</td>
<td>Two (2) subjects including Physics OR Mathematics with CSEC Physics or equivalent</td>
</tr>
<tr>
<td>BSc Special Options:</td>
<td></td>
</tr>
<tr>
<td>BSc Actuarial Science</td>
<td>Two (2) subjects including Mathematics (Minimum Grade II)</td>
</tr>
<tr>
<td>BSc Biology with specialisations</td>
<td>Two (2) subjects including Biology</td>
</tr>
<tr>
<td>BSc Biomedical Technology</td>
<td>Two (2) subjects including Physics OR Mathematics with CSEC Physics or equivalent</td>
</tr>
<tr>
<td>BSc Chemistry</td>
<td>Two (2) subjects including Chemistry</td>
</tr>
<tr>
<td>BSc Chemistry and Management</td>
<td>Two (2) subjects including Chemistry – (Minimum Average Grade III or equivalent)</td>
</tr>
<tr>
<td>BSc Computer Science</td>
<td>Two (2) subjects including one (1) Science, Accounting or Economics</td>
</tr>
<tr>
<td>BSc Computer Science with Management</td>
<td>Two (2) subjects including one (1) Science, Accounting or Economics</td>
</tr>
<tr>
<td>BSc Environmental Science & Sustainable Technology</td>
<td>Two (2) science subjects – (Minimum Average Grade III or C) including Biology, Geography or Environmental Science</td>
</tr>
<tr>
<td>BSc Information Technology</td>
<td>Two (2) subjects including one (1) science subject, Accounting or Economics</td>
</tr>
<tr>
<td>BSc Information Technology with Management</td>
<td>Two (2) subjects including one (1) Science, Accounting or Economics</td>
</tr>
<tr>
<td>BSc Mathematics</td>
<td>Two (2) subjects including Mathematics</td>
</tr>
<tr>
<td>BSc Mathematics & Applied Statistics</td>
<td>Two (2) subjects including Mathematics</td>
</tr>
<tr>
<td>BSc Statistics</td>
<td>Two (2) subjects including Mathematics</td>
</tr>
<tr>
<td>BSc Statistics and Economics</td>
<td>Two (2) subjects including Mathematics (Minimum Average Grade III)</td>
</tr>
</tbody>
</table>

For a list of approved science CAPE/GCE A-Level subjects, see SECTION VII.
H. APPLICATION PROCEDURE
14. Applications for entry to the FST must be received by the Admissions Section of the Registry by May 31st of the year in which the applicant wishes to enter and shall be accompanied by certified evidence of all relevant examinations passed. Students are encouraged to apply online at http://sta.uwi.edu/admissions/undergrad/index.asp

I. LIST OF EXEMPTIONS
15. Provided that requirements to Statute 47 are fulfilled, students admitted to the FST may be exempted with or without credits from Level I and/or Level II or Level III courses if they:
 • are holders of degrees from approved universities; or
 • have partially fulfilled the requirements of such degrees; or
 • are holders of Associate Degrees from approved tertiary level institutions; or
 • have transferred from different BSc degree programmes or from other programmes of study within the University.

Application for EXEMPTIONS must be made upon entry to the Registry (Admissions Section).

16. Where EXEMPTIONS WITHOUT CREDITS are granted, students will be required to pursue alternative courses as approved by the Head of Department. The following is a list of exemptions with/without credits currently offered by the FST:

(a) COSTAATT Associate in Science Degree in BIOLOGY: Students entering the Faculty with a GPA of 2.75 and above in the COSTAATT Associate in Science Degree in Biology will be exempted WITH CREDIT from the following:
 • CHEM 1062, BIOL 1262, BIOL 1263, BIOL 1362, BIOL 1364

(b) COSTAATT Associate in Science Degree in CHEMISTRY: Students entering the Faculty with a GPA of 2.75 and above in the COSTAATT Associate in Science Degree in Chemistry will be exempted WITH CREDIT from the following:
 • CHEM 1065, CHEM 1066, CHEM 1067, CHEM 1068 and CHEM 1070

(c) COSTAATT Associate in Science Degree in PHYSICS: Students entering the Faculty with a GPA of 2.75 and above in the COSTAATT Associate in Science Degree in Physics will be exempted WITH CREDIT from the following:
 • PHYS 1221, PHYS 1222, PHYS 1223 and PHYS 1224.

(d) Students who have The UWI ROYTEC Associate Degree in Information Systems Management (ADISM) with a minimum GPA of 2.50 will be accepted for entry without exemption/credits into the following programmes:
 • BSc General Major/Minor (Computer Science)
 • BSc Computer Science (Special)
 • BSc Computer Science with Management (Special)
 • BSc General Major (Information Technology)
 • BSc Information Technology (Special)
 • BSc Information Technology with Management (Special)

(e) UWI ROYTEC Associate Degree in Information Systems Management (ADISM). Students with a GPA of 2.75 or better admitted into the BSc INFORMATION TECHNOLOGY programme will be exempted with credits from the following courses:
 • COMP 1600, COMP 1601, COMP 1602, COMP 1603, COMP 1604, INFO 1600 and INFO 1601.

and will be permitted to register for Level II courses.

J. REGISTRATION
17. (a) A student pursuing a degree in the FST may register as a full-time student or a part-time student. A student may apply to change his/her status during the tenure of the degree.

(b) A student who is in full-time employment must pursue the degree as a part-time student.

(c) Full-time students may take up employment for not more than 12-hours per week without losing their full-time status. A student who is employed for more than 12-hours per week shall be registered as a part-time.

(d) A full-time student is normally expected to register for 12 to 15 credits per semester at Level I and 12 to 16 credits per semester at Levels II/III.

(e) A part-time student is normally expected to register for 6 to 9 credits per semester offered under the day programme.

18. (a) Students must register for courses that they wish to pursue by the dates prescribed by the Campus Registrar.

(b) Changes to registration (add/drop courses) will be permitted only within the prescribed periods at the start of Semesters I and II. (Refer to the Campus Web Site and Notice Boards for actual dates)
(c) A student’s registration for a course is complete only after his/her financial obligations to the University have been fulfilled.

19. (a) A student who has passed a course will not be permitted to re-register for that course except for preliminary courses.

(b) A student may not be allowed to register for a course on the grounds of repeated failure or poor performance in that course.

Medicals
20. (a) Registration for any course constitutes registration for the associated examination. A student will therefore have failed the course if s/he does not attend the examination without having previously been allowed to withdraw from the course or without having tendered evidence of illness at the time of the examination, certified by a medical practitioner recognised by the University. In the latter case, the medical report must reach the Campus Health Service Unit (HSU) no later than seven days after the date of the relevant examination.

(b) Medical Certificate/Report forms are available online at http://sta.uwi.edu/onlineForms.asp

(c) In cases where the medical submitted for a missed coursework examination is approved by the Campus HSU, the candidate shall be granted a substitute coursework examination at a date prescribed by the relevant Department.

(d) In cases where the medical submitted for a missed final examination is approved by the Campus HSU, the grade designation of AM (Absent Medical) will apply provided that the student has passed the coursework in that particular course. The designation AM carries no penalty.

K. PROGRESS THROUGH THE PROGRAMME
21. (a) Students admitted to the three-year programme, may not register for preliminary courses.

(b) In order to satisfy the minimum requirement for entry to the advanced part of the programme (Level II and III), a student must normally record passes in Level I courses equivalent to a minimum of twenty-four (24) credits of Faculty courses.

(c) A student who has obtained passes in Level I Faculty courses equivalent to twelve (12) credits in the first two (2) semesters of full-time study may, on the approval of the Dean, be allowed to register for a limited number of Level II courses in addition to those courses required to complete Level I requirements. However, the total credit loading per semester must not be exceeded.

(d) Undergraduate students in their final year may register for up to ONE postgraduate course with the permission of the Dean.

(e) Full-time students who require NOT MORE THAN TWENTY (20) CREDITS in order to graduate, who have satisfied all Foundation course requirements, and are exempted from laboratory coursework in at least one course, may be allowed to register for twenty (20) credits with the permission of the Dean.

L. STUDY ABROAD/EXCHANGE PROGRAMMES
22. UWI students, while at exchange Universities, will continue as regular full-time students of the University of the West Indies. Such students will pay UWI tuition fees and pursue matching and/or approved courses for credit. Credits earned abroad will be transferred to UWI and applied to regular Faculty degree requirements in accordance with Regulation 47.

23 (a) FST students who wish to participate in an exchange programme at an approved institution and desire to have the credits obtained used toward a UWI degree, must obtain written approval in advance from the Dean and register for equivalent courses offered by FST. Failure to do so may preclude the acceptance of the credits earned at the exchange institution.

(b) Students must normally have a minimum Cumulative GPA of 3.00 and have spent at least two semesters of full-time study at UWI to qualify for the Exchange Programme.

(c) Where the course to be taken is to be substituted for a UWI course, the content of the course must be certified in advance by the relevant Department as being equivalent to the UWI course. Course outlines and syllabuses must be provided by the student in order to facilitate the evaluation process.

(d) Only grades earned at the exchange institution and not the marks shall be used in the computation of the student’s GPA.

Students are advised to visit the website of the Office of Institutional Advancement and Internationalization (International Office) for a current list of Universities with which UWI has entered into cooperative arrangements for study exchanges at http://sta.uwi.edu/internationaloffice

26
Return to Table of Contents
or contact:

The Director
Office of Institutional Advancement and
Internationalization
The University of the West Indies
St. Augustine Campus
Trinidad and Tobago, W.I.
Tel: 663-3348 Exts. 84184, 84151
Fax: (868) 662-6930
Skype: uwi-sta-lo
Email: internationaloffice@sta.uwi.edu

M. EXAMINATIONS

24. In order to pass a course, a student must have satisfied the examiners in the associated examinations and must have attended at least 75% of classes associated with that course.

25. The Academic Board on the recommendation of the Faculty Board concerned, may debar a student from writing the examination associated with a course, based on attendance of less than 75% of lectures /laboratory classes/tutorials. The designation recorded for such a candidate in that course will be DB (debarred).

26. The examination associated with each course shall be conducted mainly by means of written and/or practical papers, normally taken at the end of the semester. However, oral examinations as well as performance in coursework in the form of essays, in-course tests, research papers, projects, or continuous assessment of theoretical and/or practical work may contribute towards the final grade awarded in a course. (Refer to individual course outlines and the departments for the specific modes of assessment and their weightings)

27. (a) A student may be granted two supplemental oral examinations in failed Level II/III courses provided that the student has completed all level I requirements, passed a minimum of 30 levels II/III credits, and has a marginal failing mark of 45 to 49% in the course. However, an additional oral examination may be granted to final year students in circumstances when passing a single course is all that is required for graduating.

(b) Students passing such oral examinations will be awarded the minimum pass mark of 50% (Grade C, Quality Point 2.0) and will not have any right of appeal or review of the outcome.

(c) Students offered oral examinations may choose to decline the offer.

28. A student who fails the examination associated with a course may be given permission to repeat the course and the examination on subsequent occasions.

29. In the event that such a student has satisfied the examiners in the practical coursework component of the failed course, the candidate may, on the recommendation of the relevant Department, be exempted from the laboratory coursework

30. A Remedial course in FST offered as part of the Summer School Programme is considered a repeat of the course.

31. A student who writes an examination without being registered, will not be granted credit for this examination.

N. PLAGIARISM DECLARATION

32. A declaration must be made in accordance with the University Regulations on Plagiarism (First Degrees, Diplomas and Certificate) and must be attached to all work submitted by a student to be assessed as part of, or the entire requirement of the course, other than work submitted in an invigilated examination. By signing this declaration, a student is declaring that the work submitted is original and that it does not contain any plagiarised material. See SECTION X for the Plagiarism Declaration and the University’s Regulations regarding Plagiarism.

O. GENERAL REQUIREMENTS FOR THE AWARD OF THE DEGREE

33. In order to be eligible for the award of the BSc degree in FST, students must have:

i. been in satisfactory attendance for a period equivalent to at least six (6) semesters of full-time study from entry at Level I

ii. obtained passes in Levels I, II and III and Foundation Courses amounting to the number of credits shown in TABLE 3

iii. a minimum Weighted Grade Point Average of 2.00

iv. the minimum 93 credits required for the award of a BSc General Degree, a MINIMUM of 24 Level I credits of which 12 must be FST credits, a minimum of 60 advanced credits and at least a major from FST, or

v. a minimum of two years of full-time study and 60 advanced credits provided that they possess qualifications from another recognised tertiary level institution.
PLEASE NOTE CAREFULLY THAT THE CREDIT REQUIREMENT FOR THE AWARD OF THE BSc DEGREES VARIES DEPENDING UPON THE PROGRAMME YOU ARE PURSUING

<table>
<thead>
<tr>
<th>DEGREE</th>
<th>LEVEL I CREDITS</th>
<th>LEVEL II - III CREDITS</th>
<th>FOUNDATION COURSES CREDITS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc (General) with majors/minors</td>
<td>24</td>
<td>60</td>
<td>9</td>
<td>93*</td>
</tr>
<tr>
<td>BSc (Special Options):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSc Actuarial Science (Special)</td>
<td>33</td>
<td>60</td>
<td>9</td>
<td>102</td>
</tr>
<tr>
<td>BSc Biology with Specialisations</td>
<td>24</td>
<td>60</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>BSc Biomedical Technology (Special)</td>
<td>24</td>
<td>60</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>BSc Chemistry (Special)</td>
<td>24</td>
<td>60</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>BSc Chemistry and Management (Special)</td>
<td>24</td>
<td>60</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>BSc Computer Science (Special)</td>
<td>24</td>
<td>60</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>BSc Computer Science with Management (Special)</td>
<td>24</td>
<td>60</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>BSc Environmental Science & Sustainable Technology (Special)</td>
<td>24</td>
<td>60</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>BSc Information Technology (Special)</td>
<td>24</td>
<td>60</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>BSc Information Technology with Management (Special)</td>
<td>24</td>
<td>60</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>BSc Mathematics (Special)</td>
<td>26</td>
<td>60</td>
<td>9</td>
<td>95</td>
</tr>
<tr>
<td>BSc Mathematics and Applied Statistics (Special)</td>
<td>24</td>
<td>60</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>BSc Statistics (Special)</td>
<td>24</td>
<td>60</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>BSc Statistics and Economics (Special)</td>
<td>29</td>
<td>60</td>
<td>9</td>
<td>98</td>
</tr>
</tbody>
</table>

* NB: This is the MINIMUM REQUIREMENT and may vary depending upon the credit requirements for the major/minor you are pursuing.

34. Students will be granted credits only once for the same course offered under different majors/minors. In such cases students will be required to pursue alternative courses which must be approved by the Dean.

35. Exemptions from specific parts of the degree programme may be obtained under the provision of Regulations 15 and 16.

P. DECLARATION OF MAJORS, MINORS AND SPECIAL OPTIONS

36. (a) Students are required to register for a major/special option upon initial entry into the Faculty. However, students may request a change in major/minor/option as they progress along their degree. Students desirous of pursuing majors in a Faculty other than FST must apply for and obtain official approval from that Faculty before pursuing such majors.

(b) Students must make a final declaration of their proposed majors/minors/special options by the end of the registration period of the semester in which they intend to graduate.

(c) Students who have met the requirements for the degree for which they have registered/declared may not register for further courses in pursuit of that degree.

Q. TIME LIMITS FOR COMPLETION AND ENFORCED WITHDRAWALS

37. (a) A Semester grade point average (GPA) based on grades earned on all approved courses for which the student is registered in a semester, will be used as the basis for the determination of his/her academic standing.

(b) A student whose GPA in any Semester is less than 2.00 will be placed on warning.

(c) A Dean’s Hold will be placed on a student on warning. Such a student will have to seek academic advising from the Dean before the Dean’s hold can be removed. This MUST be done within the prescribed registration period at the start of the Semester. A reduced academic load of twelve (12) credits will be stipulated.
(d) A student who is **on warning** and who fails to obtain a semester GPA of at least 2.00 in the succeeding semester will be required to withdraw from the Faculty.

38. For the purposes of Regulation 39 below, any semester in which a student is registered part-time, will be counted as half of a semester of full-time study.

39. (a) Full-time students will normally be required to complete the requirements for the degree in a minimum of six or a maximum of ten semesters of full-time study.

(b) Students who do not complete the programme within the maximum period stated in Regulation 39 (a) above will normally be required to withdraw from the Faculty at the end of the academic year in which the maximum time limit is reached.

40. In the event that a student has exhausted the maximum period stated in Regulation 39(a), but still requires for the completion of the degree programme:

 (a) passes in courses totaling no more than eight (8) credits, **AND/OR**
 (b) passes in Foundation courses only,

 approval may be sought from the Board for Undergraduate Studies for an extension of the period of study by one or two consecutive semesters.

41. For the purposes of Regulation 39(a) any semester for which a student has obtained Leave of Absence from the Faculty shall not be counted.

42. A student who was required to withdraw for reasons of failure to progress may be re-admitted to the Faculty on the following conditions:

 (a) A minimum of two consecutive semesters has elapsed since the date of withdrawal.
 (b) The FST is satisfied that the contributing circumstances for the withdrawal have altered substantially.
 (c) All grades previously obtained, (except those for courses that have been deemed outdated), shall continue to apply for the purpose of determining the student’s GPA.
 (d) Courses pursued in the UWI Summer School during the period of withdrawal shall be included in all relevant grade point average calculations if the student re-enters the Faculty.

43. (a) A student who was required to withdraw from the Faculty MUST APPLY for re-entry by the date prescribed by the Campus Registrar. A student will not be admitted before a year has elapsed. Application for re-entry must be done prior to the deadline for applications as follows:

 (b) A student who is required to withdraw at the end of Semester I of an academic year must reapply by 15th December of the following academic year for readmission in Semester II of that academic year.

 (c) A student who is required to withdraw at the end of Semester II or Summer Session of an academic year must reapply by 31st March of the following academic year for readmission in Semester I of that academic year.

 (d) A student who was required to withdraw and was re-admitted and then required to withdraw for a second time, will not normally be considered for re-admission again until a minimum period of five years has elapsed.

R. **LEAVE OF ABSENCE AND VOLUNTARY WITHDRAWAL**

4. (a) A student who wishes to be absent from the Faculty for a semester or more may apply for Leave of Absence.

 (b) Leave of Absence will not be granted for more than two consecutive semesters in the first instance. However, students may apply for an extension of Leave of Absence.

 (c) Leave of Absence will not be granted for more than two consecutive years.

 (d) Applications for Leave of Absence should normally be submitted no later than the end of the prescribed change in registration period in the relevant semester.

45. A student who does not register for any course during a semester without having obtained Leave of Absence will be deemed to have withdrawn from the University and will have to re-apply for entry to the University if s/he so desires.

46. A student who voluntarily withdraws from the University and then applies for re-admission within five (5) years shall be granted exemption and credit for all courses previously passed unless the Department concerned declares that the material covered in a course has become outdated. All grades previously obtained except those for courses declared...
outdated shall be used in the determination of the GPA of such a student.

S. GPA AND CLASS OF DEGREE AWARDED

47. (a) All students in the FST, irrespective of their date of entry into the FST, are subject to the current GPA regulations.

(b) A Cumulative Grade Point Average based on all courses completed for which grades have been obtained (excluding Preliminary courses, those taken on a Pass/Fail basis, audited courses and courses designated I or IP), will be calculated and recorded on the student’s transcript.

(c) A Weighted Grade Point Average based on grades obtained on **ALL LEVEL II AND III COURSES** registered for, including all courses in the declared major(s)/minor(s)/option whether passed or failed, will be used in the calculation for determination of the class of the degree. (See Regulations 48 and 49 for the relationship between marks, Grade Point Average and Class of Honours).

(d) First Class Honours, Second Class Honours (Upper and Lower Division), or a Pass degree will be awarded on the basis of the Weighted Grade Point Average (GPA) of all Level II/III courses taken (passed and failed).

T. GRADING SCHEME

48. The Grading Scheme used in the FST is shown in TABLE 4:

TABLE 4 – GRADING SCHEME

<table>
<thead>
<tr>
<th>GRADE</th>
<th>MARK</th>
<th>GRADE DESCRIPTOR</th>
<th>QUALITY POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>90-100</td>
<td>Exceptional</td>
<td>4.3</td>
</tr>
<tr>
<td>A</td>
<td>80-89</td>
<td>Outstanding</td>
<td>4</td>
</tr>
<tr>
<td>A-</td>
<td>75-79</td>
<td>Excellent</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>70-74</td>
<td>Very Good</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>65-69</td>
<td>Good</td>
<td>3</td>
</tr>
<tr>
<td>B-</td>
<td>60-64</td>
<td>Satisfactory</td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>55-59</td>
<td>Fair</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>50-54</td>
<td>Acceptable</td>
<td>2</td>
</tr>
<tr>
<td>F1</td>
<td>40-49</td>
<td>Unsatisfactory</td>
<td>1.7</td>
</tr>
<tr>
<td>F2</td>
<td>30-39</td>
<td>Weak</td>
<td>1.3</td>
</tr>
<tr>
<td>F3</td>
<td>0-29</td>
<td>Poor</td>
<td>0</td>
</tr>
</tbody>
</table>

U. CLASS OF HONOURS

49. A student’s class of degree will be based on his/her Weighted Grade Point Average (GPA) of all Level II/III courses as follows:

<table>
<thead>
<tr>
<th>Class</th>
<th>Weighted GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honours</td>
<td>3.60 – 4.30</td>
</tr>
<tr>
<td>Upper Second</td>
<td>3.00 – 3.59</td>
</tr>
<tr>
<td>Lower Second</td>
<td>2.50 – 2.99</td>
</tr>
<tr>
<td>Pass</td>
<td>2.00 – 2.49</td>
</tr>
</tbody>
</table>

V. AEGROTAT DEGREE

50. (a) A candidate who, by virtue of illness, was prevented from attending examinations or part of the examinations associated with one or more Level II/III courses in the year of anticipated graduation may apply to the Board for Undergraduate Studies through the University Registrar for an Aegrotat pass in the course. Such an application will only be granted if all the following conditions are satisfied:

i. The relevant Head of Department reports that, on the basis of the candidate’s performance during the period preceding the examinations, the candidate was expected to pass the examinations concerned and has satisfactorily completed any associated coursework.

ii. The application reaches The University Registrar not later than thirty (30) days after the date of the last paper in the examination concerned.

iii. The application is accompanied by a medical certificate attesting to the illness and issued by a medical practitioner recognised for this purpose by The University.

(b) No grade will be awarded in respect of an Aegrotat pass, and a candidate, having been awarded an Aegrotat pass, will not be allowed to re-enter the examination for the course concerned on a subsequent occasion. An Aegrotat pass may not be used to satisfy a Prerequisite for other Level II/III courses.

(c) A candidate, having satisfactorily completed the degree programme, who includes Aegrotat passes in courses counted for the degree programme, will be eligible for the award of an Aegrotat degree, provided that both of the following conditions are satisfied:
i. the courses in which the Aegrotat passes have been granted (and which need to be counted towards the award of the degree) are equivalent to no more than twenty-four (24) credits.

ii. no more than sixteen (16) credits mentioned in (i) above arise from courses making up the candidate’s major.

(f) The Aegrotat degree will be awarded without Honours.

SECTION V - REGULATIONS GOVERNING THE FST SUMMER SCHOOL PROGRAMME

The FST generally offers remedial courses for students who are repeating laboratory-based and/or non laboratory-based courses during the Summer School. The FST may also offer a limited number of full courses that are non-laboratory based in the Summer School. The maximum number of credits for which a student may register in Summer School is normally twelve (12).

1. ELIGIBILITY FOR ADMISSION TO THE SUMMER SCHOOL PROGRAMME
 The following categories of students are eligible for admission to the Summer School Programme:
 a. Registered students of the University who have to repeat any of the course(s) offered.

 b. Registered students of the University who have not taken the course(s) previously but fall into one of the following categories:
 • Students of the University who have not yet completed the requirements for the degree, diploma or certificate programme for which they are registered.
 • Registered UWI students from other campuses.

 c. Students of the University who have been granted (a) leave of absence for Semester 1 and / or 2 preceding the Summer School Programmes, or (b) permission to Write “Examinations Only”, or (c) who have been asked to withdraw and are desirous of continuing with their programme of study

 d. Other persons, not students of the University, who are eligible to matriculate at either the normal or lower level or as a mature student

2. APPLICATIONS
 Please visit the Campus Website http://sta.uwi.edu/admissions/undergrad/summer_programme.asp for further information.

3. FEE PAYMENT
 Students will be required to pay a fee for each course registered for in the Summer School Programme. This fee is subject to change. Please visit the university website for current fees

3. ATTENDANCE
 MINIMUM ATTENDANCE of 75% of Lectures / Tutorials / laboratory classes/field trips is required.

4. COURSE SELECTION AND REGISTRATION
 Persons desirous of pursuing courses in the Faculty’s summer programme are required to visit the website at https://sta.uwi.edu/admissions/undergrad/summer_programme.asp or consult the Faculty Notice Boards and timetables for a list of courses being offered in the Summer School Programme before registering.

5. LATE REGISTRATION
 a. Students may be permitted to register up to the end of the 2nd week of the start of the Summer School Session on payment of an additional late registration fee of TT$150.

 b. In cases where examination results for Semester II are declared after May 31, students may be permitted to register up to the end of the 2nd week of the start of the Summer School session.

 c. Summer School students may apply for a change of registration by no later than the end of the 2nd week of the start of the Summer School session.

6. EXAMINATIONS & COURSE LOADS
 a. Examinations for courses taught in the Summer School shall be conducted in accordance with the University Examination Regulations.

 b. Summer School students shall write the University Examinations appropriate to the course(s) for which they are registered.
c. Students shall not normally be permitted to register for more than FOUR courses (usually 12 credits) in any given Summer School Session. Students are advised to check the timetable before registering.

d. Finalising students may apply, to the Faculty Dean to pursue up to a maximum of 15 credits.

e. A student is deemed as finalising if that student has only a maximum of 15 credits left to complete the degree/certificate/diploma requirement.

f. Students may request permission to carry forward coursework marks for courses pursued in Semester I and/or II to the Summer Programme.

g. All such requests must be submitted, through the Faculty Dean, to the Assistant Registrar, Student Affairs (Admissions) before the student is allowed to register.

NOTE: Registration for a course offered in the Summer School implies registration for the examination of that course.

7. AWARD OF CREDITS
a. Credits for courses successfully completed in the Summer School shall be granted to registered students of the University including those on approved leave of absence.

b. Persons wishing to pursue a course(s) to be considered as “Not for Credit” (NFC) must seek approval prior to registering for the course. All such requests must be made, in writing, or on the required form, to the Dean of the Faculty. Students will not subsequently have such credit altered.

c. Summer School students who have not been offered a place at the University have no automatic right of acceptance into any Faculty of the University.

d. Persons who are accepted into the University may be granted credit/exemption for courses successfully completed in the Summer School provided that five (5) yeas have not elapsed since the completion of the relevant course(s).

e. Students who do not satisfy normal matriculation may not use the credits gained in the Summer School for both matriculation and degree purposes.

8. APPLICATION FOR WITHDRAWAL
a. Students may withdraw from a course by applying to the Senior Assistant Registrar (Admissions) in writing and copying the Faculty Dean or Summer School Coordinator. The student should clearly state the reasons for the withdrawal and complete the required application form for refund where applicable.

b. Applications for withdrawal from a course must reach the Senior Assistant Registrar (Admissions) no later than two (2) weeks after teaching has begun. Students, who wish to withdraw from a course after the deadline date, must apply to Academic Board, through their respective Faculty Office.

9. REFUND POLICY
a. A refund penalty is charged as follows:
 i. No penalty before May 30th
 ii. 25% of tuition fees up to June 2nd (up to the end the 1st week of teaching)
 iii. 30% of tuition fees up to June 9nd (up to the end of the 2nd week of teaching)

10. PAYMENT OF FEES
a. Part payment of fees is NOT allowed
b. Fees must be paid at any Branch of Republic Bank Ltd. using the bank deposit slip provided
c. Registration in the summer session will carry a non-refundable registration fee
d. Courses not dropped by the deadline date will be counted and the student would be billed accordingly.

e. Late registration fee/late payment penalty includes the registration fee PLUS the Late Registration fee/late payment penalty.
SECTION VI – GENERAL REGULATIONS GOVERNING THE PRE-SCIENCE (N1) PROGRAMME

The FST offers one year of full-time study (including Saturdays) in the following subjects:

- Biology
- Chemistry
- Mathematics
- Physics

Successful completion of this programme may permit students to apply for a full degree in the Faculty of Science & Technology, the Faculty of Engineering, the Faculty of Medical Sciences, the Faculty of Food & Agriculture or the Faculty of Law.

1. QUALIFICATIONS FOR ADMISSION INTO THE PRE-SCIENCE PROGRAMME

A minimum of five (5) CXC (CSEC) General Proficiency subjects at Grades I to II or, since 1998, Grade III or five (5) GCE O-Level subjects which must include Mathematics and English Language, and any of the following: Chemistry, Biology and Physics OR two (2) CAPE subjects including Chemistry, Biology, Physics or Mathematics.

2. FEE PAYMENT

Students are required to pay the compulsory fee once per academic year at the start of Semester I. Tuition fees are to be paid per semester.

3. ATTENDANCE

MINIMUM ATTENDANCE of 75% of Lectures/Tutorials is required. Attendance at laboratory classes/field trips is required.

4. CHANGES IN REGISTRATION

Students must apply for permission from the Dean, Faculty of Science & Technology to add or drop a course in the Pre-Science Programme.

Requests for changes to registration (Add/Drop) should be submitted by the deadline date of the registration period per semester or no later than two (2) weeks after teaching has begun.

5. EXAMINATIONS & COURSE LOADS

a. Examinations for courses taught in the Pre-Science Programme shall be conducted in accordance with the University Examination Regulations.

b. Registration for a Pre-Science course constitutes registration for the associated examination.

c. Students shall be permitted to register for a MAXIMUM of three courses or a MINIMUM of one course per semester.

d. Students must request permission from the Dean to carry forward coursework marks for courses pursued in Semester I and/or II.

6. MEDICALS

a. A student who has missed an examination as a result of illness must tender evidence of illness certified by a medical practitioner recognised by the University. The medical report must reach the Campus Health Service Unit (HSU) no later than seven days after the date of the relevant examination.

b. Medical Certificates/Report forms are available online at http://sta.uwi.edu/onlineForms.asp

7. WITHDRAWAL FROM THE PRE-SCIENCE PROGRAMME

a. Students who are withdrawing from the Pre-Science Programme are expected to inform the staff in the Dean’s Office, Faculty of Science & Technology in writing of their intention to do so.

b. For further queries or information please contact the Dean’s Office, Faculty of Science & Technology:

ADMINISTRATIVE ASSISTANT

Ms. Afiya Jules

BSc (UWI)

Ext. 84474

Email: afiya.jules@sta.uwi.edu

CLERICAL ASSISTANT

Ms. Sabrina Ragoo

BSc (UWI)

Ext. 84505

Email: sabrina.ragoo@sta.uwi.edu
SECTION VII – APPROVED SCIENCE CAPE/GCE A-LEVEL SUBJECTS

- Applied Mathematics
- Biology
- Botany
- Chemistry
- Computer Science
- Environmental Science
- Further Mathematics
- Geography
- Geology
- Information Technology
- Mathematics
- Pure Mathematics
- Physics
- Zoology

SECTION VIII - PRE-REQUISITES FOR CROSS FACULTY COURSES

<table>
<thead>
<tr>
<th>BANNER CODE</th>
<th>TITLE</th>
<th>FSS PREREQUISITES</th>
<th>FST B.SC. ACTUARIAL SCIENCE PREREQUISITES</th>
<th>FST B.SC. CHEMISTRY & MANAGEMENT PREREQUISITES</th>
<th>FST B.SC. COMPUTER SCIENCE WITH MANAGEMENT PREREQUISITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 1002</td>
<td>Introduction to Financial Accounting</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>ACCT 1003</td>
<td>Introduction to Cost and Managerial Accounting</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>ACCT 2017</td>
<td>Management Accounting</td>
<td>ACCT 1002 and ACCT 1003</td>
<td>This course is NOT offered to these students</td>
<td>ACCT 1002 and ACCT 1003</td>
<td></td>
</tr>
<tr>
<td>ECON 1001</td>
<td>Introduction to Economics I</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>ECON 1002</td>
<td>Introduction to Economics II</td>
<td>NONE</td>
<td>This course is Not offered to these students</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>ECON 1005</td>
<td>Introduction to Statistics</td>
<td>NONE</td>
<td>This course is NOT offered to these students</td>
<td>NONE</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>MGMT 2006</td>
<td>Management Information Systems I</td>
<td>NONE</td>
<td>This course is NOT offered to these students</td>
<td>NONE</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>MGMT 2008</td>
<td>Organisational Behaviour</td>
<td>SOCI 1002 or MGMT 1001</td>
<td>This course is NOT offered to these students</td>
<td>CHEM 1060, OR CHEM 1065, OR CHEM 1070 AND CHEM 1066</td>
<td>MGMT 1001 OR SOCI 1002 OR AGEX 1000 OR COMP 1100 OR COMP1400 and COMP1401</td>
</tr>
<tr>
<td>MGMT 2012</td>
<td>Quantitative Methods</td>
<td>ECON 1002 and ECON 1003</td>
<td>This course is NOT offered to these students</td>
<td>ECON 1001 and CHEM 1060, OR CHEM 1065, OR CHEM 1070 and CHEM 1066</td>
<td>ECON 1002 and MATH 1140 OR MATH 1141 and MATH 1152</td>
</tr>
</tbody>
</table>

Return to Table of Contents
<table>
<thead>
<tr>
<th>BANNER CODE</th>
<th>TITLE</th>
<th>FSS PREREQUISITES</th>
<th>FST B.SC. ACTUARIAL SCIENCE PREREQUISITES</th>
<th>FST B.SC. CHEMISTRY & MANAGEMENT PREREQUISITES</th>
<th>FST B.SC. COMPUTER SCIENCE WITH MANAGEMENT PREREQUISITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 2021</td>
<td>Business Law I</td>
<td>NONE</td>
<td>This course is NOT offered to these students</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>MGMT 2023</td>
<td>Financial Management I</td>
<td>ACCT 1002 and ECON 1003</td>
<td>ACCT 1002 and MATH 1140</td>
<td>ACCT 1002 and CHEM 1060, OR CHEM 1065, OR CHEM 1070 AND CHEM 1066</td>
<td>ACCT 1002 and MATH 1140 OR MATH 1141 and MATH 1152 OR COMP 1402 and COMP 1406</td>
</tr>
<tr>
<td>MGMT 2032</td>
<td>Managerial Economics</td>
<td>ECON 1001 and ECON 1003</td>
<td>This course is NOT offered to these students</td>
<td>ECON 1001 and CHEM 1060, OR CHEM 1065, OR CHEM 1070 AND CHEM 1066</td>
<td>ECON 1001 and MATH 1140 OR MATH 1141 and MATH 1152 OR COMP 1402 and COMP 1406</td>
</tr>
<tr>
<td>MGMT 3017</td>
<td>Human Resource Management I</td>
<td>MGMT 2008</td>
<td>This course is NOT offered to these students</td>
<td>MGMT 2008</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>MKTG 2001</td>
<td>Principles of Marketing</td>
<td>ACCT 1002 and ECON 1001</td>
</tr>
<tr>
<td>MGMT 3048</td>
<td>Financial Management II</td>
<td>MGMT 2023 and MGMT 2032 OR ECON 2000 OR ECON 2001</td>
<td>MATH 2210</td>
<td>This course is NOT offered to these students</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>MGMT 2026</td>
<td>Production and Operation</td>
<td>MGMT 2012</td>
<td>This course is NOT offered to these students</td>
<td>MGMT 2012</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>MGMT 3060</td>
<td>Operations, Planning and Control</td>
<td>MGMT 3057</td>
<td>This course is NOT offered to these students</td>
<td>MGMT 3057 (OLD) OR MGMT 2026</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>MKTG 3000</td>
<td>Marketing Management</td>
<td>MKTG 2001</td>
<td>This course is NOT offered to these students</td>
<td>MGMT 2003</td>
<td>MKTG 2001</td>
</tr>
<tr>
<td>MKTG 3007</td>
<td>Marketing Planning</td>
<td>MKTG 2001/MGMT 2012 and MGMT 2023</td>
<td>This course is NOT offered to these students</td>
<td>MGMT 2003 (OLD) or MKTG 2001, MGMT 2012 and MGMT 2023</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>SOCI 1002</td>
<td>Introduction to Sociology</td>
<td>NONE</td>
<td>This course is NOT offered to these students</td>
<td>This course is NOT offered to these students</td>
<td>This course is NOT offered to these students</td>
</tr>
</tbody>
</table>

Return to Table of Contents
SECTION IX – LIST OF ANTI-REQUISITES

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>ANTI-REQUISITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC2061</td>
<td>BIOL2361 or BIOL2360 or BIOL2365</td>
</tr>
<tr>
<td>BIOC2161</td>
<td>BIOL2363</td>
</tr>
<tr>
<td>BIOC2162</td>
<td>BIOL2364</td>
</tr>
<tr>
<td>BIOC2262</td>
<td>BIOL2362</td>
</tr>
<tr>
<td>BIOC3062</td>
<td>BIOL3061</td>
</tr>
<tr>
<td>BIOC3069</td>
<td>BIOL3069</td>
</tr>
<tr>
<td>BIOC3162</td>
<td>BIOL3061 or BIOL2164</td>
</tr>
<tr>
<td>BIOC3262</td>
<td>BIOL3364</td>
</tr>
<tr>
<td>BIOC3364</td>
<td>BIOL3362</td>
</tr>
<tr>
<td>BIOL1061</td>
<td>BIOL 1362 or BIOL 1364 or AGRI 1011 or AGRI 1013</td>
</tr>
<tr>
<td>BIOL1065</td>
<td>BIOL 1262 or BIOL 1263</td>
</tr>
<tr>
<td>BIOL1261</td>
<td>BIOL 1065 or BIOL 1262 or BIOL 1263 or AGRI 1012</td>
</tr>
<tr>
<td>BIOL1362</td>
<td>AGRI 1013 OR BIOL1061</td>
</tr>
<tr>
<td>BIOL1364</td>
<td>AGRI 1011 OR BIOL1061</td>
</tr>
<tr>
<td>BIOL2164</td>
<td>BIOL3061</td>
</tr>
<tr>
<td>BIOL2165</td>
<td>BIOL2162</td>
</tr>
<tr>
<td>BIOL2262</td>
<td>BIOL3662</td>
</tr>
<tr>
<td>BIOL2265</td>
<td>BIOL2263 OR BIOL2261</td>
</tr>
<tr>
<td>BIOL2360</td>
<td>BIOL2365</td>
</tr>
<tr>
<td>BIOL2363</td>
<td>HUEC 2000 OR BIOL 2361</td>
</tr>
<tr>
<td>BIOL2764</td>
<td>BIOL2761</td>
</tr>
<tr>
<td>BIOL2867</td>
<td>BIOL2862</td>
</tr>
<tr>
<td>BIOL3063</td>
<td>BIOL2063</td>
</tr>
<tr>
<td>BIOL3162</td>
<td>BIOL3262</td>
</tr>
<tr>
<td>BIOL3164</td>
<td>BIOL 3264</td>
</tr>
<tr>
<td>BIOL3264</td>
<td>BIOL 2861</td>
</tr>
<tr>
<td>BIOL3366</td>
<td>BIOL 3762</td>
</tr>
<tr>
<td>BIOL3462</td>
<td>BIOL2062</td>
</tr>
<tr>
<td>BIOL3465</td>
<td>BIOL3464</td>
</tr>
<tr>
<td>BIOL3466</td>
<td>BIOL3461</td>
</tr>
<tr>
<td>BIOL3468</td>
<td>BIOL3062</td>
</tr>
<tr>
<td>BIOL3761</td>
<td>BIOL 3765</td>
</tr>
<tr>
<td>BIOL3770</td>
<td>BIOL 3767</td>
</tr>
<tr>
<td>BIOL3771</td>
<td>BIOL3766</td>
</tr>
<tr>
<td>BIOL3869</td>
<td>BIOL 3069</td>
</tr>
<tr>
<td>BIOL3870</td>
<td>BIOL 2866</td>
</tr>
<tr>
<td>CHEM 1062</td>
<td>CHEM 1060 or CHEM 1061 or CHEM 0060 or CHEM 0061</td>
</tr>
<tr>
<td>CHEM 1060</td>
<td>CHEM 1065 or CHEM 1066 or CHEM 1067 or CHEM 1068</td>
</tr>
<tr>
<td>CHEM 1061</td>
<td>CHEM 1065 or CHEM 1066 or CHEM 1067 or CHEM 1068</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>ANTI-REQUISITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1100</td>
<td>INFO 1420</td>
</tr>
<tr>
<td>COMP 1200</td>
<td>INFO 2420</td>
</tr>
<tr>
<td>COMP 1400</td>
<td>COMP 1100</td>
</tr>
<tr>
<td>COMP 1401</td>
<td>INFO 1425</td>
</tr>
<tr>
<td>COMP 1402</td>
<td>COMP 1300 or MATH 1140</td>
</tr>
<tr>
<td>COMP 1403</td>
<td>INFO 1405</td>
</tr>
<tr>
<td>COMP 1404</td>
<td>COMP 1200</td>
</tr>
<tr>
<td>COMP 1405</td>
<td>COMP 1200</td>
</tr>
<tr>
<td>COMP 1406</td>
<td>COMP 1350 or MATH 1150</td>
</tr>
<tr>
<td>COMP 2000</td>
<td>INFO 2410</td>
</tr>
<tr>
<td>COMP 2100</td>
<td>INFO 2405</td>
</tr>
<tr>
<td>COMP 2200</td>
<td>INFO 2425</td>
</tr>
<tr>
<td>COMP 2300</td>
<td>INFO 2430</td>
</tr>
<tr>
<td>COMP 2400</td>
<td>INFO 2400</td>
</tr>
<tr>
<td>COMP 2700</td>
<td>INFO 2415</td>
</tr>
<tr>
<td>COMP 3750</td>
<td>INFO 3430</td>
</tr>
<tr>
<td>COMP 3990</td>
<td>INFO 3490</td>
</tr>
<tr>
<td>INFO 1500</td>
<td>INFO 1400</td>
</tr>
<tr>
<td>INFO 1501</td>
<td>INFO 1405</td>
</tr>
<tr>
<td>INFO 1503</td>
<td>INFO 1415</td>
</tr>
<tr>
<td>INFO 1504</td>
<td>INFO 1420 or COMP 1100</td>
</tr>
<tr>
<td>INFO 1505</td>
<td>INFO 1410</td>
</tr>
<tr>
<td>MATH 1160</td>
<td>MATH 1201</td>
</tr>
<tr>
<td>MATH 1170</td>
<td>MATH 1202</td>
</tr>
<tr>
<td>MATH 2100</td>
<td>MATH 2272</td>
</tr>
<tr>
<td>MATH 2110</td>
<td>ECON 2015 or MATH 2273</td>
</tr>
<tr>
<td>MATH 2120</td>
<td>ECON 2016 or MATH 2270 or MATH 2277</td>
</tr>
<tr>
<td>MATH 2140</td>
<td>ECON 2006 or MATH 2190 or MATH 2274</td>
</tr>
<tr>
<td>MATH 2150</td>
<td>ECON 2006, MATH 2190 or MATH 3120 or MATH 2275</td>
</tr>
<tr>
<td>MATH 2160</td>
<td>MATH 2271</td>
</tr>
<tr>
<td>MATH 2170</td>
<td>MATH 2276</td>
</tr>
<tr>
<td>MATH 2190</td>
<td>ECON 2006 or MATH 2140 or MATH 2150</td>
</tr>
<tr>
<td>MATH 2210</td>
<td>MATH 2211 or MATH 2212</td>
</tr>
<tr>
<td>MATH 2220</td>
<td>MATH 2115</td>
</tr>
<tr>
<td>MATH 3240</td>
<td>MATH 3277</td>
</tr>
<tr>
<td>MATH 3320</td>
<td>ACTS 3003</td>
</tr>
<tr>
<td>MATH 3321</td>
<td>MATH 3279</td>
</tr>
<tr>
<td>MATH 3354</td>
<td>ACTS 3000</td>
</tr>
<tr>
<td>MATH 3430</td>
<td>MATH 3272</td>
</tr>
<tr>
<td>MATH 3440</td>
<td>MATH 3273</td>
</tr>
<tr>
<td>MATH 3450</td>
<td>MATH 3278</td>
</tr>
<tr>
<td>MATH 3460</td>
<td>MATH 3465</td>
</tr>
<tr>
<td>MATH 3470</td>
<td>STAT 3001</td>
</tr>
<tr>
<td>MATH 3351</td>
<td>STAT 3000</td>
</tr>
<tr>
<td>PHYS 1110</td>
<td>PHYS 1211 or PHYS 1213 or PHYS 1216</td>
</tr>
<tr>
<td>PHYS 1111</td>
<td>PHYS 1211 or PHYS 1212</td>
</tr>
<tr>
<td>PHYS 2165</td>
<td>CHNG 1003</td>
</tr>
<tr>
<td>PHYS 2294</td>
<td>CHNG 1003</td>
</tr>
<tr>
<td>BMET 2001</td>
<td>PHYS 2160</td>
</tr>
<tr>
<td>BMET 2002</td>
<td>PHYS 2159</td>
</tr>
</tbody>
</table>
SECTION X - UNIVERSITY
REGULATIONS ON PLAGIARISM

Application of these Regulations
1 These Regulations apply to the presentation of work by a student for evaluation, whether or not for credit, but do not apply to invigilated written examinations.

Definition of plagiarism
2 In these Regulations, “plagiarism” means the unacknowledged and unjustified use of the words, ideas or creations of another, including unjustified unacknowledged quotation and unjustified unattributed borrowing;

“Level 1 plagiarism” means plagiarism which does not meet the definition of Level 2 plagiarism;

“Level 2 plagiarism” means plagiarism undertaken with the intention of passing off as original work by the plagiariser work done by another person or persons.

3 What may otherwise meet the definition of plagiarism may be justified for the purposes of Regulation 2 where the particular unacknowledged use of the words, ideas and creations of another is by the standards of the relevant academic discipline a function of part or all of the object of the work for evaluation whether or not for credit, for example:
 a. The unacknowledged use is required for conformity with presentation standards;
 b. The task set or undertaken is one of translation of the work of another into a different language or format;
 c. The task set or undertaken requires producing a result by teamwork for joint credit regardless of the level of individual contribution;
 d. The task set or undertaken requires extensive adaptation of models within a time period of such brevity as to exclude extensive attribution;
 e. The task set or undertaken requires the use of an artificial language, such as is the case with computer programming, where the use of unoriginal verbal formulae is essential.

4 It is not a justification under Regulations 2 and 3 for the unacknowledged use of the words, ideas and creations of another that the user enjoys the right of use of those words, ideas and creations as a matter of intellectual property.

Other definitions
5 In these Regulations, “Chairman” means the Chairman of the relevant Campus Committee on Examinations; “Examination Regulations” means the Examination and other forms of Assessment Regulations for First Degrees Associate Degrees Diplomas and Certificates of the University; “set of facts” means a fact or combination of facts.

Evidence of plagiarism
6 In order to constitute evidence of plagiarism under these Regulations, there shall be identified as a minimum the passage or passages in the student’s work which are considered to have been plagiarised and the passage or passages from which the passages in the student’s work are considered to have been taken.

Student Statement on Plagiarism
7 When a student submits for examination work under Regulation 1, the student shall sign a statement, in such form as the Campus Registrar may prescribe, that as far as possible the work submitted is free of plagiarism including unattributed quotation or paraphrase of the work of another except where justified under Regulation 3.

8 Quotation or paraphrase is attributed for the purpose of Regulation 7 if the writer has indicated using conventions appropriate to the discipline that the work is not the writer’s own.

9 The University is not prohibited from proceeding with a charge of plagiarism where there is no statement as prescribed under Regulation 7.

Electronic vetting for plagiarism
10 The results of any electronic vetting although capable, where the requirements of Regulation 7 are satisfied, of constituting evidence under these Regulations, are not thereby conclusive of any question as to whether or not plagiarism exists.

Level 1 plagiarism
11 In work submitted for examination where the Examiner is satisfied that Level 1 plagiarism has been committed, he/she shall penalise the student by reducing the mark which would otherwise have been awarded taking into account any relevant Faculty regulations.

Level 2 plagiarism
12 Where an examiner has evidence of Level 2 plagiarism in the material being examined, that examiner shall report it to the Head of Department or the Dean and may at any time provide the Registrar with a copy of
that report. In cases where the examiner and the Dean are one and the same, the report shall be referred to the Head of the Department and also to the Campus Registrar.

13 Where any other person who in the course of duty sees material being examined which he or she believes is evidence of Level 2 plagiarism that other person may report it to the Head of Department or the Dean and may at any time report it to the Campus Registrar who shall take such action as may be appropriate.

14 Where a Dean or Head of Department receives a report either under Regulation 12 or 13, the Dean or Head of Department, as the case may be, shall
a. where in concurrence with the report’s identification of evidence of Level 2 plagiarism, report the matter to the Campus Registrar; or
b. where not concurring in the identification of evidence of plagiarism, reply to the examiner declining to proceed further on the report; or
 c. where concluding that there is evidence of Level 1 plagiarism, reply to the examiner indicating that conclusion and the Examiner shall proceed as under Regulation 11.

15 Where a report is made to the Campus Registrar under Regulation 14a or 16, the Campus Registrar shall lay a charge and refer the matter to the Campus Committee on Examinations.

16 Where the Campus Registrar receives a report alleging Level 2 plagiarism from the Examiner or any other person except the Dean or Head of Department, the Campus Registrar shall refer the matter to a senior academic to determine whether there is sufficient evidence to ground a charge of plagiarism and where such evidence is found, the Campus Registrar shall proceed as under Regulation 15.

17 Where the matter has been referred to the Campus Committee on Examinations pursuant to Regulation 15, the proceedings under these Regulations prevail, over any other disciplinary proceedings within the University initiated against the student based on the same facts and, without prejudice to Regulation 21, any other such disciplinary proceedings shall be stayed, subject to being reopened.

18 If the Campus Committee on Examinations is satisfied, after holding a hearing, that the student has committed Level 2 plagiarism, it shall in making a determination on the severity of the penalty take into consideration:
 a. the circumstances of the particular case;
 b. the seniority of the student; and
 c. whether this is the first or a repeated incidence of Level 2 plagiarism.

19 Where the Campus Committee is of the view that the appropriate penalty for an offence of Level 2 plagiarism is for the student to be:
(i) awarded a fail mark;
(ii) excluded from some or all further examinations of the University for such period as it may determine;
(iii) be dismissed from the University, it shall make such recommendation to the Academic Board.

Clearance on a charge of Level 2 plagiarism
20 A determination of the Campus Committee on Examinations that Level 2 plagiarism has not been found will be reported to the Campus Registrar who shall refer it to the Examiner and notify the student. Where the Committee has not identified Level 2 but has identified Level 1, it shall be reported to the Campus Registrar who shall refer it to the examiner.

Level 2 plagiarism: Appeal to the Senate
21 A student may appeal to the Senate from any decision against him or her on a charge of plagiarism made by Academic Board.

Delegation by Dean or Head of Department
22 The Dean or Head of Department, as the case may be, may generally or in a particular instance delegate that officer’s functions under these Regulations.

Conflict of interest disqualification
23 Any person who has at any time been an examiner of work or been involved in procedures for laying charges in relation to which an issue of plagiarism is being considered under these Regulations shall withdraw from performing any functions under these Regulations other than those of supervisor and examiner.
PLAGIARISM DECLARATION

THE UNIVERSITY OF THE WEST INDIES
The Office of the Board for Undergraduate Studies
INDIVIDUAL PLAGIARISM DECLARATION

STUDENT ID:

COURSE TITLE:

COURSE CODE:

TITLE OF ASSIGNMENT:

This declaration is being made in accordance with the University Regulations on Plagiarism (First Degrees, Diplomas and Certificates) and must be attached to all work, submitted by a student to be assessed in partial or complete fulfilment of the course requirement(s), other than work submitted in an invigilated examination.

STATEMENT
1. I have read the Plagiarism Regulations as set out in the Faculty or Open Campus Student Handbook and on University websites related to the submission of coursework for assessment.

2. I declare that I understand that plagiarism is a serious academic offence for which the University may impose severe penalties.

3. I declare that the submitted work indicated above is my own work, except where duly acknowledged and referenced and does not contain any plagiarized material.

4. I also declare that this work has not been previously submitted for credit either in its entirety or in part within the UWI or elsewhere. Where work was previously submitted, permission has been granted by my Supervisor/Lecturer/Instructor as reflected by the attached Accountability Statement.

5. I understand that I may be required to submit the work in electronic form and accept that the University may subject the work to a computer-based similarity detention service.

NAME __

SIGNATURE ___

DATE __
GROUP PLAGIARISM DECLARATION

COURSE TITLE:

COURSE CODE:

TITLE OF ASSIGNMENT:

When submitting a group assignment for assessment each member of the group will be required to sign the following declaration of ownership which will appear on the coursework submission sheet.

We the undersigned declare that:

1. We have read the Plagiarism Regulations as set out in the Faculty or Open Campus Student Handbook and on University websites related to the submission of coursework for assessment.

2. We declare that I understand that plagiarism is a serious academic offence for which the University may impose severe penalties.

3. The submitted work indicated above is our own work, except where duly acknowledged and referenced.

4. This work has not been previously submitted for credit either in its entirety or in part within the UWI or elsewhere. Where work was previously submitted, permission has been granted by our Supervisor/Lecturer/Instructor as reflected by the attached Accountability Statement.

5. We understand that we may be required to submit the work in electronic form and accept that the University may check the originality of the work using a computer-based similarity detention service.

NAME __

SIGNATURE __

NAME __

SIGNATURE __

NAME __

SIGNATURE __

NAME __

SIGNATURE __

DATE ___
ADDITIONAL ACCOUNTABILITY STATEMENT WHERE WORK HAS BEEN PREVIOUSLY SUBMITTED

1. I/We have set out in an attached statement the details regarding the circumstances under which this paper or parts thereof has been previously submitted.

2. I/We have received written permission from my Supervisor/Lecturer/Instructor regarding the submission of this paper and I have attached a copy of that written permission to this statement.

3. I/We hereby declare that the submission of this paper is in keeping with the permission granted.

NAME __

SIGNATURE ___

DATE ___
SECTION XI - PRIZES

A number of prizes are offered on an annual basis to students in the Faculty based on outstanding academic performance. The following is a list of such prizes. Note that this list is subject to alteration.

FACULTY PRIZES

These prizes are awarded to all First Class Honours students within the Faculty by the Office of the Dean.

Dean’s Prize
Awarded for the Best Performance in N1 (Preliminary) Biology

Dean’s Prize
Awarded for the Best Performance in N1 (Preliminary) Chemistry

Dean’s Prize
Awarded for the Best Performance in N1 (Preliminary) Mathematics

Dean’s Prize
Awarded for the Best Performance in N1 (Preliminary) Physics

Special Faculty Prize

DEPARTMENT OF CHEMISTRY

THE WESTERN SCIENTIFIC PRIZE
Awarded for the best Year I performance in Chemistry

THE BERGER PAINTS TRINIDAD LTD. PRIZE
Awarded for the best Year II performance in Chemistry

THE CHROMASPEC LTD. PRIZE
Awarded for the best Year II performance in Chemistry & Management

THE MASSY GAS PRODUCTS TRINIDAD LTD. PRIZE
Awarded for the best Year III performance in Chemistry

THE SOUTHERN SYSTEMS LTD. PRIZE
Awarded for the best graduating student in Chemistry

THE PERKIN ELMER/SCALAR SCIENTIFIC PRIZE
Awarded for the best performance in Analytical Chemistry

THE WESTERN SCIENTIFIC PRIZE
Awarded for the best Year III performance in Chemistry & Management

THE ANIL DEISINGH PRIZE
Awarded for the best Graduating Student entering the Chemistry Postgraduate Programme

DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY

THE IBM WORLD TRADE CORPORATION PRIZE
Awarded for the best Year I performance in Computer Science

MINDBASE CONSULTING LTD. PRIZE
Awarded for the best Year I performance in Information Technology

THE TUCKER ENERGY SERVICES HOLDINGS LTD. PRIZE
Awarded for the best Year II performance in Computer Science

THE RBC ROYAL BANK OF TRINIDAD & TOBAGO LTD. PRIZE
Awarded for the best Year II performance in Information Technology

THE FUJITSU TRANSACTION SOLUTION LIMITED PRIZE
Awarded for the best Year III performance in Computer Science

THE DIFI DATA SYSTEMS LTD. PRIZE
Awarded for the best Year III performance in Information Technology

ATLANTIC CO. OF TRINIDAD AND TOBAGO PRIZE
Awarded to the most outstanding graduate: B.Sc. General (Major in Computer Science)

DR MARGARET BERNARD MEDULLAN AWARD
Awarded to the graduate in Computer Science with the highest GPA

THE TRINIDAD AND TOBAGO NETWORK INFORMATION CENTRE (TTNIC) PRIZE
Awarded to the M.Sc. (Computer Science & Technology) Graduate with the Highest Overall Examination Average

DEPARTMENT OF LIFE SCIENCES

PLANT SCIENCE

THE PROFESSOR E.J. DUNCAN PRIZE
Awarded for the best Research Project in Plant Science

BIOCHEMISTRY

THE BRYDEN PI CARIBBEAN PRIZE
Awarded for the best Year II performance by a student majoring in Biochemistry
THE ANGOSTURA LIMITED PRIZE
Awarded for the best Year III performance by a student majoring in Biochemistry

BIOLOGY
THE REPUBLIC BANK LTD. PRIZE
Awarded for the best Year I performance in Biology

THE NEAL AND MASSY PRIZE
Awarded for the best Year II performance in Biology

THE NEAL AND MASSY PRIZE
Awarded for the best Year III performance in Biology

THE SEETERRAM BOOK CENTRE PRIZE
Awarded for the best overall performance in Biology – Book Voucher Prize

ENVIRONMENTAL SCIENCE
THE ASA WRIGHT NATURE CENTRE-JULIAN DUNCAN PRIZE
Awarded for the best Year I performance in Environmental Science

THE ASA WRIGHT NATURE CENTRE - THOMAS CARR PRIZE
Awarded for the best Year II performance in Environmental Science

THE ASA WRIGHT NATURE CENTRE – IAN LAMBIE PRIZE
Awarded for the best Year III performance in Environmental Science

THE ENVIRONMENTAL MANAGEMENT AUTHORITY (EMA) PRIZE
Awarded for the Best Research Project

SPECIAL PRIZE:
THE JULIAN KENNY PRIZE IN NATURAL HISTORY
Awarded to the final year undergraduate student majoring in a Life Science discipline and displaying a strong interest in Natural History

DEPARTMENT OF MATHEMATICS & STATISTICS
THE POWERGEN PRIZE
Awarded for the best Year I performance in Mathematics

THE GUARDIAN LIFE OF TRINIDAD & TOBAGO PRIZE
Awarded for the best Year II performance in Mathematics

THE TATIL GROUP PRIZE
Awarded for the best Year III performance in Mathematics

THE WINSTON A. RICHARDS PRIZE IN STATISTICS
Awarded for the best Year II and Year III performance in Statistics

HEAD OF DEPARTMENT PRIZE
Awarded for the best Year II performance in Actuarial Science

HEAD OF DEPARTMENT PRIZE
Awarded for the best Year II performance in Actuarial Mathematics Courses

THE HAROLD RAMKISSOON PRIZE
Awarded for the best Year II and Year III performance in Mathematics

DEPARTMENT OF PHYSICS
THE RUSSELL BARROW MEMORIAL PRIZE IN ASTRONOMY
Awarded to the student showing the most initiative and effort in Astronomy outside the formal classroom

THE VICAR ENTERPRISES LIMITED PRIZE
Awarded for the best overall Year I performance in ALL Level 1 Physics CORE courses

THE AZAD W. HARRIPAUL PRIZE
Awarded to the student with the highest marks for the course Bioengineering

THE BERGER PAINTS TRINIDAD LTD. PRIZE
Awarded for the best Year II performance in Physics Physics Level II courses (PHYS 2150, PHYS 2151, PHYS 2152, PHYS 2153, and PHYS 2155)

THE DEVA SHARMA PRIZE
Awarded for the best performance by a female student graduating with a major in Physics

THE P.C.S. NITROGEN PRIZE
Awarded for the best Year II performance in Materials Science (PHYS 2165)

THE ANTHONY CAMPBELL MEMORIAL AWARD
Awarded for the best performance in the Physics Major Research Project

THE TRINIDAD AGGREGATE PRODUCTS PRIZE
Awarded for the best performance in Ceramics Science

THE BRUNO MITCHELL PRIZE
Awarded for the best performance in Astrophysics Course

DIAGNOSTIC NUCLEAR MEDICINE LTD. PRIZE
Awarded to the most outstanding student in Introduction to Medical Physics

THE FREDERICK IGNATIUS CAMPAYNE PRIZE
Awarded for best performance in Quantum Mechanics
SECTION XII - PROGRAMME OUTLINES

OFFICE OF THE DEAN

PRE-SCIENCE (N1) PROGRAMME

COURSE LISTING

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIOL 0100</td>
<td>N1 Biology I</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CHEM 0100</td>
<td>N1 Chemistry I</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>FSTF 1000**</td>
<td>Study Skills for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATH 0100</td>
<td>N1 Mathematics I</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>PHYS 0100</td>
<td>N1 Physics I</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>** This course is highly recommended for students transitioning from high school to the tertiary education system</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIOL 0200</td>
<td>N1 Biology II</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CHEM 0200</td>
<td>N1 Chemistry II</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>MATH 0200</td>
<td>N1 Mathematics II</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>PHYS 0200</td>
<td>N1 Physics II</td>
<td>6</td>
</tr>
</tbody>
</table>

DEPARTMENT OF CHEMISTRY

List of Courses offered in the Department of Chemistry for the 2016/2017 academic year.

COURSE LISTING

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHEM 1062</td>
<td>Basic Chemistry for Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 1066</td>
<td>Introduction to Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 1070</td>
<td>Introductory Chemistry Laboratory (Yearlong – credits applied in Semester 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 2170</td>
<td>Fundamentals of Inorganic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 2270</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 2370</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 2470</td>
<td>Introduction to Analytical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 2672</td>
<td>Core Chemistry Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 2770</td>
<td>Introduction into Research in Chemistry Learning (Elective) (will not be offered in 2016/2017)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 3162</td>
<td>Chemistry of Metal-Catalyzed Transformations (Elective)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 3268</td>
<td>Chemistry of Natural Products (Elective)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 3273</td>
<td>Synthesis of Blockbuster Drugs#</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 3470</td>
<td>Analytical Methods in Chemistry II (Elective)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 3560</td>
<td>Environmental Chemistry* (Elective)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 3561</td>
<td>Introduction to Polymer Chemistry* (Elective)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 3564</td>
<td>Principles of Polymer Chemistry (Elective)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 3570</td>
<td>Chemistry of the Environment (Elective)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 3573</td>
<td>Contemporary Chemistry#</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 3575</td>
<td>Chemistry and Industry I (Elective)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 3577</td>
<td>Green Chemistry (Elective)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 3670</td>
<td>Research Project for Chemistry Majors</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 3671</td>
<td>Research Project for BSc Chemistry (Year-long)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 3870</td>
<td>Principles of Chemical Biology (Elective)</td>
<td>3</td>
</tr>
</tbody>
</table>

This is a core course for the BSc. Chemistry degree but can also be used as an Elective for other programmes

** * These courses will no longer be taught in 2016/2017;**
SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1067</td>
<td>Introduction to Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1068</td>
<td>Introduction to Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1070</td>
<td>Introductory Chemistry Laboratory (Yearlong)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2471</td>
<td>Analytical Methods in Chemistry (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2472</td>
<td>Analytical Chemistry Laboratory (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2673</td>
<td>Core Chemistry Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3163</td>
<td>Chemistry of Technologically Important Materials (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3170</td>
<td>Fundamentals of Inorganic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3172</td>
<td>Advanced Inorganic Chemistry#</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3270</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3370</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3373</td>
<td>Advanced Topics in Physical Chemistry#</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3562</td>
<td>Corrosion Science* (Elective)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 3563</td>
<td>Environmental Degradation of Materials (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3569</td>
<td>Industrial Chemistry* (Elective)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 3576</td>
<td>Chemistry of Medicines (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3578</td>
<td>Energy for a Sustainable Future (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3579</td>
<td>Chemistry and Industry II (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3670</td>
<td>Research Project for Chemistry Majors</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3671</td>
<td>Research Project for BSc Chemistry (Yearlong)</td>
<td>6</td>
</tr>
<tr>
<td>CHEM 3871</td>
<td>Methods in Chemical Biology (Elective)</td>
<td>3</td>
</tr>
</tbody>
</table>

(*# This is a core course for the BSc. Chemistry degree but can also be used as an Elective for other programmes)

(*These courses will no longer be taught in 2016/2017;)

PLEASE NOTE:

I. N1 Chemistry I (CHEM 0100) and N1 Chemistry II (CHEM 0200) are offered by the Faculty of Science and Technology. These courses are not counted towards a student’s credit requirements for the BSc degree. However they can be used as pre-requisites for other courses/programmes.

II. a. Basic Chemistry for Life Sciences (CHEM 1062) is offered for students who have little exposure to Chemistry and intend to pursue studies in Agriculture, Human Ecology or the Life Sciences.
 b. CHEM 1062 cannot be done in conjunction with CHEM 1066, CHEM 1067, CHEM 1068 and CHEM 1070 or CHEM 0100 and CHEM 0200.

III. Students who have already passed Chemistry at CAPE (Units 1 and 2), GCE A-Level or N1 Chemistry (CHEM 0100 and CHEM 0200) or equivalent at UWI will be exempted from CHEM 1062 (Basic Chemistry for Life Sciences).

IV. For all N1 courses, practical work will be assessed throughout the semester and will contribute to the candidate’s final mark. Students will be debarred from writing the final examination if they have not attended, completed and handed in lab reports for at least 75% of the laboratory experiments.

V. CHEM1066 cannot be pursued in conjunction with ESST1002 as 1) there is a great deal of overlap in the content of the two courses and 2) the content in CHEM 1066 is covered in much greater depth than in ESST1002.

VI. Students wishing to pursue the Analytical Chemistry Minor OR the Major in Industrial Chemistry will be required to complete an application form available from the Chemistry General Office. Only successful applicants will be able to register for either of these programmes.

VII. Students who have already passed the ‘old’ courses will not receive credit for the new equivalent courses. See list below:

<table>
<thead>
<tr>
<th>‘NEW’</th>
<th>‘OLD’</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2170 (Fundamentals of Inorganic Chemistry)</td>
<td>CHEM 2160 (Main Group Chemistry)</td>
</tr>
<tr>
<td>CHEM 2270 (Organic Chemistry I)</td>
<td>CHEM 2260 (Basic Organic Chemistry)</td>
</tr>
<tr>
<td>CHEM 2470 (Introduction to Analytical Chemistry)</td>
<td>CHEM 2460 (Principles of Chemical Analysis)</td>
</tr>
<tr>
<td>CHEM 3170 (Fundamentals of Inorganic Chemistry II)</td>
<td>CHEM 3167 (Advanced Inorganic Chemistry)</td>
</tr>
<tr>
<td>CHEM 3270 (Organic Chemistry II)</td>
<td>CHEM 3267 (Basic Organic Chemistry II)</td>
</tr>
<tr>
<td>CHEM 3370 (Physical Chemistry II)</td>
<td>CHEM 2360 (Basic Physical Chemistry)</td>
</tr>
<tr>
<td>CHEM 3563 (Environmental Degradation of Materials)</td>
<td>CHEM3562 (Corrosion Science)</td>
</tr>
<tr>
<td>CHEM3564 (Principles of Polymer Chemistry)</td>
<td>CHEM3561 (Introduction to Polymer Chemistry).</td>
</tr>
<tr>
<td>CHEM 3570 (Chemistry of the Environment)</td>
<td>CHEM3560 (Environmental Chemistry).</td>
</tr>
<tr>
<td>CHEM 3579 (Chemistry and Industry II)</td>
<td>CHEM3569 (Industrial Chemistry)</td>
</tr>
</tbody>
</table>
MAJORS, MINORS, and SPECIAL OPTIONS

The following programmes are offered by the Department of Chemistry:

MAJORS:
- Chemistry
- Industrial Chemistry

MINORS:
- Chemistry
- Analytical Chemistry
- Industrial Chemistry
- Chemical Biology
- Materials Chemistry

SPECIAL OPTIONS:
- BSc Chemistry
- BSc Chemistry and Management

The table below shows the courses that students should take if they wish to follow the under-mentioned programs:

<table>
<thead>
<tr>
<th>If you wish to take this minor….</th>
<th>Then in Level II, Semester 1, you should take…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry</td>
<td>CHEM 2370, CHEM 2470 and CHEM 2672</td>
</tr>
<tr>
<td>Chemical Biology</td>
<td>CHEM 2270, CHEM 2370, CHEM 2470 and CHEM 2672</td>
</tr>
<tr>
<td>Industrial Chemistry</td>
<td>CHEM 2370, CHEM 2470, CHEM 2672 and ONE of CHEM 2170 or CHEM 2270</td>
</tr>
<tr>
<td>Materials Chemistry</td>
<td>CHEM 2170, CHEM 2270, CHEM 2370 and CHEM 2672</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If you wish to take this major….</th>
<th>Then in Level II, Semester 1, you should take…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Chemistry alone, with no Chemistry minors</td>
<td>CHEM 2370, CHEM 2672 and any one of CHEM 2170, CHEM 2270 or CHEM 2470. Which of the three you choose will depend on what, if any, Level III Chemistry courses you would like to take.</td>
</tr>
</tbody>
</table>

Major in Chemistry

(30 Credits)

The major will require the following courses amounting to 30 credits over Level II and Level III as follows:

COURSE LISTING

LEVEL I

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1066</td>
<td>Introduction to Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1070</td>
<td>Introductory Chemistry Laboratory (Yearlong – credits applied in Semester 2)</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL I

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1067</td>
<td>Introduction to Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1068</td>
<td>Introduction to Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1070</td>
<td>Introductory Chemistry Laboratory (Yearlong)</td>
<td>3</td>
</tr>
</tbody>
</table>

CORE COURSES

LEVEL II

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2370</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2470</td>
<td>Introduction to Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2672</td>
<td>Core Chemistry Laboratory I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2673</td>
<td>Core Chemistry Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3370</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2170</td>
<td>Fundamentals of Inorganic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2270</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3170</td>
<td>Fundamentals of Inorganic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3270</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

SEMESTER 1 OR 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3670</td>
<td>Research Project for Chemistry Majors</td>
<td>3</td>
</tr>
</tbody>
</table>
Research Project:
Those reading for the Major in Chemistry are required to do a Research Project and should complete an application form, also available in the Chemistry General Office. This application should be made at least at the end of the academic year preceding the one in which you intend to pursue the Research Project which will allow time for the Department to assign a supervisor.

NOTE CAREFULLY: Those students who began the new Chemistry Major in 2013/2014 and have already passed CHEM 2670 and CHEM 2671, the former Advanced Chemistry Laboratory courses at 1.5 credits each, will need to do one Chemistry Elective in order to satisfy the 30 advanced credits for the Chemistry Major.

Major in Industrial Chemistry
(30 CREDITS)

PLEASE NOTE THAT THE MAJOR IN INDUSTRIAL CHEMISTRY CAN ONLY BE PURSUED IN CONJUNCTION WITH THE MAJOR IN CHEMISTRY

STUDENTS WOULD NEED TO COMPLETE AN APPLICATION FORM IN SEMESTER 2 LEVEL I AVAILABLE FROM THE CHEMISTRY GENERAL OFFICE.

COURSE LISTING
LEVEL II/III
SEMESTER 1
Course Code	Course Title	Credits
CHEM 3564 | Principles of Polymer Chemistry | 3
CHEM 3575 | Chemistry and Industry I | 3
CHEM 3577 | Green Chemistry | 3

LEVEL II/III
SEMESTER 2
Course Code	Course Title	Credits
CHEM 3163 | Chemistry of Technologically Important Materials | 3
CHEM 3563 | Environmental Degradation of Materials | 3
CHEM 3579 | Chemistry and Industry II | 3

PLUS
LEVEL III
INDUSTRIAL INTERNSHIP
Course Code	Course Title	Credits
CHEM 3671 | Research Project for BSc Chemistry | 6

PLUS
TWO (2) LEVEL II/III ELECTIVES from Chemistry or approved courses from outside of Chemistry (Total of 6 credits)

Research Project:
Those reading for the Major in Industrial Chemistry are required to do a Research Project and should complete an application form, available in the Chemistry General Office. This application should be made at least at the end of the academic year preceding the one in which you intend to pursue the Research Project which will allow time for the Department to assign a supervisor. It is recommended that Industrial Majors register for their research project in their final year.

NB: Students pursuing joint majors in Industrial Chemistry and Chemistry must read only one research project - CHEM 3671 and one (1) approved chemistry elective to complete the Major in Chemistry. It is recommended that CHEM2472 - Advanced Analytical Laboratory – be used as the replacement course for CHEM3670.

Minor in Chemistry
(15 CREDITS)

COURSE LISTING
LEVEL II/III
SEMESTER 1
Course Code	Course Title	Credits
CHEM 2470 | Introduction to Analytical Chemistry | 3
CHEM 2672 | Core Chemistry Laboratory I | 3
CHEM 2370 | Physical Chemistry I | 3

LEVEL II/III
SEMESTER 1
Course Code	Course Title	Credits
CHEM 2170 | Fundamentals of Inorganic Chemistry I | 3
CHEM 2270 | Organic Chemistry I | 3

Minor in Analytical Chemistry
(15 CREDITS)

Students pursuing the Minor or Major or BSc in Chemistry can register for this Analytical Chemistry Minor and will complete 15 credits of courses as outlined below.

Students wishing to pursue the new Analytical Chemistry Minor will be required to complete an application form available from the Chemistry General Office.

COURSE LISTING
LEVEL II/III
SEMESTER 1 OR 2
Course Code	Course Title	Credits
Elective *** | | 3
Minor in Chemical Biology

(15 CREDITS)

Please note that a **Minor in Chemical Biology** can only be pursued in conjunction with the Major or Minor in Chemistry.

COURSE LISTING

<table>
<thead>
<tr>
<th>LEVEL II/III</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHEM 3268</td>
<td>Natural Products Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 3870</td>
<td>Principles of Chemical Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL II/III</th>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHEM 3576</td>
<td>Chemistry of Medicines</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 3871</td>
<td>Methods of Chemical Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS

ONE (1) Approved Elective (Chemistry OR Biology OR Biochemistry OR Other Suitable Elective) 3

(See Head of Department)

Minor in Industrial Chemistry

(15 CREDITS)

Please note that the **Minor in Industrial Chemistry** can only be pursued in conjunction with the Major or Minor in Chemistry.

COURSE LISTING

<table>
<thead>
<tr>
<th>LEVEL II/III</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHEM 3564</td>
<td>Principles of Polymer Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 3575</td>
<td>Chemistry and Industry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 3577</td>
<td>Green Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL II/III</th>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHEM 3563</td>
<td>Environmental Degradation of Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 3579</td>
<td>Chemistry and Industry II</td>
<td>3</td>
</tr>
</tbody>
</table>

Please refer to the equivalent courses below. If any two equivalent pairs of courses are done, credit will only be given for one.

- **CHEM 3563** (Environmental Degradation of Materials) and **CHEM 3562** (Corrosion Science)
- **CHEM 3564** (Principles of Polymer Chemistry) and **CHEM 3561** (Introduction to Polymer Chemistry)
- **CHEM 3579** (Chemistry and Industry II) and **CHEM 3569** (Industrial Chemistry)

Minor in Materials Chemistry

(15 CREDITS)

Please note that a **Minor in Materials Chemistry** can only be pursued in conjunction with the Major or Minor in Chemistry.

COURSE LISTING

<table>
<thead>
<tr>
<th>LEVEL II/III</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHEM 3162</td>
<td>Chemistry of Metal Catalysed Transformations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 3564</td>
<td>Principles of Polymer Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 2165</td>
<td>Materials Science ++</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL II/III</th>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHEM3163</td>
<td>Chemistry of Technologically Important Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS

ONE (1) Approved Chemistry Elective: Either **CHEM 3578** (Energy for a Sustainable Future) or **CHEM 3563** (Environmental Degradation of Materials).

Note: ++ Level I Chemistry courses have been added as prerequisites for this course.
BSc CHEMISTRY (SPECIAL)
(93 CREDITS)

LEVEL I REQUIREMENTS:
- In addition to the Level I Chemistry courses (12 credits), students pursuing the BSc in Chemistry will require passes in CAPE Mathematics Units 1 and 2 or MATH 1115 and MATH 1125 or equivalent. Those with CAPE Mathematics passes in both Units I and II are to request exemption with credit for MATH 1115 and MATH 1125 (3 credits each). Forms are available at the Student Administration Building.
- For those who have been exempted from MATH 1115 and MATH 1125, you will be required to pursue any other two (2) Level I Faculty courses (at least 3 credits each) in order to satisfy the minimum Level I requirements of 24 credits.
- Also note carefully, the students who need to read MATH 1115 and MATH 1125 (3 credits each) will be required to complete any other two (2) Level I Faculty courses (at least 3 credits each) in order to fulfil the minimum Level I requirements.

LEVEL II AND LEVEL III REQUIREMENTS:
- At Level II students registered for the B.Sc. Chemistry will complete the courses required for a major in Chemistry and at Level III will pursue eighteen (18) credits of required advanced core courses in Chemistry and a further twelve credits of approved electives thus completing a total of sixty (60) credits of advanced courses. The full programme is outlined below.
- You are required to do a Research Project and should complete an application form, available in the Chemistry General Office. This application should be made at least at the end of the academic year preceding the one in which you intend to pursue the Research Project which will allow time for the Department to assign a supervisor.

COURSE LISTING

LEVEL I
SEMESTER 1 (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1066</td>
<td>Introduction to Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1070</td>
<td>Introductory Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Year-long – credits applied in Semester 2)</td>
<td></td>
</tr>
</tbody>
</table>

SEMESTERS 1, 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1115</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS
ONE (1) other Level I, 3-credit course chosen from allowed Faculty courses.

LEVEL I
SEMESTER 2 (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1067</td>
<td>Introduction to Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1068</td>
<td>Introduction to Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1070</td>
<td>Introductory Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Yearlong)</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1125</td>
<td>Fundamental Mathematics for General Science II</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS
ONE (1) other Level I, 3-credit course chosen from allowed Faculty courses.

NB: MATH 1115 and MATH 1125 must be taken by students who do not have a pass in Pure Mathematics at CAPE Units I & II or GCE A’Level or equivalent.

LEVEL II
SEMESTER 1 (15 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2170</td>
<td>Fundamentals of Inorganic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2270</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2370</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2470</td>
<td>Introduction to Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2672</td>
<td>Core Chemistry Laboratory I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II/III
SEMESTER 2 (15 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2673</td>
<td>Core Chemistry Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3170</td>
<td>Fundamentals of Inorganic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3270</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3370</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS
ONE (1) Chemistry Elective

LEVEL III
SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3273</td>
<td>Synthesis of Blockbuster Drugs</td>
<td>3</td>
</tr>
<tr>
<td>CHEM3573</td>
<td>Contemporary Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3671</td>
<td>Research Project for BSc Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Year-long – credits applied in Semester 2)</td>
<td></td>
</tr>
</tbody>
</table>

PLUS
TWO (2) Electives*- 3 credits each

49

Return to Table of Contents
LEVEL III
SEMESTER 2
Course Code Course Title Credits
CHEM 3373 Advanced Topics in Physical Chemistry 3
CHEM 3172 Advanced Inorganic Chemistry 3
CHEM 3671 Research Project for BSc Chemistry (Yearlong) 6

PLUS
TWO (2) Electives* - 3 credits each 6

NOTE: *At least two (2) of the four (4) Electives must be from Chemistry. For those courses outside the Faculty of Science and Technology, students must seek approval from the Head of Department.

FOUNDATION COURSES (9 CREDITS)
SEMESTERS 1 & 2
Course Code Course Title Credits
FOUN 1101 Caribbean Civilization 3
FOUN 1301 Law, Governance, Economy and Society 3

SEMESTER 2
Course Code Course Title Credits
FOUN 1105 Scientific and Technical Writing 3

BSc CHEMISTRY AND MANAGEMENT (SPECIAL)
(Please see SECTION VIII (on Page 34), which outlines the specific prerequisites for the Management courses pursued by Chemistry and Management students.)

COURSE LISTING
(A) LEVEL I
SEMESTER 1
Course Code Course Title Credits
ACCT 1002 Introduction to Financial Accounting 3
CHEM 1066 Introduction to Chemistry I 3
CHEM 1070 Introductory Chemistry Laboratory (Yearlong – credits applied in Semester 2)
ECON 1001 Introduction to Economics I 3
ECON 1005 Introduction to Statistics 3

SEMESTER 2
Course Code Course Title Credits
ACCT 1003 Introduction to Cost and Management Accounting 3
CHEM 1067 Introduction to Chemistry II 3
CHEM 1068 Introduction to Chemistry III 3
CHEM 1070 Introductory Chemistry Laboratory (Yearlong) 3

TOTAL LEVEL I CREDITS: 24

(B) CHEMISTRY ADVANCED COURSES (30 Credits)
LEVEL II
SEMESTER 1
Course Code Course Title Credits
CHEM 2370 Physical Chemistry I 3
CHEM 2470 Introduction to Analytical Chemistry 3
CHEM 2672 Core Chemistry Laboratory I 3

SEMESTER 2
Course Code Course Title Credits
CHEM 3370 Physical Chemistry II 3
Chem 2673 Core Chemistry Laboratory II 3

LEVEL III
SEMESTER 1
Course Code Course Title Credits
CHEM 2170 Fundamentals of Inorganic Chemistry I 3
CHEM 2270 Organic Chemistry I 3

SEMESTER 2
Course Code Course Title Credits
CHEM 3170 Fundamentals of Inorganic Chemistry II 3
CHEM 3270 Organic Chemistry II 3

LEVEL III
SEMESTER 1 OR 2
Course Code Course Title Credits
CHEM 3670 Research Project for Chemistry Majors 3

Research Project: Those reading for the Major in Chemistry are required to do a Research Project and should complete an application form available in the Chemistry General Office. This application should be made at least at the end of the academic year preceding the one in which you intend to pursue the Research Project which will allow time for the Department to assign a supervisor.

(C) MANAGEMENT ADVANCED COURSES
LEVEL II/III
SEMESTER 1
Course Code Course Title Credits
MGMT 2012 Quantitative Methods 3
MGMT 2021 Business Law I *** 3
MGMT 2023 Financial Management 3

SEMESTER 2
Course Code Course Title Credits
MKTG 2001 Principles of Marketing 3
MKTG 2008 Organisational Behaviour 3
MKTG 2032 Managerial Economics 3

LEVEL III
DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY

For further information please visit the department’s website: http://sta.uwi.edu/fst/dcit/

Please note:

i. COMPUTING COURSES OUTSIDE THE FST

Students majoring in Computer Science and those registered in the following programmes:
• BSc Computer Science (Special)
• BSc Computer Science and/with Management
• BSc General (Major in Computer Science)
• BSc General (Minor in Computer Science)
• BSc Information Technology (Special)
• BSc Information Technology and/with Management
• BSc General (Major in Information Technology), and
• BSc General (Minor in Information Technology)

must seek the approval of the Department to read Computing, Information Technology/Systems courses outside of the FST.

COURSE EQUIVALENCIES: There is substantial overlap in the courses listed hereunder. However, students pursuing Computer Science courses WOULD NOT BE GIVEN credits for the equivalent Information Technology courses and vice versa.

Transfer students (returning students) who pursued the equivalent Computer Science course would be exempted WITHOUT credits from the relevant Information Technology course as listed hereunder.

<table>
<thead>
<tr>
<th>COMP COURSES</th>
<th>INFO COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Credits</td>
</tr>
<tr>
<td>MATH 1152 or</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1402</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1400</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1403</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1404 & 5</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1405</td>
<td>6</td>
</tr>
<tr>
<td>COMP 2000</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2100</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2200</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2300</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2400</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2700</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3250</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3550</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3750</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3990</td>
<td>4</td>
</tr>
</tbody>
</table>

(E) NINE (9) CREDITS OF FOUNDATION COURSES:

<table>
<thead>
<tr>
<th>SEMESTER 1 OR 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FOUN 1101</td>
<td>Caribbean Civilisation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL DEGREE CREDITS REQUIREMENTS:</td>
<td>93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FOUN 1105</td>
<td>Scientific and Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>
ii. INTERNSHIP PROGRAMME FOR UNDERGRADUATE STUDENTS IN COMPUTER SCIENCE/INFORMATION TECHNOLOGY

The department offers an optional internship programme for students pursuing a degree in Computer Science or Information Technology. Students participate in the programme by registering for a 3-credit Internship course. More details are available from the Department.

The internship programme will be helpful in:
- Providing practical training to students during their degree programme;
- Providing experience in the working environment, and
- preparing for future jobs.

iii. TRANSFER OF COURSEWORK MARKS

The Department does NOT carry forward coursework marks for the courses offered. (COMP or INFO).

New Computer Science Students – 2016/2017

BSc COMPUTER SCIENCE (SPECIAL)

<table>
<thead>
<tr>
<th>LEVEL I</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COMP 1600</td>
<td>Introduction to Computing Concepts</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INFO 1600</td>
<td>Introduction to Information Technology Concepts</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 1115</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL I</th>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 1603</td>
<td>Computer Programming III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 1604</td>
<td>Mathematics for Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INFO 1601</td>
<td>Introduction to WWW Programming</td>
<td>3</td>
</tr>
</tbody>
</table>

BSc COMPUTER SCIENCE WITH MANAGEMENT (SPECIAL)

<table>
<thead>
<tr>
<th>LEVEL I</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACCT 1002</td>
<td>Introduction to Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 1600</td>
<td>Introduction to Computing Concepts</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECON 1001</td>
<td>Introduction to Economics I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL I</th>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACCT 1003</td>
<td>Introduction to Cost and Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 1603</td>
<td>Computer Programming III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECON 1002</td>
<td>Introduction to Economics II</td>
<td>3</td>
</tr>
</tbody>
</table>

BSc GENERAL (Major in Computer Science)

AND/OR

BSc GENERAL (Minor in Computer Science)

<table>
<thead>
<tr>
<th>LEVEL I</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COMP 1600</td>
<td>Introduction to Computing Concepts</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL I</th>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 1603</td>
<td>Computer Programming III</td>
<td>3</td>
</tr>
</tbody>
</table>

N.B. A list of level 2 and level 3 courses is available on the department’s website (http://sta.uwi.edu/fst/dcit/) and relevant brochures in the department.
Course Information for New Computer Science Students entering in 2016/2017

BSc INFORMATION TECHNOLOGY (SPECIAL)

LEVEL I
SEMESTER 1
CORE COURSES
Course Code Course Title Credits
COMP 1600 Introduction to Computing Concepts 3
COMP 1601 Computer Programming I Technology Concepts 3
INFO 1600 Introduction to Information Technology Concepts 3
MATH 1115 Fundamental Mathematics for the General Sciences I 3

LEVEL I
SEMESTER 2
CORE COURSES
Course Code Course Title Credits
COMP 1602 Computer Programming II 3
COMP 1603 Computer Programming III 3
COMP 1604 Mathematics for Computing 3
INFO 1601 Introduction to WWW Programming 3

BSc GENERAL (Major in Information Technology)

AND/OR

BSc GENERAL (Minor in Information Technology)

LEVEL I
SEMESTER 1
CORE COURSES
Course Code Course Title Credits
COMP 1600 Introduction to Computing Concepts 3
COMP 1601 Computer Programming I 3

LEVEL I
SEMESTER 2
CORE COURSES
Course Code Course Title Credits
COMP 1602 Computer Programming II 3
INFO 1601 Introduction to WWW Programming 3
ECON 1002 Introduction to Economics II 3

NOTE: A list of level 2 and level 3 courses is available on the department’s website (http://sta.uwi.edu/fst/dcit/) and relevant brochures in the department.

BSc INFORMATION TECHNOLOGY WITH MANAGEMENT (SPECIAL)

LEVEL I
SEMESTER 1
CORE COURSES
Course Code Course Title Credits
ACCT 1002 Introduction to Financial Accounting 3
INFO 1600 Introduction to Information Technology Concepts 3
COMP 1601 Computer Programming I 3
ECON 1001 Introduction to Economics I 3

LEVEL I
SEMESTER 2
CORE COURSES
Course Code Course Title Credits
ACCT 1003 Introduction to Cost and Managerial Accounting 3
COMP 1602 Computer Programming II 3
INFO 1601 Introduction to WWW Programming 3
ECON 1002 Introduction to Economics II 3

NOTE: A list of level 2 and level 3 courses is available on the department’s website (http://sta.uwi.edu/fst/dcit/) and relevant brochures in the department.
Course Information for Returning Students - Level I, Level II, and Level III

COMPUTER SCIENCE PROGRAMMES
Returning Students still Completing Level 1 Requirements
If a student is still completing Level 1 requirements and was intending to register for a 3-credit Level 1 course listed under the “Old Programmes” section in the tables below, he/she should now register for the 3-credit equivalent course listed under the “New Programmes” section.

<table>
<thead>
<tr>
<th>SEMESTER I COURSES (3 credits each)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course in Old Programmes</td>
<td>Course Code</td>
</tr>
<tr>
<td>COMP 1400</td>
<td>Programming I</td>
<td>COMP 1601</td>
</tr>
<tr>
<td>COMP 1401</td>
<td>Introduction to Computer Science Concepts I</td>
<td>COMP 1600</td>
</tr>
<tr>
<td>COMP 1405</td>
<td>Programming III</td>
<td>COMP 1603</td>
</tr>
<tr>
<td>COMP 1406</td>
<td>Computer Science Mathematics II</td>
<td>MATH 1115</td>
</tr>
<tr>
<td>COMP 1407</td>
<td>Introduction to Computer Science Concepts II</td>
<td>INFO 1600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER II COURSES (3 credits each)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course in Old Programmes</td>
<td>Course Code</td>
</tr>
<tr>
<td>COMP 1400</td>
<td>Programming I</td>
<td>COMP 1601</td>
</tr>
<tr>
<td>COMP 1402</td>
<td>Computer Science Mathematics I</td>
<td>COMP 1604</td>
</tr>
<tr>
<td>COMP 1403</td>
<td>Introduction to Web Programming</td>
<td>INFO 1601</td>
</tr>
<tr>
<td>COMP 1404</td>
<td>Programming II</td>
<td>COMP 1602</td>
</tr>
<tr>
<td>COMP 1405</td>
<td>Programming III</td>
<td>COMP 1603</td>
</tr>
</tbody>
</table>

INFORMATION TECHNOLOGY PROGRAMMES
Returning Students still Completing Level 1 Requirements
If a student is still completing Level 1 requirements and was intending to register for a 3-credit Level 1 course listed under the “Old Programmes” section in the tables below, he/she should now register for the 3-credit equivalent course listed under the “New Programmes” section.

<table>
<thead>
<tr>
<th>SEMESTER I COURSES (3 credits each)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course in Old Programmes</td>
<td>Course Code</td>
</tr>
<tr>
<td>INFO 1500</td>
<td>Introduction to Information Technology Concepts</td>
<td>INFO 1600</td>
</tr>
<tr>
<td>INFO 1501</td>
<td>Introduction to WWW Programming</td>
<td>INFO 1601</td>
</tr>
<tr>
<td>INFO 1504</td>
<td>Introduction to Programming Fundamentals I</td>
<td>COMP 1601</td>
</tr>
<tr>
<td>INFO1505</td>
<td>Introduction to Computer Systems</td>
<td>COMP 1600</td>
</tr>
<tr>
<td>INFO 1506</td>
<td>Introduction to Information and Data Management</td>
<td>ESST 2003</td>
</tr>
<tr>
<td>INFO 1507</td>
<td>Introduction to Business Principles</td>
<td>MGMT 1001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER II COURSES (3 credits each)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course in Old Programmes</td>
<td>Course Code</td>
</tr>
<tr>
<td>INFO 1502</td>
<td>Introduction to Problem Solving</td>
<td>COMP 1602</td>
</tr>
<tr>
<td>INFO 1503</td>
<td>Introduction to Mathematics for Critical Thinking</td>
<td>COMP 1604</td>
</tr>
</tbody>
</table>
All Other Returning Students: 4-Credit Level 2 and 3 Courses available in 2016/2017

If you fall into any of the following categories of students:
- you are entering Level 2 for the first time in 2016/2017
- you are still completing Level 2 requirements, or
- you are in Level 3 and can potentially graduate in the 2016/2017 academic year,
please note that the requirements for the BSc Information Technology and the BSc General (Major in Information Technology) have not changed.

The old 4-credit Level 2 and Level 3 courses are being offered as usual in the 2016/2017 academic year. However, returning students are advised that the old 4-credit courses will be offered for a limited time only.

COURSE LISTING for Returning Students

List of courses offered for the 2016/2017 academic year.

KEY:
Students Majoring in Computer Science or Information Technology will not be credited for COMP 1011.
* INFO courses also offered to students in the Evening University (EU) Programme.

NOTE: The Evening University (EU) Programme is no longer offered to new students w.e.f. 2013/2014 academic year

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1011</td>
<td>Introduction to Information Technology #</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2000</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2200</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2300</td>
<td>Programming for Business Applications</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2600</td>
<td>Theory of Computing I</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2700</td>
<td>Database Management Systems I</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3100</td>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3150</td>
<td>Computer Networks</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3250</td>
<td>Software Engineering</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3550</td>
<td>Internet Technologies II</td>
<td>4</td>
</tr>
<tr>
<td>COMP3900</td>
<td>Special Topics in Computer Science (Game Programming)</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2415</td>
<td>Enterprise Database Systems*</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2420</td>
<td>Programming Fundamentals II*</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2425</td>
<td>Computer Architecture*</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2430</td>
<td>Business Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2500</td>
<td>Networking Technologies Fundamentals*</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3400</td>
<td>Fundamentals of Operating Systems*</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3410</td>
<td>Web Systems and Technologies*</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3415</td>
<td>Information Assurance and Security*</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3435</td>
<td>E-Commerce</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3440</td>
<td>Software Engineering</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3500</td>
<td>User Interface Design & Development</td>
<td>4</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1011</td>
<td>Introduction to Information Technology #</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2000</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2100</td>
<td>Discrete Mathematics for Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2500</td>
<td>Object-Oriented Programming</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3000</td>
<td>Design and Analysis of Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3220</td>
<td>Human-Computer Interaction</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3275</td>
<td>Wireless and Mobile Computing</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3550</td>
<td>Internet Technologies II</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3850</td>
<td>Intelligent Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3950</td>
<td>Modelling and Simulation</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3990</td>
<td>Project</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2400</td>
<td>Information Systems Development*</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2405</td>
<td>Discrete Mathematics*</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2410</td>
<td>Fundamental Data Structures * (Day)</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3410</td>
<td>Web Systems and Technologies*</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3425</td>
<td>Professional Ethics and Law</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3490</td>
<td>Project</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3510</td>
<td>Networking for Professionals</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3520</td>
<td>Database Administration for Professionals</td>
<td>4</td>
</tr>
</tbody>
</table>

EVENING UNIVERSITY PROGRAMME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2410</td>
<td>Fundamental Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2425</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3400</td>
<td>Fundamentals of Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3490</td>
<td>Project</td>
<td>4</td>
</tr>
</tbody>
</table>

COURSES NOT OFFERED IN 2016/2017

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3220</td>
<td>Human-Computer Interaction</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3300</td>
<td>Programming Languages I</td>
<td>4</td>
</tr>
<tr>
<td>COMP3400</td>
<td>Artificial Intelligence</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3500</td>
<td>Internet Technologies I</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3600</td>
<td>Theory of Computing II</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3700</td>
<td>Database Management Systems II</td>
<td>4</td>
</tr>
<tr>
<td>COMP3750</td>
<td>Numerical Computing</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3800</td>
<td>Cryptography and Security</td>
<td>4</td>
</tr>
<tr>
<td>COMP3900</td>
<td>Special Topics in Computer Science (Game Programming)</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3420</td>
<td>Programming Languages</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3430</td>
<td>Scientific Computing</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3435</td>
<td>E-Commerce</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3520</td>
<td>Database Administration for Professionals</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3530</td>
<td>Geographic Information Systems for Business</td>
<td>4</td>
</tr>
</tbody>
</table>
Major in Computer Science
(Returning Students)
(32 ADVANCED CREDITS)

COURSE LISTING

CORE COURSES (24 credits):

LEVELS II/III

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COMP 2000</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>COMP 2200</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>COMP 3100</td>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>COMP 2000</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>COMP 2100</td>
<td>Discrete Mathematics for Computer Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>COMP 2500</td>
<td>Object-Oriented Programming</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>COMP 3000</td>
<td>Design and Analysis of Algorithms</td>
<td>4</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2000</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2100</td>
<td>Discrete Mathematics for Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2500</td>
<td>Object-Oriented Programming</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3000</td>
<td>Design and Analysis of Algorithms</td>
<td>4</td>
</tr>
</tbody>
</table>

ELECTIVES (any 8 credits must be selected from the following Computer Science courses):

<table>
<thead>
<tr>
<th>LEVELS II/III</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COMP 2300</td>
<td>Programming for Business Applications</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 2600</td>
<td>Theory of Computing 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 2700</td>
<td>Database Management Systems I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 3150</td>
<td>Computer Networks</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 3250</td>
<td>Software Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 3550</td>
<td>Internet Technologies II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 3275</td>
<td>Wireless and Mobile Computing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 3550</td>
<td>Internet Technologies II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 3850</td>
<td>Intelligent Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 3950</td>
<td>Modelling and Simulation</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMP 3990</td>
<td>Project</td>
<td>4</td>
</tr>
</tbody>
</table>

LEVELS II/III

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2200</td>
<td>Computer Architecture</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>COMP 2700</td>
<td>Database Management Systems I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>COMP 3100</td>
<td>Operating Systems</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>COMP 3150</td>
<td>Computer Networks</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>COMP 3250</td>
<td>Software Engineering</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

LEVELS II/III COURSES (8 CREDITS)

Any 8 credits from the following:

<table>
<thead>
<tr>
<th>LEVELS II/III</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COMP 2200</td>
<td>Computer Architecture</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP 2700</td>
<td>Database Management Systems I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP 3100</td>
<td>Operating Systems</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP 3150</td>
<td>Computer Networks</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP 3250</td>
<td>Software Engineering</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

LEVELS II/III

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3000</td>
<td>Design and Analysis of Algorithms</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Minor in Computer Science
(Returning Students)
(16 CREDITS)

COURSE LISTING

CORE COURSES: (8 CREDITS)

LEVEL II

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2000</td>
<td>Data Structures</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>COMP 2500</td>
<td>Object-Oriented Programming</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2000</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2500</td>
<td>Object-Oriented Programming</td>
<td>4</td>
</tr>
</tbody>
</table>

LEVELS II/III COURSES (8 CREDITS)

Any 8 credits from the following:

<table>
<thead>
<tr>
<th>LEVELS II/III</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COMP 2200</td>
<td>Computer Architecture</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP 2700</td>
<td>Database Management Systems I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP 3100</td>
<td>Operating Systems</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP 3150</td>
<td>Computer Networks</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP 3250</td>
<td>Software Engineering</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

LEVELS II/III

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3000</td>
<td>Design and Analysis of Algorithms</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Major in Information Technology
(Returning Students)
(32 ADVANCED CREDITS)

COURSE LISTING

CORE COURSES 24 CREDITS

LEVELS II & III

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2415</td>
<td>Enterprise Database Systems</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>INFO 2420</td>
<td>Programming Fundamentals II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>INFO 2500</td>
<td>Networking Technologies Fundamentals</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>INFO 3400</td>
<td>Fundamentals of Operating Systems*</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>INFO 3410</td>
<td>Web Systems and Technologies</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2410</td>
<td>Fundamental Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3410</td>
<td>Web Systems and Technologies</td>
<td>4</td>
</tr>
</tbody>
</table>

ELECTIVES

Any 8 credits must be selected from the following Information Technology courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2425</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3415</td>
<td>Information Assurance and Security</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3440</td>
<td>Software Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2425</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3415</td>
<td>Information Assurance and Security</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3440</td>
<td>Software Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2400</td>
<td>Information Systems Development</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3490</td>
<td>Project</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3510</td>
<td>Networking for Professionals</td>
<td>4</td>
</tr>
</tbody>
</table>

BSc INFORMATION TECHNOLOGY (SPECIAL) (Returning Students)

* (93 CREDITS)

Also offered under the Evening University programme – for returning students only w.e.f. 2013/2014. Please note the course equivalencies listed at the beginning of the departmental information.

COURSE LISTING

LEVEL II/III (60 CREDITS)

Comprising of CORE courses (48 credits) and ELECTIVE courses (12 credits)

Level II/III Semester 1

CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2415</td>
<td>Enterprise Database Systems</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2420</td>
<td>Programming Fundamentals II</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2425</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2500</td>
<td>Networking Technologies</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3400</td>
<td>Fundamentals of Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3410</td>
<td>Web Systems & Technologies</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3415</td>
<td>Information Assurance and Security</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3440</td>
<td>Software Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

Level II/III Semester 2

CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2405</td>
<td>Discrete Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2410</td>
<td>Fundamental Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3410</td>
<td>Web Systems & Technologies</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3490</td>
<td>Project</td>
<td>4</td>
</tr>
</tbody>
</table>

Elective Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 3425</td>
<td>Professional Ethics and Law</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3510</td>
<td>Networking for Professionals</td>
<td>4</td>
</tr>
</tbody>
</table>

Evening University Programme

Semester 1

CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2410</td>
<td>Fundamental Data Structures</td>
<td>4</td>
</tr>
</tbody>
</table>

Semester 2

CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2425</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3400</td>
<td>Fundamentals of Operating Systems</td>
<td>4</td>
</tr>
</tbody>
</table>

Elective Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 3490</td>
<td>Project</td>
<td>4</td>
</tr>
</tbody>
</table>

Foundation Courses (9 Credits)

Semesters 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific and Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

57

Return to Table of Contents
BSc COMPUTER SCIENCE (SPECIAL) (Returning Students)

(93 CREDITS)

Please note the course equivalencies listed at the beginning of the departmental information.

LEVEL II/III (60 CREDITS)

Comprising of: CORE courses (52 credits) and ELECTIVE courses (8 credits) from any other LEVEL II/III courses.

CORE COURSES

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2000</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2200</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2700</td>
<td>Database Management Systems I</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3100</td>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3150</td>
<td>Computer Networks</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3250</td>
<td>Software Engineering</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3550</td>
<td>Internet Technologies II</td>
<td>4</td>
</tr>
</tbody>
</table>

LEVEL II/III (60 CREDITS)

Comprising of: CORE courses (52 credits) and ELECTIVE courses (8 credits) from any other LEVEL II/III courses.

CORE COURSES

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2000</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2200</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2300</td>
<td>Programming for Business Applications</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2700</td>
<td>Database Management Systems I</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3100</td>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3150</td>
<td>Computer Networks</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3250</td>
<td>Software Engineering</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3550</td>
<td>Internet Technologies II</td>
<td>4</td>
</tr>
</tbody>
</table>

SEASONAL COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2600</td>
<td>Theory of Computing I</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3415</td>
<td>Information Assurance and Security</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3500</td>
<td>User Interface Design and Development</td>
<td>4</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2100</td>
<td>Discrete Mathematics for Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2500</td>
<td>Object-Oriented Programming</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3000</td>
<td>Design and Analysis of Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3550</td>
<td>Internet Technologies II</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3850</td>
<td>Intelligent Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3950</td>
<td>Modelling and Simulation</td>
<td>4</td>
</tr>
<tr>
<td>COMP3990</td>
<td>Project</td>
<td>4</td>
</tr>
</tbody>
</table>

ELECTIVE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3275</td>
<td>Wireless and Mobile Computing</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2400</td>
<td>Information Systems Development</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3425</td>
<td>Professional Ethics and Law</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3510</td>
<td>Networking for Professionals</td>
<td>4</td>
</tr>
</tbody>
</table>

FOUNDATION COURSES (9 CREDITS)

SEMESTERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

BSc COMPUTER SCIENCE AND MANAGEMENT (SPECIAL) (Returning Students)

(99 CREDITS)

Please note:

(1) Acceptance for the BSc Computer Science and Management does not guarantee acceptance for courses in the Faculty of Social Sciences other than those specified below.

(2) Students are advised that, in choosing courses from the Faculty of Social Sciences, the regulations from that Faculty will apply. In particular, credit will not be given for two courses which the Faculty of Social Sciences designates as having substantial overlap e.g. ECON 2001 and MGMT 2032.

(3) Students pursuing the BSc Computer Science & Management (Special Option) must seek the approval of the Programme Coordinator/Head of Department to read courses outside FST in Computing, Information Technology and Information Systems.

COURSE LISTING

LEVELS II / III (60 CREDITS)

COMPUTER SCIENCE CORE COURSES (32 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2000</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2200</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2300</td>
<td>Programming for Business Applications</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2700</td>
<td>Database Management Systems I</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3100</td>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3150</td>
<td>Computer Networks</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3250</td>
<td>Software Engineering</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3550</td>
<td>Internet Technologies II</td>
<td>4</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2100</td>
<td>Discrete Mathematics for Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>COMP 2500</td>
<td>Object-Oriented Programming</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3000</td>
<td>Design and Analysis of Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3550</td>
<td>Internet Technologies II</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3850</td>
<td>Intelligent Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMP 3950</td>
<td>Modelling and Simulation</td>
<td>4</td>
</tr>
<tr>
<td>COMP3990</td>
<td>Project</td>
<td>4</td>
</tr>
</tbody>
</table>

ELECTIVE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3275</td>
<td>Wireless and Mobile Computing</td>
<td>4</td>
</tr>
<tr>
<td>INFO 2400</td>
<td>Information Systems Development</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3425</td>
<td>Professional Ethics and Law</td>
<td>4</td>
</tr>
<tr>
<td>INFO 3510</td>
<td>Networking for Professionals</td>
<td>4</td>
</tr>
</tbody>
</table>

FOUNDATION COURSES (9 CREDITS)

SEMESTERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVELS II / III

MANAGEMENT CORE COURSES (15 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 2021</td>
<td>Business Law I</td>
<td>3</td>
</tr>
</tbody>
</table>

58

Return to Table of Contents
DEPARTMENT OF LIFE SCIENCES

COURSE LISTING

List of courses offered in the Department of Life Sciences for the 2016/2017 academic year.

NOTE: Students who entered in 2012/2013 must meet a minimum 93-credit requirement to graduate; those entering before must meet the previous 101-credit requirement unless approval is granted from the Dean’s Office.

KEY

** Not counted towards a student’s credit requirements for the award of the BSc Degree

*** Students must consult with course coordinator prior to registering for BIOL 3068 or BIOL 3069

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2061</td>
<td>Bioenergetics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2069</td>
<td>Practical Skills in Biochemistry I</td>
<td>1.5</td>
</tr>
<tr>
<td>BIOL 2161</td>
<td>Primary Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3062</td>
<td>Cellular and Molecular Defence Systems</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3069</td>
<td>Biochemistry Research Project</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3162</td>
<td>Experimental Biochemistry and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1262</td>
<td>Living Organisms I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1263</td>
<td>Living Organisms II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2061</td>
<td>Cell and Developmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2163</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2165</td>
<td>Genetics II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2262</td>
<td>Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2360</td>
<td>Biochemistry IIA</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3063</td>
<td>Marine Ecology and Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3069</td>
<td>Research Project***</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 3070</td>
<td>Caribbean Island Ecology and Biogeography</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3263</td>
<td>Introduction to Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3363</td>
<td>Medical Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3369</td>
<td>Laboratory Skills in Biotechnology (Year-long -credits applied in Semester 2)</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3468</td>
<td>Biodiversity and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3469</td>
<td>Research and Practical Skills in Environmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3769</td>
<td>Plant Genetic Improvement</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3770</td>
<td>Plant Pathogens</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3771</td>
<td>Environmental Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3773</td>
<td>Plant Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3774</td>
<td>Research and Practical Skills in Plant Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

FOUNDATION COURSES (9 CREDITS)

SEMMETERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific and Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVE COURSES (13 CREDITS)

A minimum of thirteen (13) credits chosen from Levels II/III Computer Science, Mathematics, Economics or Management courses.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3867</td>
<td>Biology of Animal Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3868</td>
<td>The Ecology of Humans</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3869</td>
<td>Zoology Project</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3960</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3961</td>
<td>Principles of Medical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3970</td>
<td>Aquaculture</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1001</td>
<td>Biology for Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1002</td>
<td>Chemistry for Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1004</td>
<td>Science Communication</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2001</td>
<td>Principles of Environmental Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2002</td>
<td>Environmental Technology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2003</td>
<td>Data Management for Environmental Science</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2006</td>
<td>Pollution Biology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3001</td>
<td>Environmental Fate and Transport</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3002</td>
<td>Environmental Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3003</td>
<td>Environmental Monitoring and Assessment</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3103</td>
<td>Environmental Health</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3104</td>
<td>Climate Change and Abatement Technology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1000</td>
<td>Physics for Environmental Sciences II</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1006</td>
<td>Human Impact on the Environment</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2004</td>
<td>Physics for Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3068</td>
<td>Field Course in Neotropical Ecology***</td>
<td>4</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 2162</td>
<td>Circulatory and Secretory Systems</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 2169</td>
<td>Practical Skills in Biochemistry II</td>
<td>1.5</td>
</tr>
<tr>
<td>BIOC 2262</td>
<td>Gene Expression</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3069</td>
<td>Biochemistry Research Project</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3262</td>
<td>Medical Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3364</td>
<td>Biochemical Basis of Disease</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3500</td>
<td>Molecular Virology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1362</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1364</td>
<td>Genetics I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2164</td>
<td>Principles of Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2265</td>
<td>Fundamentals of Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2464</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2764</td>
<td>Physiology of Plants</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2867</td>
<td>Physiology of Animals</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 3 (SUMMER)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1000</td>
<td>Environmental Fate and Transport</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1005</td>
<td>Information Technology Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1007</td>
<td>Environmental Management</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1008</td>
<td>Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3010</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMINAR 3 (SUMMER)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 3068</td>
<td>Field Course in Neotropical Ecology***</td>
<td>4</td>
</tr>
</tbody>
</table>

Return to Table of Contents
MAJORS & MINORS

The following programmes are offered by the Department of Life Sciences

MAJORS

- Biochemistry
- Biology
- Environmental Science

MINORS

- Biochemistry
- Biology

SPECIAL OPTIONS

- BSc Biology with Specialisations
- BSc Environmental Science and Sustainable Technology

Students pursuing joint Majors in Biology and Biochemistry MUST NOT READ BIOL 2360 - Biochemistry IIA and BIOL 2164 - Principles of Molecular Biology. Such students must choose an additional 6 credits from the listed Biology electives to complete the Biology Major.

Students reading the BSc Biology with Specialisations must select two specialisations from a total of the 6 listed below:

- Biotechnology
- Ecology and Environmental Biology
- Marine Biology

NOTE: Students will be debarred from writing the final examination if they have not attended, completed and handed in laboratory reports for at least 75% of laboratory or field exercises.

Major in Biochemistry

(30 ADVANCED CREDITS)

COURSE LISTING

PREREQUISITE COURSES

(Students must complete at least 24 Level I credits)

LEVEL I

SEMESTER 1

Course Code	Course Title	Credits
BIOL 1262 | Living Organisms I | 3
BIOL 1263 | Living Organisms II | 3
CHEM 1066 | Introduction to Chemistry I | 3

PLUS three (3) additional Level I credits from anywhere.*

SEMESTER 2

Course Code	Course Title	Credits
BIOL 1362 | Biochemistry I | 3
BIOL 1364 | Genetics I | 3
CHEM 1067 | Introduction to Chemistry II | 3

PLUS three (3) additional Level I credits from anywhere.*

SEMESTERS 1, 2

Course Code	Course Title	Credits
MATH 1115 | Fundamental Mathematics for General Sciences I | 3
MATH 1125 | Fundamental Mathematics for General Science II | 3

SEMESTER 1

Course Code	Course Title	Credits
BIOC 2061 | Bioenergetics | 3
BIOC 2069 | Practical Skills in Biochemistry I | 1.5
BIOC 2161 | Primary Metabolism | 3
BIOC 3062 | Cellular and Molecular Defence Systems | 3
BIOC 3162 | Experimental Biochemistry and Molecular Biology | 3

SEMESTER 2

Course Code	Course Title	Credits
BIOC 2162 | Circulatory and Secretory Systems | 3
BIOC 2169 | Practical Skills in Biochemistry II | 1.5
BIOC 2262 | Gene Expression | 3
BIOC 3364 | Biochemical Basis of Disease | 3

PLUS two (2) electives from the following courses:

SEMESTER 1

Course Code	Course Title	Credits
BIOC 3069 | Biochemistry Research Project | 3
CHEM 2470 | Introduction to Analytical Chemistry | 3

SEMESTER 2

Course Code	Course Title	Credits
BIOC 3069 | Biochemistry Research Project | 3
BIOC 3262 | Medical Biochemistry | 3
BIOC 3500 | Molecular Virology | 3
BIOL 3162 | Principles of Microbial Biotechnology | 3
Major in Biology

(30 ADVANCED CREDITS)

COURSE LISTING

PREREQUISITE COURSES

Students must complete at least 24 Level I credits which must include:

<table>
<thead>
<tr>
<th>Level</th>
<th>Semester 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>Semester 1</td>
<td>BIOL 1262</td>
<td>Living Organisms I</td>
<td>3</td>
</tr>
<tr>
<td>Level I</td>
<td>Semester 1</td>
<td>BIOL 1263</td>
<td>Living Organisms II</td>
<td>3</td>
</tr>
<tr>
<td>Level I</td>
<td>Semester 1</td>
<td>CHEM 1062**</td>
<td>Basic Chemistry for Life Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

** For students without a pass in CAPE Units I & II or GCE A’ Level Chemistry or equivalent.

<table>
<thead>
<tr>
<th>Level</th>
<th>Semester 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>Semester 2</td>
<td>BIOL 1362</td>
<td>Genetics I</td>
<td>3</td>
</tr>
<tr>
<td>Level I</td>
<td>Semester 2</td>
<td>BIOL 1364</td>
<td>Genetics II</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>Semesters 1, 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>Semesters 1, 2</td>
<td>MATH 1115*</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>Semester 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>Semester 2</td>
<td>MATH 1125*</td>
<td>Fundamental Mathematics for General Science II</td>
<td>3</td>
</tr>
</tbody>
</table>

* MATH 1115 or MATH 1125 should be taken by students who do not have a pass in Pure Mathematics at CAPE Units I & II or GCE A’ Level or equivalent.

CORE COURSES (30 credits)

Students pursuing the major in Biology are required to complete all 30 credits of core courses, typically over the 2nd and 3rd years of the degree programme.

<table>
<thead>
<tr>
<th>Level</th>
<th>Semester 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level II</td>
<td>Semester 1</td>
<td>BIOL 2061</td>
<td>Cell and Developmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>Level II</td>
<td>Semester 1</td>
<td>BIOL 2163</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>Level II</td>
<td>Semester 1</td>
<td>BIOL 2165</td>
<td>Genetics II</td>
<td>3</td>
</tr>
<tr>
<td>Level II</td>
<td>Semester 1</td>
<td>BIOL 2262</td>
<td>Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>Level II</td>
<td>Semester 1</td>
<td>BIOL 2360</td>
<td>Biochemistry IIA*</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2164</td>
<td>Principles of Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2265</td>
<td>Fundamentals of Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2464</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2764</td>
<td>Physiology of Plants</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2867</td>
<td>Physiology of Animals</td>
<td>3</td>
</tr>
</tbody>
</table>

* Students pursuing joint Majors in Biochemistry and Biology should not read BIOL 2164 and BIOL 2360. Such students must choose 6 additional credits from the Biology electives for the Major in Biology.

+ Students pursuing joint Majors in Biochemistry and Biology should read BIOL 2265 Fundamentals of Microbiology during Year III.

BIOLOGY ELECTIVES:

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
<td>BIOL 3063</td>
<td>Marine Ecology and Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>Semester 1</td>
<td>BIOL 3069</td>
<td>Research Project***</td>
<td>4</td>
</tr>
<tr>
<td>Semester 1</td>
<td>BIOL 3070</td>
<td>Caribbean Island Ecology and Biogeography</td>
<td>3</td>
</tr>
<tr>
<td>Semester 1</td>
<td>BIOL 3468</td>
<td>Biodiversity and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>Semester 1</td>
<td>BIOL 3469</td>
<td>Research and Practical Skills in Environmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>Semester 1</td>
<td>BIOL 3769</td>
<td>Plant Genetic Improvement</td>
<td>3</td>
</tr>
<tr>
<td>Semester 1</td>
<td>BIOL 3771</td>
<td>Environmental Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>Semester 1</td>
<td>BIOL 3773</td>
<td>Plant Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>Semester 1</td>
<td>BIOL 3774</td>
<td>Research and Practical Skills in Plant Biology</td>
<td>3</td>
</tr>
<tr>
<td>Semester 1</td>
<td>BIOL 3867</td>
<td>Biology of Animal Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>Semester 1</td>
<td>BIOL 3868</td>
<td>The Ecology of Humans</td>
<td>3</td>
</tr>
<tr>
<td>Semester 1</td>
<td>BIOL 3970</td>
<td>Aquaculture</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 2</td>
<td>BIOL 3164</td>
<td>Function & Design in Biology</td>
<td>3</td>
</tr>
<tr>
<td>Semester 2</td>
<td>BIOL 3409</td>
<td>Caribbean Coral Reefs</td>
<td>3</td>
</tr>
<tr>
<td>Semester 2</td>
<td>BIOL 3462</td>
<td>The Ecology of Freshwaters</td>
<td>3</td>
</tr>
<tr>
<td>Semester 2</td>
<td>BIOL 3465</td>
<td>Tropical Forest Ecology and use</td>
<td>3</td>
</tr>
<tr>
<td>Semester 2</td>
<td>BIOL 3466</td>
<td>Coastal Ecosystems & Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>Semester 2</td>
<td>BIOL 3768</td>
<td>Plant Diversity & Systematics</td>
<td>3</td>
</tr>
<tr>
<td>Semester 2</td>
<td>BIOL 3772</td>
<td>Plant Development</td>
<td>3</td>
</tr>
<tr>
<td>Semester 2</td>
<td>BIOL 3774</td>
<td>Research and Practical Skills in Plant Biology</td>
<td>3</td>
</tr>
<tr>
<td>Semester 2</td>
<td>BIOL 3866</td>
<td>Parasite Biology</td>
<td>3</td>
</tr>
<tr>
<td>Semester 2</td>
<td>BIOL 3870</td>
<td>Insect Biology</td>
<td>3</td>
</tr>
<tr>
<td>Semester 2</td>
<td>BIOL 3971</td>
<td>Fisheries Management</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3 (Summer)</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 3 (Summer)</td>
<td>BIOL 3068</td>
<td>Field Course in Neotropical Ecology</td>
<td>4</td>
</tr>
</tbody>
</table>
Major in Environmental Science
(30 ADVANCED CREDITS)

COURSE LISTING

PREREQUISITE COURSES
Students pursuing joint Majors in Biology and Environmental Science should not read ESST1001.

CHEM 1066 cannot be pursued in conjunction with ESST 1002 as
1. there is a great deal of overlap in the content of the two courses and
2. the content of CHEM 1066 is covered in much greater depth than in ESST 1002.

(Students must complete at least 24 level I credits)

LEVEL I
SEMESTER 1
Course Code Course Title Credits
ESST 1001 Biology for Environmental Sciences 3
ESST 1002 Chemistry for Environmental Sciences 3

LEVEL I
SEMESTER 2
Course Code Course Title Credits
ESST 1000 Physics for Environmental Sciences 3
ESST 1006 Human Impact on the Environment 3

SEMESTERS 1, 2
Course Code Course Title Credits
MATH 1115* Fundamental Mathematics for the General Sciences I 3

SEMESTER 2
Course Code Course Title Credits
MATH 1125* Fundamental Mathematics for General Science II 3

* MATH 1115 or MATH 1125 should be taken by students who do not have a pass in Pure Mathematics at CAPE Units I & II or GCE A’Level or equivalent.

CORE COURSES (30 CREDITS)

LEVEL II/III
SEMESTER 1
Course Code Course Title Credits
BIOL 2163 Biostatistics* 3
BIOL 2464 Physics for Environmental Science II 3
ESST 3000* Environmental Toxicology 3

Students pursuing joint Majors in Biology and Environmental Science should choose a course from the Biology electives to replace BIOL 2163 since BIOL2163 will be credited towards the Major in Environmental Science.

 *Students pursuing joint Majors in Biology and Environmental Science should read BIOL 2464 and ESST 3000.
 Students who are not reading the joint Majors in Biology and Environmental Science should read BIOL 2464 instead of ESST 3000.
 However if you doing the major in Environmental Science alone ESST3000 could be used to make up the additional 30 advanced credits.

BSc BIOLOGY WITH SPECIALISATIONS
(60 ADVANCED CREDITS)

Students reading the BSc Degree in Biology are required to do two (2) specialisations each comprising of five 3-credit courses

COURSE LISTING

PREREQUISITE COURSES
(Students must complete at least 24 Level I credits)

LEVEL I
SEMESTER 1
Course Code Course Title Credits
BIOL 1262 Living Organisms I 3
BIOL 1263 Living Organisms II 3
CHEM 1062** Basic Chemistry for Life Sciences 3

** For students without a pass in CAPE Units I & II or GCE A’ Level Chemistry or equivalent)

LEVEL I
SEMESTER 2
Course Code Course Title Credits
BIOL 1362* Biostatistics* 3
BIOL 1364 Genetics I 3

Return to Table of Contents
SEMESTERS 1, 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1115</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1125</td>
<td>Fundamental Mathematics for General Science II</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: MATH 1115 or MATH 1125 should be taken by students who do not have a pass in Pure Mathematics at CAPE Units I & II or GCE A’Level or equivalent.

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2061</td>
<td>Cell and Developmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2163</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2165</td>
<td>Genetics II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2262</td>
<td>Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2360</td>
<td>Biochemistry II A</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2164</td>
<td>Principles of Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2265</td>
<td>Fundamentals of Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2464</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2764</td>
<td>Physiology of Plants</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2867</td>
<td>Physiology of Animals</td>
<td>3</td>
</tr>
</tbody>
</table>

SPECIALISATION - ECOLOGY & ENVIRONMENTAL BIOLOGY

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3070</td>
<td>Caribbean Island Ecology and Biogeography</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3468</td>
<td>Biodiversity and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3469</td>
<td>Research and Practical Skills in Environmental Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3462</td>
<td>The Ecology of Freshwaters</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3465</td>
<td>Tropical Forest Ecology and Use</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II (30 Advanced Credits)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2061</td>
<td>Cell and Developmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2163</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2165</td>
<td>Genetics II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2262</td>
<td>Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2360</td>
<td>Biochemistry II A</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2164</td>
<td>Principles of Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2265</td>
<td>Fundamentals of Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2464</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2764</td>
<td>Physiology of Plants</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2867</td>
<td>Physiology of Animals</td>
<td>3</td>
</tr>
</tbody>
</table>

SPECIALISATION – MARINE BIOLOGY

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3063</td>
<td>Marine Ecology and Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3970</td>
<td>Aquaculture</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3466</td>
<td>Coastal Ecosystem Management</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3971</td>
<td>Fisheries Management</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3409</td>
<td>Caribbean Coral Reefs</td>
<td>3</td>
</tr>
</tbody>
</table>

SPECIALISATION – MICROBIOLOGY

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3960</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3961</td>
<td>Principles of Medical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3770</td>
<td>Plant Pathogens</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRI 3020</td>
<td>Food Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3500</td>
<td>Molecular Virology</td>
<td>3</td>
</tr>
</tbody>
</table>

SPECIALISATION – PLANT BIOLOGY

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3771</td>
<td>Environmental Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3773</td>
<td>Plant Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3774</td>
<td>Research and Practical Skills in Plant Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3768</td>
<td>Plant Diversity and Systematics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3772</td>
<td>Plant Development</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3774</td>
<td>Research and Practical Skills in Plant Biology</td>
<td>3</td>
</tr>
</tbody>
</table>
SPECIALISATION - ZOOLOGY

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3867</td>
<td>Biology of Animal Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3868</td>
<td>The Ecology of Humans</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3869</td>
<td>Zoology Project</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3866</td>
<td>Parasite Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3869</td>
<td>Zoology Project</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3870</td>
<td>Insect Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

BSc ENVIRONMENTAL SCIENCE AND SUSTAINABLE TECHNOLOGY (SPECIAL)

LEVEL I

CORE COURSES (24 credits)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESST 1001</td>
<td>Biology for Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1002</td>
<td>Chemistry for Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1004</td>
<td>Science Communication</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1115</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESST 1000</td>
<td>Physics for Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1005</td>
<td>Information Technology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1006</td>
<td>Human Impact on the Environment</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1125</td>
<td>Fundamental Mathematics for the General Sciences II</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II/III

CORE COURSES (45 credits)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESST 2001</td>
<td>Principles of Environmental Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2002</td>
<td>Environmental Technology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2003</td>
<td>Data Management for Environmental Science</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2163</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3001</td>
<td>Environmental Fate and Transport</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3002</td>
<td>Environmental Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3003</td>
<td>Environmental Monitoring and Assessment</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2265</td>
<td>Fundamentals of Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2464</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2004</td>
<td>Physics for Environmental Science II</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2005</td>
<td>Pollution Management and Abatement Technologies</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3004</td>
<td>Capstone Project</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3006</td>
<td>Fundamentals of Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3007</td>
<td>Environmental Management Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3158</td>
<td>Fundamentals of Renewable Energy</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS five additional courses (15 credits) taken from the following courses:

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3468</td>
<td>Biodiversity and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2470</td>
<td>Introduction to Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2006</td>
<td>Pollution Biology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3103</td>
<td>Environmental Health</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3104</td>
<td>Climate Change and Abatement Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESST 3000</td>
<td>Environmental Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3101</td>
<td>Environmental Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3102</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
</tbody>
</table>

MINORS

NOTE:

(i) Core courses must be credited towards the chosen major and cannot be credited towards the minor.

(ii) Students reading the major in Biology with the minor in Biochemistry must NOT read BIOL 2360 Biochemistry IIA. Such students must choose an additional 3 credits of Biology electives to complete the Biology Major.

Minor in Biochemistry (15 CREDITS)

COURSE LISTING

CORE COURSES (9 credits)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 2061</td>
<td>Bioenergetics</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 2069</td>
<td>Practical Skills in Biochemistry I</td>
<td>1.5</td>
</tr>
<tr>
<td>BIOC 2161</td>
<td>Primary Metabolism</td>
<td>3</td>
</tr>
</tbody>
</table>
Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 2169</td>
<td>Practical Skills in Biochemistry II</td>
<td>1.5</td>
</tr>
</tbody>
</table>

PLUS Two (2) additional courses taken from the following:

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 3062</td>
<td>Cellular and Molecular Defence Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 2262</td>
<td>Gene Expression</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 2162</td>
<td>Circulatory and Secretory Systems</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3364</td>
<td>Biochemical Basis of Disease</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3262</td>
<td>Medical Biochemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor in Biology

(15 ADVANCED CREDITS)

Course Listing

Level I (Prerequisites)

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1262</td>
<td>Living Organisms I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1263</td>
<td>Living Organisms II</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1362</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1364</td>
<td>Genetics I</td>
<td>3</td>
</tr>
</tbody>
</table>

AND 15 credits of Level II/III courses as follows:

Core Courses (6 Credits)

Semester I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2262</td>
<td>Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2061</td>
<td>Cell and Developmental Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS Three (3) additional courses (9 credits) taken from the following:

Semester II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2163</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2165</td>
<td>Genetics II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2360</td>
<td>Biochemistry IIA*</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2164</td>
<td>Principles of Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2265</td>
<td>Fundamentals of Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2464</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2764</td>
<td>Physiology of Plants</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2867</td>
<td>Physiology of Animals</td>
<td>3</td>
</tr>
</tbody>
</table>

*Students pursuing a Major in Biochemistry should **NOT** select BIOL 2360 Biochemistry IIA as an elective for the minor in Biology*

Level II

Semester I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2163</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2165</td>
<td>Genetics II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2360</td>
<td>Biochemistry IIA*</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3063</td>
<td>Marine Ecology and Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3263</td>
<td>Introduction to Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3363</td>
<td>Medical Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3769</td>
<td>Plant Genetic Improvement</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3770</td>
<td>Plant Pathogens</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3771</td>
<td>Environmental Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3773</td>
<td>Plant Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3867</td>
<td>Biology of Animal Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3868</td>
<td>The Ecology of Humans</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3960</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3961</td>
<td>Principles of Medical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3970</td>
<td>Aquaculture</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3162</td>
<td>Principles of Microbial Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3164</td>
<td>Function & Design in Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3366</td>
<td>Plant Biotechnology and Genetic Engine</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3409</td>
<td>Caribbean Coral Reefs</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3462</td>
<td>The Ecology of Freshwater</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3465</td>
<td>Tropical Forest Ecology and Use</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3466</td>
<td>Coastal Ecosystems & Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3468</td>
<td>Biodiversity and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3768</td>
<td>Plant Diversity & Systematics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3772</td>
<td>Plant Development</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3866</td>
<td>Parasite Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3870</td>
<td>Insect Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3971</td>
<td>Fisheries Management</td>
<td>3</td>
</tr>
</tbody>
</table>
Undergraduate Regulations & Syllabuses 2016-2017
The Faculty of Science & Technology

Department of Mathematics & Statistics

NOTE: Students reading courses in Mathematics in the Faculty of Science and Technology are advised to consult with the Head, Department of Mathematics & Statistics, before registering for any course in the Faculty of Social Sciences that involves Mathematics or Statistics.

For Minors Students Should Consult the Head of Department

Course Listing

List of courses offered in the Department of Mathematics & Statistics for the 2016/2017 academic year.

Key:
- ** Not counted towards a student’s credit requirements for the award of the BSc Degree.

Note: Where course codes were not available at the time of publication, please check your faculty / department office/ the online Banner database for the relevant information.

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1115</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1125</td>
<td>Fundamental Mathematics for the General Sciences II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1141</td>
<td>Introductory Linear Algebra & Analytical Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1192</td>
<td>Mathematical Software I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1194</td>
<td>Mathematical Software III</td>
<td>1</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2275</td>
<td>Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2272</td>
<td>Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2271</td>
<td>Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2212</td>
<td>Mathematics of Finance II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2115</td>
<td>Life Contingencies I</td>
<td>3</td>
</tr>
<tr>
<td>ACTS 3003</td>
<td>Loss Models I</td>
<td>3</td>
</tr>
<tr>
<td>ACTS 3004</td>
<td>Asset & Liability Management I</td>
<td>3</td>
</tr>
<tr>
<td>ACTS 3000</td>
<td>Actuarial Science Project</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3465</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3277</td>
<td>Introduction to Real Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3273</td>
<td>Linear Algebra II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3401</td>
<td>Mathematical Modelling</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3402</td>
<td>Introduction to Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3001</td>
<td>Experimental Design & Sampling Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTS 3001</td>
<td>Life Contingencies II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1115</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1125</td>
<td>Fundamental Mathematics for the General Sciences II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1141</td>
<td>Introductory Linear Algebra & Analytical Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1192</td>
<td>Mathematical Software I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1194</td>
<td>Mathematical Software III</td>
<td>1</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2275</td>
<td>Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2272</td>
<td>Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2271</td>
<td>Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2212</td>
<td>Mathematics of Finance II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2115</td>
<td>Life Contingencies I</td>
<td>3</td>
</tr>
<tr>
<td>ACTS 3003</td>
<td>Loss Models I</td>
<td>3</td>
</tr>
<tr>
<td>ACTS 3004</td>
<td>Asset & Liability Management I</td>
<td>3</td>
</tr>
<tr>
<td>ACTS 3000</td>
<td>Actuarial Science Project</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3465</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3277</td>
<td>Introduction to Real Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3273</td>
<td>Linear Algebra II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3401</td>
<td>Mathematical Modelling</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3402</td>
<td>Introduction to Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3000</td>
<td>Regression with Time Series</td>
<td>3</td>
</tr>
</tbody>
</table>
MAJORS and SPECIAL OPTIONS

The following programmes are offered by the Department of Mathematics and Statistics:

MAJOR: Mathematics
SPECIAL OPTIONS: BSc Actuarial Science
BSc Mathematics
BSc Mathematics and Applied Statistics
BSc Statistics
BSc Statistics and Economics

MINORS: Mathematics
Statistics

Major in Mathematics (30 ADVANCED CREDITS)

COURSE LISTING
LEVEL I (13 CREDITS)
SEMESTER 1
Course Code Course Title Credits
MATH 1142 Calculus I 3
MATH 1152 Sets and Number Systems 3
MATH 1194 Mathematical Software III 1

LEVEL I SEMESTER 2
Course Code Course Title Credits
MATH 1141 Intro. to Linear Algebra and Analytic Geometry 3
MATH 1151 Calculus II 3
MATH 1194 Mathematical Software III (Matlab) 1

LEVEL II (24 CREDITS)
SEMESTER 1
Course Code Course Title Credits
MATH 2270 Multivariable Calculus 3
MATH 2273 Linear Algebra I 3
MATH 2274 Probability Theory I 3
MATH 2276 Discrete Mathematics 3

LEVEL II SEMESTER 2I
Course Code Course Title Credits
MATH 2271 Ordinary Differential Equations 3
MATH 2272 Abstract Algebra I 3
MATH 2275 Statistics I 3
MATH 2277 Introduction to Real Analysis I 3

LEVEL III (6 CREDITS)
Any two LEVEL III MATH courses

BSc ACTUARIAL SCIENCE (SPECIAL) (102 CREDITS)

COURSE LISTING
LEVEL I (33 CREDITS)
SEMESTER 1
Course Code Course Title Credits
MATH 1142 Calculus I 3
MATH 1152 Sets and Number Systems 3
MATH 1192 Mathematical Software I 1
EITHER
COMP 1400 Programming I 3
OR
COMP 1601 Computer Programming I 3
ECON 1001 Introduction to Economics I 3

LEVEL II/III (60 CREDITS)
LEVEL II
SEMESTER 1
Course Code Course Title Credits
MATH 2270 Multivariable Calculus 3
MATH 2273 Linear Algebra I 3
MATH 2211 Mathematics of Finance I 3
MATH 2274 Probability Theory I 3
MGMT 2023 Financial Management I 3

LEVEL II SEMESTER 2
Course Code Course Title Credits
MATH 2115 Life Contingencies I 3
MATH 2212 Mathematics of Finance II 3
MATH 2272 Abstract Algebra I 3
MATH 2275 Statistics I 3
MATH 2277 Introduction to Real Analysis I 3

LEVEL III
SEMESTER 1
Course Code Course Title Credits
ACTS 3001 Life Contingencies II 3
STAT 3000 Regression with Time Series 3
LEVEL III (60 CREDITS)

LEVEL II

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2270</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2273</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2274</td>
<td>Probability Theory I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2276</td>
<td>Discrete Mathematics</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS: One (1) level II/III Mathematics elective course 3

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2271</td>
<td>Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2272</td>
<td>Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2275</td>
<td>Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis I</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS: One (1) level II/III Mathematics elective course 3

LEVEL III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3272</td>
<td>Abstract Algebra II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3274</td>
<td>Probability Theory II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3275</td>
<td>Introduction to Complex Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS: One (1) level II/III Mathematics elective course 3

PLUS: Two (2) level II/III courses drawn from Mathematics, Statistics or Actuarial Science 6

PLUS: One (1) level II/III elective course drawn from any discipline 3

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3277</td>
<td>Introduction to Real Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3273</td>
<td>Linear Algebra II</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS: One (1) level II/III Mathematics elective course 3

PLUS: One (1) level II/III elective course drawn from any discipline 3

FOUNDATION COURSES (9 CREDITS)

SEMESTERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific & Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

BSc MATHEMATICS (SPECIAL)

(95 CREDITS)

COURSE LISTING

LEVEL I (26 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1152</td>
<td>Sets and Number Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1142</td>
<td>Calculus I</td>
<td>3</td>
</tr>
</tbody>
</table>

EITHER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1400</td>
<td>Programming I</td>
<td>3</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1192</td>
<td>Mathematical Software I</td>
<td>1</td>
</tr>
</tbody>
</table>

PLUS: One (1) Elective course 3

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1141</td>
<td>Introductory Linear Algebra & Analytical Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1151</td>
<td>Calculus II</td>
<td>3</td>
</tr>
</tbody>
</table>

EITHER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1404</td>
<td>Programming II</td>
<td>3</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1194</td>
<td>Mathematical Software III</td>
<td>1</td>
</tr>
</tbody>
</table>

PLUS: One (1) Elective course 3

69

[Return to Table of Contents](#)
BSc MATHEMATICS AND APPLIED STATISTICS (SPECIAL)
(93 CREDITS)

NOTE: The order in which courses are taken, especially at Levels II and III, may be varied with the approval of the Faculty Adviser or Head of Department.

COURSE LISTING
LEVEL I (24 Credits)

SEMESTER 1

Course Code Course Title Credits
MATH 1142 Calculus I 3
MATH 1152 Sets & Numbers Systems 3
EITHER
COMP 1400 Programming I 3
OR
COMP 1601 Computer Programming I 3
PLUS: One (1) Elective in Ancillary discipline 3

SEMESTER 2

Course Code Course Title Credits
MATH 1141 Intro. to Linear Algebra & Analytical Geometry 3
MATH 1151 Calculus II 3
MATH 1194 Introduction to Mathematical Software III 1
PLUS: One (1) Elective in Ancillary discipline 3
PLUS: One (1) CLL Approved Foreign Language 2

LEVEL II (60 CREDITS)

SEMESTER 1

Course Code Course Title Credits
MATH 2270 Multivariable Calculus 3
MATH 2273 Linear Algebra I 3
MATH 2274 Probability Theory I 3
EITHER
COMP 2700 Database Management Systems 4
OR
COMP 2605 Enterprise Database System 3
PLUS: One (1) Level II/III Elective in Ancillary discipline 3

SEMESTER 2

Course Code Course Title Credits
MATH 2271 Ordinary Differential Equations 3
MATH 2272 Abstract Algebra I 3
MATH 2275 Introduction to Statistics 3
MATH 2277 Introduction to Real Analysis I 3
PLUS: One (1) Level II/III Elective in Ancillary discipline 3

LEVEL III

SEMESTER 1

Course Code Course Title Credits
MATH 3278 Probability II 3
EITHER
STAT 3010 Regression Analysis 3
OR
STAT 3000 Regression with Time Series Analysis 3
OR
ECON 3049 Econometrics I 3
PLUS: One (1) Level II/III Elective from Mathematics 3
PLUS: One (1) Level II/III Elective in Ancillary discipline 3
PLUS: One (1) Level II/III Elective from any discipline 3

SEMESTER 2

Course Code Course Title Credits
MATH 3465 Statistical Inference 3
STAT 3001 Experimental Design and Sampling Theory 3
STAT 3012 Applied Multivariate Statistics 3
PLUS: One (1) Level III Mathematics Course 3
PLUS: One (1) Level II/III Elective from Ancillary discipline 3

FOUNDATION COURSES (9 CREDITS)

SEMESTERS 1 & 2

Course Code Course Title Credits
FOUN 1101 Caribbean Civilization 3
FOUN 1301 Law, Governance, Economy and Society 3

SEMESTER 2

Course Code Course Title Credits
FOUN 1105 Scientific & Technical Writing 3

LIST OF APPROVED ANCILLARY SUBJECTS

Sociology
Psychology
Gender Studies
Economics
Finance
Management Studies
Education
Biology
Computer Science
Other Discipline approved by head of Department or Course Coordinator

LIST OF APPROVED LANGUAGES

Chinese
French
Japanese
Spanish
Or other foreign languages approved by Head of Department or Degree Coordinator
BSc STATISTICS (SPECIAL)

(93 CREDITS)

NOTE: The order in which the courses are taken, especially at Levels II and III, may be varied with the approval of the Degree Coordinator or Head of Department.

COURSE LISTING

LEVEL I (24 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1142</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1152</td>
<td>Sets & Numbers Systems</td>
<td>3</td>
</tr>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1400</td>
<td>Programming I</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Elective in Ancillary discipline</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1141</td>
<td>Intro. to Linear Algebra & Analytical Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1151</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1194</td>
<td>Mathematical Software III</td>
<td>1</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Elective in Ancillary discipline</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>Spanish (SPAN) or other approved Foreign Language from CLL</td>
<td>2</td>
</tr>
</tbody>
</table>

LEVEL II (30 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2270</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2273</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2274</td>
<td>Probability Theory I</td>
<td>3</td>
</tr>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 2700</td>
<td>Database Management Systems I</td>
<td>4</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 2605</td>
<td>Enterprise Database System</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Level II/III Elective in Ancillary discipline</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2275</td>
<td>Introduction to Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Level II/III Elective in Ancillary discipline</td>
<td>3</td>
</tr>
</tbody>
</table>

FOUNDATION COURSES (9 CREDITS)

SEMESTERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific & Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>
BSc Statistics and Economics (Special)

(98 Credits)

Course Listing

Level I (29 Credits)

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 1001</td>
<td>Introduction to Economics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1142</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1152</td>
<td>Sets & Numbers Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1192</td>
<td>Mathematical Software I</td>
<td>1</td>
</tr>
<tr>
<td>EITHER COMP 1400</td>
<td>Programming I</td>
<td>3</td>
</tr>
<tr>
<td>OR COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td>EITHER SOCI 1002</td>
<td>Introduction to Sociology</td>
<td>3</td>
</tr>
<tr>
<td>OR PSYC 1001</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 1002</td>
<td>Introduction to Economics II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1141</td>
<td>Intro. to Linear Algebra & Analytical Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1151</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1194</td>
<td>Mathematical Software III</td>
<td>1</td>
</tr>
<tr>
<td>ACCT 1002</td>
<td>Financial Accounting</td>
<td>3</td>
</tr>
</tbody>
</table>

Level II

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2002</td>
<td>Intermediate Macroeconomics I</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2000</td>
<td>Intermediate Microeconomics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2270</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2273</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2274</td>
<td>Probability Theory I</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2001</td>
<td>Intermediate Microeconomics II</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2003</td>
<td>Intermediate Macroeconomics II</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2005</td>
<td>Social and Economic Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2275</td>
<td>Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis I</td>
<td>3</td>
</tr>
</tbody>
</table>

Level III

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 3049</td>
<td>Econometrics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3278</td>
<td>Probability Theory II</td>
<td>3</td>
</tr>
<tr>
<td>EITHER COMP 2700</td>
<td>Database Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>OR COMP 2605</td>
<td>Enterprise Database System</td>
<td>3</td>
</tr>
<tr>
<td>PLUS: One (1) level III Economics (ECON) course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PLUS: One (1) Level II/III course drawn from Economics, Statistics, Mathematics, Actuarial Science, Finance or other courses approved by the degree coordinator</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 3050</td>
<td>Econometrics II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3465</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3001</td>
<td>Experimental Design and Sampling Theory</td>
<td>3</td>
</tr>
<tr>
<td>PLUS: One (1) Level III Economics (ECON) course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PLUS: One (1) Level II/III course drawn from Economics, Statistics, Mathematics, Actuarial Science, Finance or other courses approved by the degree coordinator</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Foundation Courses (9 Credits)

Semesters 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific & Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>
Minor in Mathematics

(15 CREDITS)

COURSE LISTING

LEVEL II

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2270</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2273</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
</tbody>
</table>

AT LEAST ONE FROM:

LEVEL II

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2272</td>
<td>Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis I</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS:

Six (6) credits of Level II/Level III Mathematics Courses

Minor in Statistics

(15 CREDITS)

COURSE LISTING

LEVEL II/III

SEMESTER 1: ONE OF:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 3000</td>
<td>Regression with Time Series Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3010</td>
<td>Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECON 3049</td>
<td>Econometrics I</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2275</td>
<td>Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3465</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3001</td>
<td>Experimental Design and Sampling Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS EITHER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 3012</td>
<td>Applied Multivariate Statistics</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td>MATH 3278</td>
<td>3</td>
</tr>
</tbody>
</table>

OR

Any other approved Level III course in Statistics (STAT)

OR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 3050</td>
<td>Econometrics II</td>
<td>3</td>
</tr>
</tbody>
</table>

If MATH 2275 is taken for the Major in Mathematics then it cannot be used for the Minor in Statistics and must be replaced by another Level II or Level III course in Statistics. Similarly, if MATH 2275 is taken for the Minor in Statistics then it cannot be used for the Major in Mathematics and must be replaced by another Level II or Level III course in Mathematics.
DEPARTMENT OF PHYSICS

List of courses offered in the Department of Physics for the 2016/2017 academic year.

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMET 1004</td>
<td>Introductory Human Anatomy & Physiology I</td>
<td>3</td>
</tr>
<tr>
<td>BMET 2001</td>
<td>Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td>BMET 2002</td>
<td>Introduction to Medical Physics</td>
<td>3</td>
</tr>
<tr>
<td>BMET 3000</td>
<td>Biomedical Technology Project (Year-long)</td>
<td>6</td>
</tr>
<tr>
<td>BMET 3001</td>
<td>Laboratory Management and Practice</td>
<td>3</td>
</tr>
<tr>
<td>BMET 3002</td>
<td>Light & Optics in Medicine</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1001</td>
<td>Introduction to Astronomy</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1221</td>
<td>Introduction to Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1222</td>
<td>Introduction to Optics, Oscillations & Waves</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2150</td>
<td>Mathematics for Physicists</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2152</td>
<td>Vibrations, Waves and Optics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2155</td>
<td>Physics Major Laboratory Level II (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2156</td>
<td>Meteorology and Climatology (offered in 2017/2018)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2165</td>
<td>Materials Science I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2401</td>
<td>Optoelectronics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3150</td>
<td>Electromagnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3153</td>
<td>Physics Major Research Project</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3155</td>
<td>Physics Major Laboratory Level III (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3156</td>
<td>Principles of Physical Oceanography and Geohydrology</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3159</td>
<td>Environmental Physics Laboratory (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3160</td>
<td>Medical Physics & Bioengineering Laboratory (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3163</td>
<td>Electronics Laboratory (Year Long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3164</td>
<td>Ceramics Science (offered in 2017/2018)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3166</td>
<td>Materials Science Laboratory (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3201</td>
<td>Advance Electronics and Control Theory</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3202</td>
<td>Practical Electronics I (Year-long)</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2 (SUMMER)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSTF 2000</td>
<td>History of Science</td>
<td>3</td>
</tr>
</tbody>
</table>

* Not counted towards the credit requirements for the award of the BSc Degree.

2. BMET students with CAPE Mathematics passes in both Units I and II are to request exemption with credits for MATH 1115 and MATH 1125.
3. Students repeating a course may carry over the practical coursework mark for a maximum of two (2) years. However the theory coursework must be repeated. Please consult with the Head of Department.
4. Laboratory courses (year long): Students are required to register for each year long laboratory course in Semester 1 of the Academic year. However, since these are year long courses credits will be assigned only in Semester 2.
5. PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 and PHYS 1216 have been replaced by four three (3) credit courses (see TABLE 5). Students are required to register for the new courses. Please refer to Table 5.
6. PHYS 2162, PHYS 2163, PHYS 3161 and PHYS 3162 have been replaced. Students are required to register for the new courses. Please refer to TABLE 6.
7. PHYS 2160 and PHYS 2159 have been replaced by BMET 2001 and BMET 2002 (TABLE 7). Students are to register for the new courses.

PHYS 1224 Introduction to Thermodynamics & Modern Physics 3
PHYS 2151 Classical and Statistical Mechanics 3
PHYS 2153 Astrophysics 3
PHYS 2157 Solid Earth Geophysics (offered in 2017/2018) 3
PHYS 2166 Technological Materials 3
PHYS 2402 Digital Circuits and Logic Design 3
PHYS 3151 Quantum Mechanics 3
PHYS 3152 Advanced Thermodynamics and Solid State Physics 3
PHYS 3153 Physics Major Research Project 3
PHYS 3157 Earth Science 3
PHYS 3158 Fundamentals of Renewable Energy 3
PHYS 3165 Materials Science II (offered in 2017/2018) 3
PHYS 3167 Radiation Biophysics and Medicine 3
PHYS 3168 Medical Instrumentation 3
PHYS 3203 Microprocessor and Modern Digital Design 3
PHYS 3204 Practical Electronics II 3

Return to Table of Contents
TABLE 5

<table>
<thead>
<tr>
<th>OLD COURSES</th>
<th>COURSE NAME</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1211</td>
<td>Introduction to Mechanics and Heat</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1212</td>
<td>Introduction to Electricity & Magnetism & Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1213</td>
<td>Introduction to Oscillations & Waves</td>
<td>1.5</td>
</tr>
<tr>
<td>PHYS 1214</td>
<td>Introductory Physics Laboratory I</td>
<td>1.5</td>
</tr>
<tr>
<td>PHYS 1215</td>
<td>Introductory Physics Laboratory II</td>
<td>1.5</td>
</tr>
<tr>
<td>PHYS 1216</td>
<td>Introduction to Optics</td>
<td>1.5</td>
</tr>
</tbody>
</table>

NEW COURSES

NOTE: These courses have practical components

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE NAME</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1221</td>
<td>Introduction to Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1222</td>
<td>Introduction to Optics Oscillations & Waves</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1223</td>
<td>Introduction to Electricity & Magnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1224</td>
<td>Introduction to Thermodynamics & Modern Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

TABLE 6

<table>
<thead>
<tr>
<th>OLD COURSES</th>
<th>COURSE NAME</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2162</td>
<td>Digital Electronics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2163</td>
<td>Analog Electronics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3161</td>
<td>Analog Electronics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3162</td>
<td>Digital Electronics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3163</td>
<td>Electronics Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>

NEW COURSES

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE NAME</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2402</td>
<td>Digital Circuits and Logic Design</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>PHYS 2401</td>
<td>Optoelectronics</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>PHYS 3201</td>
<td>Advance Electronics and Control Theory</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>PHYS 3203</td>
<td>Microprocessor and Modern Digital Design</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>PHYS 3202</td>
<td>Practical Electronics I</td>
<td>3</td>
<td>YEAR- LONG</td>
</tr>
<tr>
<td>PHYS 3204</td>
<td>Practical Electronics II</td>
<td>3</td>
<td>II</td>
</tr>
</tbody>
</table>

TABLE 7

<table>
<thead>
<tr>
<th>OLD COURSES</th>
<th>COURSE NAME</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2160</td>
<td>Advanced Medical Physics & Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2159</td>
<td>Introduction to Medical Physics & Bioengineering</td>
<td>3</td>
</tr>
</tbody>
</table>

NEW COURSES

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE NAME</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMET 2001</td>
<td>Bioengineering</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>BMET 2002</td>
<td>Introduction to Medical Physics</td>
<td>3</td>
<td>I</td>
</tr>
</tbody>
</table>
MAJORS, MINORS, AND SPECIAL OPTION

The following programmes are offered by the Department of Physics:

MAJORS:
- Electronics
- Physics

MINORS:
- Electronics
- Environmental Physics
- Materials Science
- Medical Physics & Bioengineering

SPECIAL OPTION:
- BSc Biomedical Technology

Major in Electronics
(30 CREDITS)

COURSE LISTING
PREREQUISITES*

LEVEL I
SEMMESTER 1
Course Code Course Title Credits
MATH 1142 Calculus I 3
COMP 1601 Computer Programming I 3

LEVEL I
SEMMESTER 2
Course Code Course Title Credits
PHYS 1223 Introduction to Electricity & Magnetism 3
MATH 1141 Introductory Linear Algebra & Analytical Geometry 3

LEVEL II
SEMMESTER 1
Course Code Course Title Credits
PHYS 2401 Optoelectronics 3
PHYS 2150 Mathematics for Physicists 3

LEVEL II
SEMMESTER 2
Course Code Course Title Credits
ECNG 2001 Communication Systems I 3
ECNG 3002 Discrete Signal Processing 3

LEVEL III
SEMMESTER 1
Course Code Course Title Credits
ECNG 3003 Telecommunication Networks 3
ECNG 3019 Advanced Control Systems Design 3

NOTE: Students seeking admission into the Master of Applied Science in Electrical and Computer Engineering (M.A.Sc.), with a major in Communication Systems are advised to choose electives ECNG 3002 and ECNG 3003 as these two courses are prerequisites.

Students seeking admission into M.A.Sc. programme with a major in Control Systems are advised to choose elective ECNG 3019 as this course is prerequisite.

Students pursuing the Major in Physics and the Major in Electronics must complete PHYS 2150 to meet the stipulated requirements for matriculation for both Majors. Since the course cannot be credited twice, students must do an advanced course to satisfy the credit requirements.

Major in Physics
(30 CREDITS)

COURSE LISTING
NOTE: Students must complete at least 12 Level I credits.

PREREQUISITES

LEVEL I
SEMMESTER 1
Course Code Course Title Credits
PHYS 1221 Introduction to Mechanics 3
PHYS 1222 Introduction to Thermodynamics and Modern Physics 3

LEVEL I
SEMMESTER 2
Course Code Course Title Credits
PHYS 1223 Introduction to Electricity & Magnetism 3
PHYS 1224 Introduction to Thermodynamics and Modern Physics 3

PHYS 3203 Microprocessor and Modern Digital Design 3
PHYS 3204 Practical Electronics II 3

ELECTIVES (Choose one (1) three credit course)

PHYS 3168 Medical Instrumentation 3
ECNG 3002 Data Communication Systems 3
ECNG 3025 Discrete Signal Processing 3

PHYS 2150 Introduction to Mechanics 3

PHYS 2150 Introduction to Thermodynamics and Modern Physics 3

 Lyft

76

Return to Table of Contents
CORE COURSES (30 CREDITS)

LEVEL II/III

<table>
<thead>
<tr>
<th>Semester 1 Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2150</td>
<td>Mathematics for Physicists</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2152</td>
<td>Vibrations, Waves and Optics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2155</td>
<td>Major Laboratory Level II (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3150</td>
<td>Electromagnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3153</td>
<td>Physics Major Research Project (Offered in both semesters)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3155</td>
<td>Major Laboratory Level III (Year-long)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2 Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2151</td>
<td>Classical and Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2153</td>
<td>Astrophysics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3151</td>
<td>Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3152</td>
<td>Advanced Thermodynamics and Solid State Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3153</td>
<td>Physics Major Research Project (Offered in both semesters)</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor in Environmental Physics (15 CREDITS)

<table>
<thead>
<tr>
<th>Level II/III Semester 1 Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2156</td>
<td>Meteorology and Climatology (offered in 2017/2018)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3156</td>
<td>Principles of Physical Oceanography and Geohydrology</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level II/III Semester 2 Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2157</td>
<td>Solid Earth Geophysics (offered in 2017/2018)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3157</td>
<td>Earth Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3158</td>
<td>Fundamentals of Renewable Energy</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor in Electronics (15 CREDITS)

LEVEL II/III

<table>
<thead>
<tr>
<th>Semester 1 Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2401</td>
<td>Optoelectronics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3201</td>
<td>Advance Electronics and Control Theory</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3202</td>
<td>Practical Electronics I (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>OR PHYS 3163</td>
<td>Electronics Laboratory (Year-long)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2 Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2402</td>
<td>Digital Circuits and Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3203</td>
<td>Microprocessor and Modern Digital Design</td>
<td>3</td>
</tr>
</tbody>
</table>

PHYS 3163 is the equivalent of the new course PHYS 3202 and as such, students who have successfully completed PHYS 3163 need not pursue PHYS 3202 to obtain the Minor in Electronics.

Minor in Materials Science (15 CREDITS)

LEVEL II/III

<table>
<thead>
<tr>
<th>Semester 1 Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2165</td>
<td>Materials Science I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3164</td>
<td>Ceramics Science (offered in 2017/2018)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3166</td>
<td>Materials Science Laboratory (Year-long)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2 Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2166</td>
<td>Technological Materials</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3165</td>
<td>Materials Science II (offered in 2017/2018)</td>
<td>3</td>
</tr>
</tbody>
</table>
Minor in Medical Physics & Bioengineering
(15 CREDITS)

LEVEL II/III
SEMESTER 1
Course Code Course Title Credits
BMET 2001 Bioengineering 3
BMET 2002 Introduction to Medical Physics 3
PHYS 3160 Medical Physics & Bioengineering Laboratory (Year-long) 3

SEMESTER 2
Course Code Course Title Credits
PHYS 3167 Radiation Biophysics and Medicine 3
PHYS 3168 Medical Instrumentation 3

BSc BIOMEDICAL TECHNOLOGY
(SPECIAL)
(93 CREDITS)

LEVEL I (ALL ARE CORE COURSES)
SEMESTER 1
Course Code Course Title Credits
BMET 1004 Introductory Human Anatomy & Physiology I 3
MATH 1115 Fundamental Mathematics for the General Sciences I 3
PHYS 1221 Introduction to Mechanics 3
PHYS 1222 Introduction to Optics, Oscillations and Waves 3

SEMESTER 2
Course Code Course Title Credits
BMET 1005 Introductory Human Anatomy & Physiology II 3
MATH 1125 Fundamental Mathematics for the General Sciences II 3
PHYS 2401 Introduction to Electricity and Magnetism 3
PHYS 1224 Introduction to Thermodynamics & Modern Physics 3

LEVEL II / III
SEMESTER 1
Course Code Course Title Credits
BIOL 2163 Biostatistics 3
BMET 2001 Bioengineering 3
BMET 2002 Introduction to Medical Physics 3
BMET 3000 Biomedical Technology Project (Year-long) 6
BMET 3001 Laboratory Management and Practice 3
BMET 3002 Light and Optics in Medicine 3
PHYS 2150 Mathematics for Physicists 3
PHYS 2401 Optoelectronics 3
PHYS 3201 Advance Electronics and Control Theory 3
PHYS 3160 Medical Physics & Bioengineering Laboratory (Year-long) 3
PHYS 3163 Electronics Laboratory (Year-long) 3

SEMESTER 2
Course Code Course Title Credits
BMET 3003 Biomedical Technology Laboratory 3
BMET 3004 Metrology and Regulatory Standards 3
PHYS 2402 Digital Circuits and Logic Design 3
PHYS 3167 Radiation Biophysics and Medicine 3
PHYS 3168 Medical Instrumentation 3
PHYS 3203 Microprocessor and Modern Digital Design 3

ELECTIVE COURSES *** (CHOOSE any 6 credits)
*** Students may pursue any 6 credits at Level II/III preferably from other Departments provided that they have the necessary pre-requisites and with the Head of Department’s approval.

Note:
BMET students with CAPE Mathematics passes in both Units I and II are to request exemption with credits for MATH 1115 and MATH 1125.
LANGUAGE COURSES

The Centre for Language Learning (CLL) offers courses in 10 foreign languages: Arabic, Chinese, French, German, Hindi, Italian, Japanese, Portuguese, Spanish and Yoruba.

Its aim is to empower students to use the target language in order to understand information, to express themselves orally and in writing, to communicate with native and non-native speakers of the language and engage with the culture of the language.

Students can register at the CLL and attend classes in any language, upon payment of a small registration fee. Students can also pursue credit courses in Chinese, French, Japanese and Spanish. Registration is online using BANNER. **Students must complete a paper-based registration at the CLL before their online registration.** The normal per credit fee applies.

CHINESE (MANDARIN)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIN 1003</td>
<td>Level 1A Chinese (Mandarin) I</td>
<td>2</td>
</tr>
<tr>
<td>CHIN 1004</td>
<td>Level 1B Chinese (Mandarin) II</td>
<td>2</td>
</tr>
</tbody>
</table>

FRENCH

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREN 1001</td>
<td>Level 1A French I & II</td>
<td>2</td>
</tr>
<tr>
<td>FREN 1002</td>
<td>Level 1B French I & II</td>
<td>2</td>
</tr>
</tbody>
</table>

JAPANESE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAPA 1003</td>
<td>Level 1A Japanese I</td>
<td>2</td>
</tr>
<tr>
<td>JAPA 1004</td>
<td>Level 1B Japanese II</td>
<td>2</td>
</tr>
</tbody>
</table>

SPANISH

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 1101</td>
<td>Level 1A Spanish I & II</td>
<td>2</td>
</tr>
<tr>
<td>SPAN 1102</td>
<td>Level 1B Spanish I & II</td>
<td>2</td>
</tr>
</tbody>
</table>
SECTION XIII: COURSE DESCRIPTIONS

ACCOUNTING: ACCT

LEVEL: I
SEMESTERS: 1
COURSE CODE: ACCT 1002
COURSE TITLE: INTRODUCTION TO FINANCIAL ACCOUNTING
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: An introductory course designed for students of accounting and those in other areas of study. It aims at producing a practical and a theoretical understanding of the principles and concepts involved in the preparation of financial statements. Students are exposed to conceptual analytical approach with the aim of improving their critical thinking and communicative skills.
ASSESSMENT:
Coursework 25%
Final Examination 75%

LEVEL: I
SEMESTERS: 2
COURSE CODE: ACCT 1003
COURSE TITLE: INTRODUCTION TO COST & MANAGERIAL ACCOUNTING
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This is an introductory course for students of accounting as well as other areas of study. It aims to acquaint them with the uses of accounting information and techniques useful to the manager in planning, decision-making and controlling organisational activities.
ASSESSMENT:
Coursework 25%
Examination 75%

LEVEL: II
SEMESTER: 1
COURSE CODE: ACCT 2017
COURSE TITLE: MANAGEMENT ACCOUNTING 1
NUMBER OF CREDITS: 3
PREREQUISITES: ACCT 1002 AND ACCT 1003
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: The course explains how managerial accounting information is used by managers in manufacturing, retail, service and not-for-profit organisations to anticipate the future and monitor the activities of the business.
ASSESSMENT:
Coursework 25%
Final Examination 75%

ACTUARIAL: ACTS

LEVEL: III
SEMESTER: 2
COURSE CODE: ACTS 3000
COURSE TITLE: ACTUARIAL SCIENCE PROJECT
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2211, MATH 2212, MATH 2115 AND ACTS 3001
COURSE DESCRIPTION: This course requires the student to develop an actuarial solution to a problem of an appropriate scope. The project may be application oriented where the student builds a business solution similar to what is required to solve actuarial problems. The project should require the student to draw on the skills developed across several Actuarial Science courses.
ASSESSMENT:
Project report 80%
Presentation 20%
LEVEL: III
SEMESTER: 1
COURSE CODE: ACTS 3001
COURSE TITLE: LIFE CONTINGENCIES II
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2270 AND MATH 2115
COURSE DESCRIPTION: This course is the second part of the Life Contingencies course. The contents of this course will introduce students to application of multiple life functions and multiple decrement models in the actuarial context. Students will learn steps involved in modeling life insurance portfolios to determine the probability of survival and death in a multiple decrement basis. In addition, students will gain practical application of the course content through a software based assignment required for the valuation of the reserves for an individual life insurance policyholder. A software used in the actuarial field will be incorporated in the course so that students develop practical skills.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: ACTS 3004
COURSE TITLE: ASSET AND LIABILITY MANAGEMENT I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2275 AND EITHER (MATH 2212 OR MGMT 3048)
COURSE DESCRIPTION: This course covers topics in modern corporate portfolio theory. Topics include cost of capital, economic capital, sources of capital, bond pricing, derivatives pricing, interest rate models, and efficient markets. The course builds on the material in Financial Mathematics II, introducing further tools and techniques of asset/liability management, general product design, as well as issues of pricing, valuation and asset management and investments in financial security programmes.
ASSESSMENT:
Coursework 50%
Final Examination - One 2-hour written paper 50%

AGRICULTURE: AGRI
LEVEL: III
SEMESTER: 11
COURSE CODE: AGRI 3020
COURSE TITLE: FOOD MICROBIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: AGRI 1012; BIOL 2265
DEPARTMENT RESPONSIBLE: FOOD PRODUCTION
COURSE DESCRIPTION: In this course, the history and development of food microbiology, characteristics of predominant microorganisms in food and their significance, extrinsic and intrinsic factors influencing microbial growth in foods, harmful aspects of microorganisms, beneficial applications of microorganisms in fermentation, methods of food preservation and predictive food microbiology. The course also addresses various food safety management systems such as by ISO 22000 and Hazard Analysis and Critical Control Point (HACCP). Teaching methods involve lectures, video presentation, and laboratory practical.
ASSESSMENT:
Coursework 40%
Final Examination 60%
BIOCHEMISTRY: BIOC

LEVEL: II
SEMESTER: 1
COURSE CODE: BIOC 2061
COURSE TITLE: BIOENERGETICS
NUMBER OF CREDITS: 3
ANTI-REQUISITES: BIOL 2361 BIOMOLECULES AND ENERGY METABOLISM OR BIOL 2360 BIOCHEMISTRY IIA
PREREQUISITES: (BIOL 1362 OR BIOL 1061) AND EITHER (CHEM 1066 AND CHEM 1067) OR CHEM 1060
COURSE DESCRIPTION: pH and buffers; Bioenergetics, Membrane structure; Introduction to membrane transport; TCA cycle; Oxidative phosphorylation; Plant and fungal respiratory chains; Transporters of the mitochondrial inner membrane; Photosynthetic light reactions of plants and bacteria; Calvin cycle; C3, C4 and CAM metabolism; GS-GOGAT and photorespiration; Mitochondria-plastid interactions in higher plants; Chlororespiration; Mitochondrial dysfunction
ASSESSMENT:
Coursework 50%
Final Exam 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: BIOC 2069
COURSE TITLE: PRACTICAL SKILLS IN BIOCHEMISTRY I
NUMBER OF CREDITS: 1.5
ANTI-REQUISITES: BIOL 3069 RESEARCH PROJECT
PREREQUISITES: (BIOL 1362 OR BIOL 1061) AND EITHER (CHEM 1066 AND CHEM 1067) OR CHEM 1060
COURSE DESCRIPTION: This course is composed primarily of laboratory exercises which assist students to understand concepts taught in the classroom as well as introduce techniques necessary to function efficiently in a biochemistry lab. Topics covered include: Instrumentation and safety in the biochemistry laboratory; pH and buffers; proteins and amino acids; the Hill Reaction; measurement of arginase activity; assay of tissue glycogen.
ASSESSMENT:
Coursework 100%
LEVEL: II
SEMESTER: 2
COURSE CODE: BIOC 2262
COURSE TITLE: GENE EXPRESSION
NUMBER OF CREDITS: 3
ANTI-REQUISITES: BIOL 2362 FURTHER METABOLISM & GENE EXPRESSION
PREREQUISITES: BIOL 1362, BIOL1364 AND CHEM 1066
COURSE DESCRIPTION: Chemistry of nucleic acids, gene expression events and regulation, DNA surveillance and repair mechanisms; nucleotide biosynthesis, gene expression and developmental biology.

ASSESSMENT:
Coursework: 50%
Final Exam: 50%

LEVEL: III
SEMESTERS: 1, 2 AND 3
COURSE CODE: BIOC 3069
COURSE TITLE: BIOCHEMISTRY RESEARCH PROJECT
NUMBER OF CREDITS: 3
PREREQUISITES: BIOC 2061, BIOC 2161, BIOC 2262, BIOC 2162, BIOC 2069 & BIOC 2169 AND HAVE A GPA OF ≥ 3 OR PERMISSION OF THE HEAD OF DEPARTMENT
COURSE DESCRIPTION: An approved investigation of a problem in biochemistry and a written report thereon. Students must consult with the course coordinator before registering for this course.

ASSESSMENT:
In-course assessment: 30%
Literature Review: 10%
Oral Presentation: 20%
Project Report: 70%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOC 3162
COURSE TITLE: EXPERIMENTAL BIOCHEMISTRY AND MOLECULAR BIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITES: BIOL 2164 PRINCIPLES OF MOLECULAR BIOLOGY
PREREQUISITES: (BIOC 2262 OR BIOL 2362) AND (BIOC 2161 OR BIOL 2363)
COURSE DESCRIPTION: Course Description: This course covers: introduction to virology, effect of viruses on host cells; immunology: natural and acquired immunity both humoral and cellular; antibody structure and function; B cells-generation of antibody diversity; function of T cells; complement-activation, control and biological effects. HLA-nomenclature, typing and its uses, autoimmunity; animal detoxification-absorption and distribution of xenobiotics, toxic effects and metabolism. The course will be delivered using a number of pedagogical tools and will be myeLearning supported.

ASSESSMENT:
ASSESSMENT: Coursework: 50%
Final Examination: 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: BIOC 3262
COURSE TITLE: MEDICAL BIOCHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOC 2162 OR BIOL 2364
ASSESSMENT:
Coursework: 50%
Final Examination: 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOC 3364
COURSE TITLE: BIOCHEMICAL BASIS OF DISEASE
NUMBER OF CREDITS: 3
PREREQUISITES: (BIOC 2161 OR BIOL 2363) AND (BIOC 2262 OR BIOL 2362)
COURSE DESCRIPTION: Course Description: The course covers applied aspects of cancer metabolism, gene expression, diabetes and obesity, signal transduction/apoptosis, sensory systems and neurochemistry. The course will be delivered using a number of pedagogical tools and will be myeLearning supported
ASSESSMENT:
Coursework: 50%
Final Examination: 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOC 3500
COURSE TITLE: MOLECULAR VIROLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: (BIOC 2262, BIOC 3162 AND BIOC 3062) OR (GRADE B- OR BETTER IN BIOL 2265, BIOL 2164 AND BIOL 2165)
COURSE DESCRIPTION: Changing climates and environmental conditions, increased human traffic, altered human behavior and intensified agricultural practices are only a few factors that have led to the emergence of multiple viruses that occupy expanded ecologic niches, producing diseases in parts of the world where they had never before existed. Importantly, most emerging viral diseases in humans in the 21st century have been zoonotic and plant viruses continue to disrupt food supply. This course will detail the main mechanisms engaged by most viruses for successful reproduction within a host cell and for survival and spread within a host population. The molecular basis of alternative reproductive cycles and the genetic plasticity of viral genomes and the role in virus evolution are important aspects that will be covered. The course will address both sides of the dynamic interplay between pathogen and host including pathogenesis, oncogenic involvement, detection and control of viruses using vaccines and new antiviral strategies and finally, the potential and real applications of manipulating viruses for use in bioengineering and gene therapy. The course directly contributes to the thematic understanding of immunology and biochemical/molecular methods taught in Semester I as pre-requisite courses. The course will be fully myeLearning-supported and a combination of pedagogical approaches will be used; assessments will be based on in-course exams, group assignments and individual student reports.
ASSESSMENT:
Coursework 50%
Final Examination 50%
BIOLOGY: BIOL

LEVEL: 0 (PRELIMINARY)
SEMESTER: 1
COURSE CODE: BIOL 0100
COURSE TITLE: N1 BIOLOGY I
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC OR EQUIVALENT PASS IN BIOLOGY
COURSE DESCRIPTION: An introduction to Cell and Plant Biology including the ultra-structure of plant and animal cells; comparison between prokaryotic and eukaryotic cells; structure and function of micro- and macro-molecules; enzymes; respiration and photosynthesis. Introduction of the Plant Kingdom, plant anatomy, morphology and physiology to include water relations, ion uptake, mineral nutrition; regulation of growth and development by hormonal and environmental factors.
ASSESSMENT:
Coursework 50%
 Theory 20%
 Practical 30%
Final Examination 50%

LEVEL: 0 (PRELIMINARY)
SEMESTER: 2
COURSE CODE: BIOL 0200
COURSE TITLE: N1 BIOLOGY II
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC OR EQUIVALENT PASS IN BIOLOGY
COURSE DESCRIPTION: Introduction to the Animal Kingdom; relationships between structure and function of the mammalian body including the gross anatomy and tissue structure of the various organ systems. Basic principles of Mendelian and Molecular genetics including the physical and chemical basis of inheritance; DNA replication, recombinant DNA and DNA fingerprinting. Introduction to Ecology including ecosystems, energy flow and trophic levels, nutrient cycling and environmental issues.
ASSESSMENT:
Coursework 50%
 Theory 20%
 Practical 30%
Final Examination 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: BIOL 1262
COURSE TITLE: LIVING ORGANISMS I
NUMBER OF CREDITS: 3
PREREQUISITES: (CAPE BIOLOGY UNITS I AND II) OR (BIOL 0061 & BIOL 0062) OR GCE A-LEVEL BIOLOGY
COURSE DESCRIPTION: An introduction to the major groups of prokaryotes, autotrophic protists and plants, their evolutionary associations, and adaptive radiation. Explores ideas about the origin of the prokaryotes and the evolution and diversity of photosynthetic organisms. It is a prerequisite for advanced biology courses in the Department of Life Sciences.
ASSESSMENT:
Coursework 50%
 Theory 30%
 Practical 20%
Final Examination 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: BIOL 1263
COURSE TITLE: LIVING ORGANISMS II
NUMBER OF CREDITS: 3
PREREQUISITES: (CAPE BIOLOGY UNITS I AND II) OR (BIOL 0061 & BIOL 0062) OR GCE A-LEVEL BIOLOGY
COURSE DESCRIPTION: An introduction to the diversity of animals and fungi. Students are introduced to animals, their evolutionary associations, and adaptive radiation; and fungi as decomposers, symbionts, and pathogens. It is a prerequisite for advanced biology courses in the Department of Life Sciences
ASSESSMENT:
Coursework 50%
 Theory 30%
 Practical 20%
Final Examination 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: BIOL 1362
COURSE TITLE: BIOCHEMISTRY I
NUMBER OF CREDITS: 3
ANTI-REQUISITE: AGRI 1013 INTRODUCTION TO BIOCHEMISTRY
PREREQUISITES: (CAPE BIOLOGY UNITS I AND II) OR (BIOL 0061 & BIOL 0062) OR GCE A-LEVEL BIOLOGY
COURSE DESCRIPTION: This course provides an introductory treatment of concepts in Biochemistry. In many regards, students will be learning a vast new language as well as new insight into the molecular logic of life - how the structure/form of molecules is related to their diverse functions.
ASSESSMENT:
Coursework 40%
Final Examination 60%
LEVEL: I
SEMESTER: 2
COURSE CODE: BIOL 1364
COURSE TITLE: GENETICS I
NUMBER OF CREDITS: 3
ANTI-REQUISITE: AGRI 1011 INTRODUCTION TO GENERAL GENETICS
PREREQUISITES: (CAPE BIOLOGY UNITS I AND II)
OR (BIOL 0061 & BIOL 0062) OR GCE A-LEVEL BIOLOGY
COURSE DESCRIPTION: This course aims to present an introduction to the basic principles of genetics and will equip students with the necessary foundation for advanced level courses in biology and biochemistry.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: BIOL 2061
COURSE TITLE: CELL & DEVELOPMENTAL BIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 1263 OR BIOL 1261 OR (BIOL 1065 AND AGRI 1012) AND EITHER (BIOL 1362 AND BIOL 1364) OR BIOL 1061
COURSE DESCRIPTION: The course covers the basic principles of developmental biology with a review of the structure and function of cellular organelles and the role of the cytoskeleton in cell shape and motility. The principles of development, including an understanding of developmental terminology will be examined and its application to organismal, cellular and molecular levels demonstrated for a complete understanding of developmental processes. Students will be introduced to important experiments that have led to an understanding of the basic principles of development. The application of stem cells in research and associated ethical considerations will form the basis of class discussions and online debates.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: BIOL 2165
COURSE TITLE: GENETICS II
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 2162 ADVANCED GENETICS
PREREQUISITES: (BIOL 1364 OR BIOL 1061) AND 6 CREDITS FROM THE FOLLOWING: BIOL 1262, BIOL 1263, BIOL 1362 OR BIOL 1261
COURSE DESCRIPTION: The major topics of the course are cytogenetics (including epigenetics and developmental genetics), prokaryotic/ viral genetics, and molecular genetics (including genomics). Cytogenetics explores chromosomal macromutations (chromosomal deletions, duplications, inversions and translocations) and their associated cytogenetic effects on plants and animals. Epigenetics and developmental genetics is a new area of study that explains the environmental influence on chromatin dynamics, DNA methylation, development and ultimately on inheritance. An introductory treatment of developmental genetics is also given to understand master control genes (homeotic genes) that regulate a cascade of genes that control development. Prokaryotic/ viral genetics provides insights into prokaryotic/ viral reproduction, recombination; genetic complementation, mapping; and genetic regulation. Molecular genetics provides the fundamental basis for the understanding of Molecular Biology and as such deals with DNA replication, transcription, translation and controls. Genomics provides an insight into where genetics is evolving (including an introduction to applications).

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: BIOL 2262
COURSE TITLE: EVOLUTIONARY BIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3662 EVOLUTION AND BIOSYSTEMATICS
PREREQUISITES: (BIOL 1364 OR BIOL 1061) AND 6 CREDITS FROM THE FOLLOWING: BIOL 1262, BIOL 1263, BIOL 1362 OR BIOL 1261
COURSE DESCRIPTION: After a historical introduction, about one-quarter of the course is devoted to population genetics and the workings of natural selection as the basis for understanding evolutionary mechanisms and patterns. This leads to treatment of the nature of species, the roles of fossils in understanding past evolutionary patterns, special forms of evolution and phylogenetic analysis.

ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: II
SEMESTER: 2
COURSE CODE: BIOL 2265
COURSE TITLE: FUNDAMENTALS OF MICROBIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITES: BIOL 2263 GENERAL MICROBIOLOGY
PREREQUISITES: Students should meet criteria I OR II
I: (BIOL 1262 AND BIOL 1263) OR BIOL1261 OR (BIOL 1065 & AGRI 1012) AND (BIOL1362 AND BIOL 1364) OR BIOL 1061 OR
II: ESST 1001
COURSE DESCRIPTION: An overview of the biology, taxonomy and phylogeny of bacteria, fungi and viruses. Topics covered include bacterial carbon and energy metabolism, as well as genetic recombination, growth and nutrition. The course covers the principles of classical and molecular-based methods used in the identification and enumeration of microorganisms.
ASSESSMENT:
Coursework 50%
Final Exam 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: BIOL 2360
COURSE TITLE: BIOCHEMISTRY IIA
NUMBER OF CREDITS: 3
ANTI-REQUISITES: BIOL 2361 BIOMOLECULES & ENERGY METABOLISM; BIOL 2365 COMPARATIVE BIOCHEMISTRY; BIOC 2061 BIOENERGETICS
PREREQUISITES:
(BIOL 1362 OR BIOL 1061), AND (CHEM 1062 OR CAPE UNIT I & II CHEMISTRY OR CHEM 0060 & CHEM 0061) AND
(BIOL 1262 OR BIOL 1263 OR BIOL 1261)
COURSE DESCRIPTION: This course builds on the material covered in BIOL1362 Biochemistry I. The course is intended for those students who are majoring in biology or perusing the B.Sc. Biology programme and who are not reading a major or minor in biochemistry. The course covers core areas of biochemistry including bioenergetics; membranes and membrane transport; enzyme action and regulation; carbohydrate, nitrogen and lipid metabolism; and the integration of metabolism via hormonal control.
ASSESSMENT:
Coursework 50%
Final Exam 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: BIOL 2464
COURSE TITLE: FUNDAMENTALS OF ECOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUIRE: BIOL 1462 GENERAL ECOLOGY AND BIOMETRY
PREREQUISITES: Students should meet criteria I OR II
I: BIOL 1262 AND 6 CREDITS FROM BIOL 1263,BIOL 1362 AND BIOL 1364 OR
II: ESST 1001 AND 6 CREDITS FROM ESST 1000, ESST 1002AND ESST 1006
COURSE DESCRIPTION: An introduction to the science of ecology and its domain. Geographic range, habitat, and niche; influences of the abiotic and biotic environment. Estimating the abundance and pattern of populations. Population structure and demography; growth models, life tables and resource allocation patterns. Species interactions; competition, predation, commensalism and mutualism. The ecological community; concepts, classification, and attributes, ecological succession. Primary and secondary production, trophic levels, and ecological efficiencies. Nutrient cycles and energy flow.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: BIOL 2764
COURSE TITLE: PHYSIOLOGY OF PLANTS
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 2761 PLANT PHYSIOLOGY
PREREQUISITES: Student should meet criteria I AND II:
I: (BIOL 1262 OR BIOL 1261) OR (BIOL 1065 AND AGRI 1012) AND
II: (BIOL 1364 AND BIOL 1362) OR BIOL 1061
COURSE DESCRIPTION: This course deals with how plants gather the resources they need to grow and survive. The first part provides the essential concepts of plant physiology with comprehensive coverage of water relations, mineral uptake, and photosynthesis. The second part explores how these resources are translated into plant growth and provides an introduction to how plants respond to environmental signals at the whole plant level. Each topic is covered by lectures and supported by online material and by recommended reading. The Practicals complement the lecture topics and provide an opportunity to gain valuable practical skills in the life sciences.
ASSESSMENT:
Coursework 50%
Final Examination 50%

Return to Table of Contents
LEVEL: II
SEMESTER: 2
COURSE CODE: BIOL 2867
COURSE TITLE: PHYSIOLOGY OF ANIMALS
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 2862 ANIMAL PHYSIOLOGY
PREREQUISITES: BIOL 1263, BIOL 1362 AND (BIOL 1364 OR ESST 1001)

COURSE DESCRIPTION: Physiology of Animals is the study of how animals’ function. The course provides an introduction to molecular and cellular physiology and the principal physiological systems in animals, and how these systems function to maintain homeostasis in various environments. It covers fundamental concepts in osmoregulation and excretion, neurophysiology, muscle physiology, respiration, thermo-physiology, circulation and gas transport, endocrinology, and cardiovascular physiology. It also looks at some of the major stressors on physiological processes and how animals have been able to deal them. Typical stressors that are covered include osmotic pressures, water limitation, hypoxia, altitude, depth, temperature extremes and exercise. While animal physiology examines systems and processes common to all animal species, this course will focus on vertebrates, with a special emphasis on mammalian systems.

ASSESSMENT:
Coursework 50%
Final Exam 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3063
COURSE TITLE: MARINE ECOLOGY AND OCEANOGRAPHY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 2063 MARINE ECOLOGY
PREREQUISITES: Student should meet criteria I AND II: I: (BIOL 1262 AND BIOL 1263) OR BIOL 1261 OR (BIOL 1065 & AGRI 1012) AND II: (BIOL 2464 OR BIOL 1462)

COURSE DESCRIPTION: After having completed the Fundamentals of Ecology this course focuses now on marine ecology and related aspects of oceanography and marine biology. Ecological processes and adaptations that act to structure marine associations are emphasised. Lectures provide an overview of characteristics, biodiversity and ecology of these marine ecosystems. They will also highlight concepts, ideas and hypotheses of how marine ecosystems function. These principles are examined on a global oceanographic scale and include relevant examples from both tropical (including local to Trinidad and Tobago and the Caribbean) and temperate systems.

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTERS: 1 & 2
COURSE CODE: BIOL 3069
COURSE TITLE: RESEARCH PROJECT
NUMBER OF CREDITS: 4
PREREQUISITES: AT LEAST A “B” AVERAGE IN LEVEL II LIFE SCIENCES COURSES OR PERMISSION OF THE HEAD OF DEPARTMENT

STUDENTS WISHING TO DO THIS COURSE ARE STRONGLY ENCOURAGED TO READ AN ELEMENTARY STATISTICS COURSE

COURSE DESCRIPTION: Short lecture course (6-8 hours): Aims and means of assessing project feasibility; Methods of investigation; Experimental design; Project reporting and presentation. An approved investigation of a problem in biology and a written report thereon. Students must consult with the course coordinator before registering for this course

ASSESSMENT:
In-course assessment 40%
Project Proposal 10%
Literature Review 10%
Oral Presentation 20%
Project Report 60%
LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3162
COURSE TITLE: PRINCIPLES OF MICROBIAL BIOTECHNOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3262 MICROBIAL BIOTECHNOLOGY
PREREQUISITES:
Student should meet criteria I OR II
I. BIOL 2265, BIOL 2164 (minimum grade “B-”), BIOL 3369 AND BIOL 2165 OR
II. (BIOC 2262 & BIOC 3162)

COURSE DESCRIPTION:
This course focuses on the applications of microorganisms in a range of processes that are beneficial for humans and the environment. The topics covered include isolation, screening, genetic manipulation and culturing of microorganisms for selected biotechnological applications related to industries, health, agriculture and the environment. The course is organized into face-to-face lectures, tutorials and practical exercises. General and specific concepts would be covered in lectures while tutorials would be interactive, with students expected to prepare and fully participate in discussions and other class activities. Students will be continuously assessed via in-course tests, activities during lectures and tutorials, and attendance and participation in tutorials. Students’ practical exercises will be assessed and there is also a final end-of-semester theory examination.

ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: II
SEMESTER: 2
COURSE CODE: BIOL 3164
COURSE TITLE: FUNCTION AND DESIGN IN BIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3264 FUNCTIONAL DESIGN IN BIOLOGY
PREREQUISITES: Student should meet criteria I AND II:
I: BIOL 1262 OR BIOL 1261 OR (BIOL 1065 & AGRI 1012),
AND
II: (BIOL 2764 OR BIOL 2761), (BIOL 2867 OR BIOL 2862) AND BIOL 3773
COURSE DESCRIPTION: This course offers a fresh approach to the study of the structure and function of living things. It does not follow the traditional approach based on phylogeny, processes, or organ systems, but looks at how organisms are designed to best make use of the physical characteristics of the environment in which they live. The course goes further than presentation of didactic lectures. For example, students are asked to critique the commonly held belief that cells are the building blocks of living things, and instead consider that cells are incomplete subunits of the organism, so that morphology is not related to anatomy. In the same vein, the concept of Bernoulli’s Principle is shown to be inadequate to explain flight. Analogies are used wherever possible to explain concepts, such as comparing the anatomy of stems and bones to beams and girders, using the Forth Rail Bridge as an engineered analogue of stems. Lectures, tutorials, and practicals are designed to encourage thinking about concepts rather than remembering details.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3263
COURSE TITLE: INTRODUCTION TO BIOINFORMATICS
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2165, BIOL 2164 (minimum grade “B-”) AND BIOL 3369
COURSE DESCRIPTION: This course introduces students to bioinformatics tools and methods. It provides the conceptual background for using bioinformatics tools and application methods and offers skills and training on computational molecular biology and related fields. It gives an understanding about major advances in the analysis of genomes, sequences and their structures and also critically discusses the strength and limitations of the methods. The lecture component of this course provides the necessary conceptual backing and the practical component provides assignments for utilizing bioinformatics tools. Problem-based learning methods would be employed to teach the utility of bioinformatics tools. Teaching approaches include lectures, tutorials and lab sessions. Topics include (but not limited to) bioinformatics databases, sequence and structure alignment, protein structure prediction, protein folding, protein-protein interaction, simulation, and molecular dynamics.
ASSESSMENT:
Coursework 50%
Final Examination 50%

Return to Table of Contents
LEVEL: III
SEMESTER: 1
COURSE COURSE CODE: BIOL 3363
COURSE TITLE: MEDICAL BIOTECHNOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: Student should meet criteria I OR II:
I: BIOL 2165 AND BIOL 2164 OR
II: BIOC 2262 AND BIOC 3162
COURSE DESCRIPTION: Biotechnology as a field has very high relevance and application to human and animal medicine. With the advent of research we are at a stage to unravel the molecular mechanisms of several diseases and disorders. These studies have opened up a new era for the management of several problems facing human health and longevity. Biotechnology innovation is in large part driven by the requirement for improvements in medical diagnosis and therapy for a range of diseases including autoimmune diseases, diseases of inflammation and cancer. This course gives students a detailed insight into the principles and techniques of biotechnology applied to human medicine. Topics include (but not limited to) biopharmaceuticals, stem cell technologies, tissue engineering and regenerative medicine, proteomics, antibody technologies, nanomedicine and molecular diagnostics. The teaching and learning methods include lectures/tutorials, and field trips to medical facilities (within Trinidad).
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3366
COURSE TITLE: PLANT BIOTECHNOLOGY AND GENETIC ENGINEERING
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3762 PLANT BIOTECHNOLOGY
PREREQUISITES: BIOL 2165, BIOL 2164 (MINIMUM GRADE "B-") AND BIOL 3369
COURSE DESCRIPTION: This course introduces students to plant transformation technologies and genetic engineering methodologies for the introduction of beneficial traits into economically important plants. It also introduces students to plant tissue culture techniques and the impact of this technology on preservation of plant species and plant tissue based production of proteins and secondary metabolites. Topics include, Tissue culture applications in plant biotechnology; Advanced study of Gene sources and Gene expression; Promoters, selectable markers and reporter genes; Plant Transformation systems; Biology of Agrobacterium - mediated transformation; Agrobacterium – mediated gene transformation – methodology; Direct gene transfer methods, Particle bombardment; Transgene Integration; Evaluation of Transgenics; Management of Gene silencing; Genetic engineering of plants for novel traits; herbicide tolerance, enhancing pest resistance, disease resistance; resistance to plant viruses, enhanced product qualities; Marker aided selection and gene pyramiding; Biofarming and plant expression systems; Phyto remediation, Genetic engineering of biofuel crops; Genetically modified crops - ethical, social biosafety and environmental issues. The teaching and learning methods include lectures/tutorials, group discussion, journal paper discussion and lab sessions. The teaching and learning methods include lectures/tutorials, and lab sessions.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: YEAR-LONG
COURSE CODE: BIOL 3369
COURSE TITLE: LABORATORY SKILLS IN BIOTECHNOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2164
COURSE DESCRIPTION: This course provides necessary practical skills on recombinant DNA technology and molecular biology and biotechnology techniques. This course will be taught through lab sessions, lab discussions/lectures. Course will be assessed for 100% course work. Lab experiments and lectures will comprehensively cover the experiments and methods involved in gene cloning, necessary instrumentation and Preparation of reagents; Extraction of DNA and RNA; Restriction digestion of plasmid and genomic DNA and fragment analysis; Extraction of plant proteins and SDS-PAGE analysis; DNA-PCR, RT-PCR, qPCR; Preparation of tissue culture media; Tissue culture of tobacco leaf explants; Cell culture techniques; DNA-sequencing and DNA finger printing
ASSESSMENT:
Coursework 100%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3409
COURSE TITLE: CARIBBEAN CORAL REEFS
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 3063
COURSE DESCRIPTION: This course develops student competence in the biology of reef-building corals, the ecology of coral communities, and the impact of natural and anthropogenic factors on coral reefs in the context of the Caribbean region. In addition students are introduced to the ecosystem-based approach to reef management and to the economic valuation of reefs. Throughout the course the emphasis will be on the Caribbean and the interconnectedness of reefs throughout the region, however, comparisons will be made to reefs from other regions.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3462
COURSE TITLE: THE ECOLOGY OF FRESHWATERS
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 2062 FRESHWATER BIOLOGY
PREREQUISITES: Student should meet criteria I AND II:
I: (BIOL 1262 AND BIOL 1263) OR BIOL 1261 OR (BIOL 1065 AND AGRI 1012) AND
II: (BIOL 2464 OR BIOL 1462)
COURSE DESCRIPTION: This course provides an overview of characteristics, biodiversity and ecology of freshwater systems, e.g. rivers, lakes, wetlands, and other low salinity inland aquatic environments. The course will cover the characteristics and variety of freshwater systems; the diversity, biology and ecology of living organisms found associated with these systems; the structure and function of freshwater communities and ecosystems; threats to freshwater systems and management strategies to provide sustainable benefits for ecosystems and human wellbeing. Students are expected to have a basic foundation in ecology and biodiversity. In addition to providing a foundation of theoretical knowledge, this course will emphasise practical skills and expose students to field and laboratory approaches for studying freshwater systems. It is an interactive ‘hands-on’ course where students are expected to prepare, participate and perform in an active way to engage with the content in a variety of ways. Assessment is designed to encourage students to work continuously with the course materials, explore and critically analyse research in this rapidly developing field.
ASSESSMENT:
Coursework 60%
Final Examination 40%
LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3466
COURSE TITLE: COASTAL ECOSYSTEMS AND RESOURCE MANAGEMENT
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 3063
COURSE DESCRIPTION: This course will provide students with an understanding of the characteristics of the major coastal ecosystems of the Caribbean and adjacent regions. It emphasises the ecological processes that determine resource values and functions and highlights the reasons for habitat and resource degradation. The course examines the principles and practices of coastal ecosystem management and reviews the major coastal management initiatives in the region. It includes field surveys which cover many of the issues covered in the lectures. Students are introduced to ecosystems as resources and some basic management principles are also introduced. For each ecosystem the goods, services and attributes are described. Students are additionally exposed to a number of management tools and applications using relevant Caribbean examples.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3468
COURSE TITLE: BIODIVERSITY AND CONSERVATION
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3062 CONSERVATION BIOLOGY
PREREQUISITES: BIOL 2464 AND (BIOL 2163 OR BIOL 1462)
COURSE DESCRIPTION: This course introduces students to one of the most important issues facing biologists and society at large today and in the coming decades: the enormous loss of biological diversity that accompanies the expansion of human populations. The objectives of this course are to provide students with an understanding of biodiversity, the threats to it and methods for preventing its loss. The perspective will be primarily biological, but social and economic aspects will be covered also. Because of the complexity of the issues involved, the course tries to foster interdisciplinary thinking and problem solving.
ASSESSMENT:
Coursework 60%
Final Examination 40%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3768
COURSE TITLE: PLANT DIVERSITY AND SYSTEMATICS
NUMBER OF CREDITS: 3
PREREQUISITES: (BIOL1262 OR BIOL 1261) AND (BIOL 2764 OR BIOL 2761)
COURSE DESCRIPTION: This course provides an overview of plant diversity and systematics and explores the origin and diversity of vascular land plants emphasizing flowering plants in the flora of Trinidad and Tobago. The course covers taxonomy (identification, nomenclature, and classification), diversity, morphology and evolution of vascular plant groups, as well as phylogenetics (phenetics, cladistics, morphology and molecules). Practicals focus on skills and activities necessary for indentifying vascular plants in Trinidad and Tobago and the tools necessary for the understanding of the study of systematics. The course would be taught using interactive lectures, tutorials and hands on practical sessions. Assessment would consist of a final written examination and in course, online and practical assignments.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3769
COURSE TITLE: PLANT GENETIC IMPROVEMENT
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3763 Crop Improvement
PREREQUISITES: BIOL 2165 OR BIOL 2162 OR AGCP 2001
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3770
COURSE TITLE: PLANT PATHOGENS
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3767 BIOLOGY OF PLANT PATHOGENS
PREREQUISITE: BIOL 2265
COURSE DESCRIPTION: This course introduces the learner to the field of plant pathology and provides basic information on the biology and epidemiology and disease cycle of important plant pathogens affecting plants of this region. This course provides comprehensive knowledge about plant pathogens and their interactions with the host. Topics include: Biology of plant pathogens; Classification of plant pathogens; their cellular organization, structure; Examples of pathogens; Pathogen-life cycles, disease cycle; Symptomology; epidemiology, spread, survival; Host-pathogen interactions, mechanism of infection, physiological and biochemical processes of infection; Host resistance and defense mechanisms; Principles of disease management; Molecular-based pathogen detection and disease diagnosis. This course will be taught through lectures/tutorials, lab sessions, field trips. Students are expected to complete a group project.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3771
COURSE TITLE: ENVIRONMENTAL PLANT PHYSIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3766 PLANT ECOPHYSIOLOGY
PREREQUISITES: BIOL 2764 OR BIOL 2761
COURSE DESCRIPTION: Environmental Plant Physiology focuses on the interaction between plants and their environment, exploring the diverse ways in which plants adapt to and influence their surroundings. This course will equip students with knowledge of how plants can be used to conserve land, restore ecosystem services, and provide sustainable food and energy. The first part of the course introduces the essential concepts of Environmental Plant Physiology and looks in detail at three important abiotic factors: light, water and temperature. The second part of the course examines the application of concepts through a series of case studies looking at different habitats and applied scenarios. In addition to case studies developed by the instructor, students will have the opportunity to develop their own case studies that explore the role of plant research in meeting the challenge of global climate change.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3772
COURSE TITLE: PLANT DEVELOPMENT
NUMBER OF CREDITS: 3
PREREQUISITE(S): BIOL 2061 AND (BIOL 2764 OR BIOL 2761)
COURSE DESCRIPTION: This course provides an advanced level focus on the molecular genetic, biochemical and physiological bases of plant development. Concepts of signal perception and transduction are initially reviewed. Students will be introduced to important experiments that have led to understanding many basic principles of plant development. Of particular importance is the use of mutation genetics as a tool to study development. Students in dissecting these experiments would be required to perform planned experiments and present their results and analysis in a group presentation format.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3773
COURSE TITLE: PLANT ANATOMY
NUMBER OF CREDITS: 3
PREREQUISITES: Student should meet criteria I AND II:
I: (BIOL 1262 OR BIOL 1261) OR (BIOL 1065 AND AGRI 1012)
AND
II: BIOL 2764 OR BIOL 2761
COURSE DESCRIPTION: The course integrates developmental
and functional aspects to explain the internal structure and
external form of seed plants. The cells, tissues and organs, as
well as their modifications, of representative plants are
described. The roles of meristematic activity in primary and
secondary growth and in determinate and indeterminate
growth patterns are explained. Practical exercises are
integrated with lectures as much as possible and emphasis is
placed on hands-on specimen preparation and on effective
use of the light microscope.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1 OR 2
COURSE CODE: BIOL 3774
COURSE TITLE: RESEARCH AND PRACTICAL SKILLS IN PLANT BIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3069 RESEARCH PROJECT
PREREQUISITES: AT LEAST 24 ADVANCED LEVEL BIOL COURSES
COURSE DESCRIPTION: This course affords students taking
the Plant Biology Specialisation in the Biology Degree, the
opportunity to work independently or in groups under the
supervision of a member of staff on a research question in
plant biology of local or regional interest. The project is
compulsory for students taking the Plant Biology
Specialisation, but may be done in any of three forms:
individual research project, small group research project, or
individual library project. Students develop research and/or
evaluation and reporting skills as they design and conduct
experiments, collect and analyse data and report and discuss
the results of their own research or of the scientific literature
pertaining to a research question, in an oral and written
format.
ASSESSMENT:
Coursework 100%
LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3867
COURSE TITLE: BIOLOGY OF ANIMAL BEHAVIOUR
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL3861 ANIMAL BEHAVIOUR
PREREQUISITES: Student should meet criteria I AND II:
I: BIOL 1263 OR BIOL 1261 OR BIOL1065 AND
II: BIOL 2867 OR BIOL 2862
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3868
COURSE TITLE: THE ECOLOGY OF HUMANS
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL2461 HUMANS & THE ENVIRONMENT
PREREQUISITES: Student should meet criteria I AND II:
I: BIOL 1263 OR BIOL 1261 OR (BIOL 1065 AND AGRI 1012) AND
II: BIOL 2464 OR BIOL 1462
COURSE DESCRIPTION: This course focuses on one of the most important animals on Earth today, Homo sapiens, considering the species from a broad biological and ecological perspective. The course introduces the evolution and origin of modern humans, the extent of their uniqueness in comparison with other animals and Primates, and the characteristics that contribute to their unprecedented success and dominance of their environment. We also explore selected aspects of human biology and ecology including genetic and cultural diversity and adaptation; technological and lifestyle changes and their relationship with health and disease patterns; human populations, resources and wellbeing; resource depletion, environmental degradation and global climate change. In conclusion we discuss the future of the human animal.

Students are expected to have a basic foundation in ecology and biodiversity. In addition to providing a foundation of theoretical knowledge, this course take a 'hands-on' approach where students are expected to prepare, participate and perform in an active way in order to engage with the content in a variety of ways. Assessment is designed to encourage students to work continuously with the course materials, explore and critically analyse research in this complex and rapidly developing field. Students are expected to have a basic foundation in animal biology.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 1 AND 2
COURSE CODE: BIOL 3869
COURSE TITLE: ZOOLOGY PROJECT
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3069 RESEARCH PROJECT
PREREQUISITES: PERMISSION OF THE HEAD OF DEPARTMENT. ONLY AVAILABLE TO STUDENTS TAKING THE ZOOLOGY SPECIALISATION, WITH 24 LEVEL II BIOLOGY CREDITS.
COURSE DESCRIPTION: This course gives students taking the Zoology Specialisation the opportunity to work independently or in a small group under the supervision of a member of staff on a research or study question in zoology of local and regional interest. Students develop research and/or evaluation and reporting skills as they design and conduct experiments, collect and analyse data and report and discuss the results of their own research or of the scientific literature, in an oral and written format.
ASSESSMENT:
Coursework 100%

LEVEL III
SEMESTER: 2
COURSE CODE: BIOL 3870
COURSE TITLE: INSECT BIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 2866 ENTOMOLOGY
PREREQUISITE: BIOL 2867 OR BIOL 2862
COURSE DESCRIPTION: The first half of the course treats the unity of insects, i.e. those features that are common to all or many orders. The second half is an evolutionary survey of the insects, with some attention to arachnids, treating major orders and some families or superfamilies. In addition, one lecture is devoted to a more in-depth treatment of a selected group of insects or arachnids or a particular theme in arthropod biology.
The basic teaching/learning approach is a traditional one of practical exercises followed by lectures and reading. Assessment is by means of reports on practical exercises, tests and an individualized species account.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3960
COURSE TITLE: ENVIRONMENTAL MICROBIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2265 (AT LEAST B-), BIOL 2164, BIOL 2165 AND BIOL 2360
COURSE DESCRIPTION: This course explores the diversity and function of microorganisms in the environment. Emphasis is placed on metabolic processes employed by microbes to transform organic and inorganic substances as part of biogeochemical cycles. The role of microorganisms in pollution of water, soil and air is considered in addition to microbial processes used in environmental remediation and conservation. Conventional and molecular-based tools used for detecting, characterizing and monitoring microbes in the environment are also covered. The teaching and learning methods include lectures/tutorials, discussion sessions and labs.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3961
COURSE TITLE: PRINCIPLES OF MEDICAL MICROBIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2265 (AT LEAST B-), BIOL 2164, BIOL 2165 AND BIOL 2360
COURSE DESCRIPTION: Principles Medical Microbiology gives students a detailed insight into the principles and techniques of microbiology applied to human medicine. It covers medically important bacteria, viruses, fungi and parasites. Emphasis is placed on classification, detection and diagnosis of microbial pathogens and parasites in addition to their mechanisms and clinical manifestation. Students would also gain an understanding of epidemiological factors that contribute to human infectious disease and be introduced to the uses and challenges of antimicrobial and anti-parasitic agents for managing microbial diseases. The teaching and learning methods include lectures/tutorials and laboratory sessions.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3970
COURSE TITLE: AQUACULTURE
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 1262 AND BIOL 1263
COURSE DESCRIPTION: In Aquaculture students will be exposed to basic knowledge in the related fields of culturing fish in both the marine and brackish-water environments. You will learn about the various techniques and the exciting field of tropical aquaculture- which is currently the fastest growing food-production system in the world. The course covers major trends in aquacultural practices, human and environmental influences on productivity and sustainability and traditional and modern strategies for managing aquaculture. Emphasis will be placed on tropical culture species.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3971
COURSE TITLE: FISHERIES MANAGEMENT
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 3063
COURSE DESCRIPTION: Fisheries biology and management are critical disciplines in today's world, given the importance of the fishing industry as a source of animal protein in the human diet; the basis of a multimillion-dollar industry; and the threatened status of many of the major species on which we depend. This course introduces concepts in the related fields of fisheries biology, stock assessment and fisheries management. The course covers major trends in global and regional fisheries and fishing patterns; human and environmental influences on productivity and sustainability; traditional fish stock assessment models; and traditional, modern and emerging strategies for managing fisheries. Emphasis will be placed on tropical fisheries, which are among the most difficult fisheries to manage.
ASSESSMENT:
Coursework 50%
Final Examination 50%

BIOMEDICAL: BMET

LEVEL: I
SEMESTER: 1
COURSE CODE: BMET 1004
COURSE TITLE: INTRODUCTORY HUMAN ANATOMY AND PHYSIOLOGY I
NUMBER OF CREDITS: 3
PREREQUISITES: CAPE PHYSICS (UNITS I AND II) OR CAPE MATHEMATICS (UNITS I AND II) AND CSEC (CXC) PHYSICS OR PHYS 0070 AND PHYS 0071 OR THEIR EQUIVALENT
COURSE DESCRIPTION:
It is essential that biotechnology personnel, in any form of the use of the body, should be more than merely acquainted with the human body and the relationship of its parts to the total working of the healthy person. Scientific background will underscore student opportunities to think critically, from the perspective of the human organism functioning independently, the interface between the individual and his/her immediate environment, including interactive relationships with technology, and global environment. This course integrates several disciplines including the basic gross anatomy and histology of all the system, as well as physiology of the human body. Contemporaneous issues of homeostasis, ergonomics, adaptation and health will be discussed in the context of today's emerging environmental and inter-organism impacts in the quality of life. This course comprises: General Introduction of Gross anatomy, concepts and principles of cell biology; histology; the integumentary, skeletal, muscular, and nervous systems; special senses; and the endocrine system. This course will be assessed through in-course assignments, in-course laboratory exercises and a final examination.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%
LEVEL: I
SEMESTER: 2
COURSE CODE: BMET 1005
COURSE TITLE: INTRODUCTORY HUMAN ANATOMY AND PHYSIOLOGY II
NUMBER OF CREDITS: 3
PREREQUISITES: CAPE PHYSICS (UNITS I AND II) OR CAPE MATHEMATICS (UNITS I AND II) AND CSEC (CXC) PHYSICS OR PHYS 0070 AND PHYS 0071 OR THEIR EQUIVALENT
COURSE DESCRIPTION: Introductory Human Anatomy and Physiology II is an extension of its first semester counterpart Introductory Human Anatomy and Physiology I. Introductory Human Anatomy & Physiology II offers a broad overview of the structure (anatomy) and function (physiology) of tissues, organs and organ systems. The systems covered in this course are: heart, blood and circulatory system; the lymphatic system, immune System and disease; the digestive System and nutrition; the excretory System, kidneys and fluid balance; and the respiratory system, lungs and respiration. The course concludes with human reproductive anatomy and physiology.
This course will be assessed through in-course assignments, in-course laboratory exercises and a final examination.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: II
SEMESTER: 1
COURSE CODE: BMET 2001
COURSE TITLE: BIOENGINEERING
NUMBER OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111 OR PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224 OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216
COURSE DESCRIPTION: This course will emphasize a systemic view of human anatomy, hierarchy of structures, the function of the various systems of the body and an introduction to selected physiological functions in the human body. Additionally, the physics of the human body will be addressed in terms of the generation of electricity and the use of biopotential measurements in medical diagnostics. This course will focus on the following: Review of radiation interaction with matter; Medical radiation sources and their applications in diagnosis and therapy (focus on detectors, scanners and image processing in the medical environment); Nuclear medicine: radioisotopes, tracer studies and system modeling; Biomechanics as applied in orthopaedic and cardiac surgery; Biomaterials: focusing on the properties of implantable materials and their preparation for implantation; Kinetic and blood flow studies. This course will be assessed through in-course assignments and a final examination.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%
LEVEL: II
SEMESTER: 1
COURSE CODE: BMET 2002
COURSE TITLE: INTRODUCTION TO MEDICAL PHYSICS
NUMBER OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111
OR PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216
COURSE DESCRIPTION: The Medical Physics section of this course will focus on radiation diagnostic methods, corresponding equipment and image analysis in medicine in addition to the production and use of different radiation types for diagnosis and cancer therapy. While in the Bioengineering section, human movement analysis, the development of prostheses and orthoses, the use of man-made materials in the human body, fluid flow and tracer techniques for diagnosis will be considered. This course will focus on the following: The structure, function, properties and Physics of bone, muscles, cardiovascular and nervous system. Feedback and Control systems in the body and homeostatis. Biomedical potentials, electrooculogram (EOG), electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG) and magnetocardiogram (MCG). The visual system and the auditory system. This course will be assessed through in-course assignments and a final examination.

ASSESSMENT:
Coursework 50%
Final Examination (One 2-hr paper) 50%

LEVEL: III
SEMESTER: YEAR-LONG
COURSE CODE: BMET 3000
COURSE TITLE: BIOMEDICAL TECHNOLOGY PROJECT
NUMBER OF CREDITS: 6
PREREQUISITES: AVAILABLE TO BSc BIOMEDICAL TECHNOLOGY STUDENTS ONLY, WITH AT LEAST 30 LEVEL II/III CREDITS
COURSE DESCRIPTION: The project will be compulsory for all B.Sc. Biomedical Technology students and will consist of practical work and related activities such as writing critiques of selected literature, training on equipment, attending and presenting interim reports verbally, and meeting with supervisors. The student will be assigned a research project and will work under the guidance of a member of academic and/or professional staff. The student will be required to write a research proposal outlining the research project, a critical analysis of the literature and the methodology to be used. The student will plan and carry out experiments under the supervision of the advisor or professional recommended by the supervisor. On completion of the practical component, the student will be required to write a project report according to specified format. The report is to be submitted for assessment by a deadline set by the Department of Physics. Students will also be required to orally present their project to an open audience on dates set by the Department of Physics. The oral presentation should make use of current presentation technologies and technique and should be of ten minutes duration per student. This course will be assessed through a written report and an oral presentation.

ASSESSMENT:
Oral Dissertation 20%
Written Report 80%
LEVEL: III
SEMESTER: 1
COURSE CODE: BMET 3001
COURSE TITLE: LABORATORY MANAGEMENT AND PRACTICE
NUMBER OF CREDITS: 3
PREREQUISITES: AVAILABLE ONLY TO BSc BIOMEDICAL TECHNOLOGY STUDENTS
COURSE DESCRIPTION: Biomedical technologists may work within a laboratory environment and may be managers of a laboratory. Technologists may calibrate, test, sample, and evaluate various types of signals and materials and quantify results that may be used by other medical professionals for interpretation. One objective of laboratories is the achievement of documented processes and error-free results that are above reproach. Mistakes can lead to a lack of confidence in the results and services provided by a laboratory. Laboratories are designed, managed, and operated in a manner to consistently provide reliable services. This course provides an introductory overview on the various aspects involved in managing the laboratory environment. The content comprises the following topics: General concepts and administrative issues; optimizing efficiency in workflow processes; workload management; quality management and performance improvement; laboratory informatics and data management; financial management; staff management; laboratory safety; competitive performance in the market. This course will be assessed through in-course assignments.
ASSESSMENT:
Coursework 100%

LEVEL: III
SEMESTER: 1
COURSE CODE: BMET 3002
COURSE TITLE: LIGHT AND OPTICS IN MEDICINE
NUMBER OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111
OR PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216
COURSE DESCRIPTION: Lasers and fiber optics have significant applications in medicine including in imaging and the illumination components of endoscopes to view internal organs. Flexible and rigid fiber cables with laser emitters and detectors are used to access organs. This course provides a background on fundamental optics, fiber optics, and lasers, and their applications to biomedical instrumentation. This course comprises: physics of fiber optics; fiber modes, transmission, and detection; fiber bundles; endoscopy imaging; sigmoidoscopy; colonoscopy; bronchoscopy; physics of lasers; laser classifications and characteristics; laser types; laser interaction with tissue; laser medical applications; laser radiation safety; clinical applications of fiber-optic laser systems. This course will be assessed through in-course assignments and a final examination.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: BMET 3003
COURSE TITLE: BIOMEDICAL TECHNOLOGY LABORATORY
NUMBER OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111
OR PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216
COURSE DESCRIPTION: Biomedical Technology is based on scientific principles which are tested by practical experimentation. In the process, the students are expected to deepen their understanding of the relations between experiment and theory. The data obtained will have the inevitable systematic and random errors that obscure the relations between macroscopic observables of our sensory experience and the ideal laws that govern the phenomena. Students will be challenged to learn how each of the experimental configurations work, to master its manipulation so as to obtain the best possible data set and then to interpret the data in light of theory and a quantitative assessment of the errors. This course stresses data analysis in a laboratory setting. This course will be assessed through in-course assignments.
ASSESSMENT:
Coursework 100%
LEVEL: III
SEMESTER: 2
COURSE CODE: BMET 3004
COURSE TITLE: METROLOGY & REGULATORY STANDARDS
NUMBER OF CREDITS: 3
PREREQUISITES: AVAILABLE ONLY TO BSc BIOMEDICAL TECHNOLOGY STUDENTS
COURSE DESCRIPTION: In the health sector, due to the inherent potential risk to life it is necessary to measure quantities as accurately as possible. The accuracy and reliability of medical measurements have direct consequences on each individual’s health. In addition, medical decisions are often based on statistical analysis and on the conclusions of clinical studies. Medical measurements are incorporated within these studies and are correlated with other medical findings. Thus, the accuracy, reproducibility, and repeatability as well as the quality assurance (calibration, legal metrological control and reference measurement methods) of medical instrumentation must be assured. This course introduces the metrology and regulatory framework and standards of certain categories of medical devices. This course comprises: metrology principles; quality in measurement and testing; the different international classification systems for medical devices; the life phases to developing medical devices; medical device design standards versus medical device operational standards; the regulatory framework for medical devices including the World Health Organization Medical Devices regulations; International Electrotechnical Commission standards for electrical equipment in medical practice and on medical device software; Examples of metrological characteristics (methods and equipment) for specific equipment such as, but not limited to, electrocardiographs. This course will be assessed through in-course assignments.
ASSESSMENT:
Coursework 100%
CHEMISTRY: CHEM
LEVEL: 0 (PRELIMINARY)
SEMESTER: 1
COURSE CODE: CHEM 0100
COURSE TITLE: N1 CHEMISTRY I
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC OR EQUIVALENT PASS IN CHEMISTRY
ASSESSMENT:
Coursework 40%
Final Examination - 3-hour written paper 60%
LEVEL: 0 (PRELIMINARY)
SEMESTER: 2
COURSE CODE: CHEM 0200
COURSE TITLE: N1 CHEMISTRY II
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC OR EQUIVALENT PASS IN CHEMISTRY
ASSESSMENT:
Coursework 40%
Final Examination - 3-hour written paper 60%
LEVEL: I
SEMESTER: 1
COURSE CODE: CHEM 1062
COURSE TITLE: BASIC CHEMISTRY FOR LIFE SCIENCES
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: The course is intended to provide students, who have had very little exposure to chemistry and who intend to proceed to degree level in the Life and Health Sciences, with a working knowledge of the basic concepts and principles of Chemistry. Topics of study: atoms, bonding, (ionic and covalent) intermolecular forces, quantifying matter, classes of reactions; properties of ionic and covalent compounds; solution chemistry; acid-base equilibria; reaction kinetics; thermochemistry; gases; properties and reactions of carbon compounds including alcohols, aldehydes and ketones, carboxylic acids, esters and ethers, amines and amides; amino acids and peptides, natural polymers and stereochernistry.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%
LEVEL: I
SEMESTER: 1
COURSE CODE: CHEM 1066
COURSE TITLE: INTRODUCTION TO CHEMISTRY I
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 0060 & CHEM 0061 OR CAPE CHEMISTRY OR EQUIVALENT
COURSE DESCRIPTION: Atomic structure, group and periodic trends, chemical reactivity, fundamentals of bonding.
ASSESSMENT:
 Coursework 40%
 Final Examination - 2-hour written paper 60%

LEVEL: I
SEMESTER: 2
COURSE CODE: CHEM 1067
COURSE TITLE: INTRODUCTION TO CHEMISTRY II
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 0060 & CHEM 0061 OR CAPE CHEMISTRY OR EQUIVALENT
COURSE DESCRIPTION: Fundamentals of organic chemistry, introduction to chemical thermodynamics, reaction kinetics, chemical equilibria, d-block elements and coordination chemistry.
ASSESSMENT:
 Coursework 40%
 Final Examination - 2-hour written paper 60%

LEVEL: I
SEMESTER: 2
COURSE CODE: CHEM 1068
COURSE TITLE: INTRODUCTION TO CHEMISTRY III
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 0060 & CHEM 0061 OR CAPE CHEMISTRY OR EQUIVALENT
COURSE DESCRIPTION: Particle in a box, eigenvalues, harmonic oscillators, heat capacity, entropy, Gibbs free energy. Organic chemistry: addition, substitution, elimination and hydrolysis reactions.
ASSESSMENT:
 Coursework 40%
 Final Examination - 2-hour written paper 60%

LEVEL: I
SEMESTER: YEAR-LONG
COURSE CODE: CHEM 1070
COURSE TITLE: INTRODUCTORY CHEMISTRY LABORATORY
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 0060 & CHEM 0061 OR CAPE CHEMISTRY OR EQUIVALENT
COURSE DESCRIPTION: This is a laboratory based course covering basic and intermediate laboratory skills, including chemical calculations, simple data and statistical analyses, volumetric and gravimetric techniques, chemical quantitation, pH measurements, purification of mixtures, chromatography, measurement of thermodynamic and kinetic parameters of reactions, basic symmetry and laboratory safety. Laboratory exercises begin with a careful emphasis on skill acquisition, then move towards more complicated exercises. During the later stages of the course students would be expected to do more advanced laboratory activities, using the techniques taught in the earlier sessions to plan, design and execute their own solution to a laboratory problem. The final grade for CHEM 1070 will be determined from an assessment of student performance in the following activities: general laboratory reports / exercises, laboratory quizzes, laboratory skills evaluation, and mini-projects.
ASSESSMENT:
 Coursework 100%
LEVEL: II
SEMESTER: 1
COURSE CODE: CHEM 2170
COURSE TITLE: FUNDAMENTALS OF INORGANIC CHEMISTRY I
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1065 OR CHEM 1070, AND AT LEAST CHEM 1066 AND CHEM 1067; (OR CHEM 1060 AND CHEM 1061)

COURSE DESCRIPTION: This is part I of two of core inorganic chemistry courses and gives an introduction to fundamental concepts in inorganic chemistry with a focus on descriptive inorganic chemistry and bonding theories both in inorganic molecules and in the solid state. The course is divided into topic themes and includes structure of solids, survey of properties of main group elements, aqueous and redox chemistry of ionic compounds, principles of group theory, descriptive transition metal chemistry the basis of which includes crystal field theory and extending into basic molecular magnetism and electronic spectroscopy. The topics are pursued with a common theme of chemical bonding and structure and the derived chemical properties of compounds of elements across the most of the periodic table.

The assessment approach will be varied and continuous throughout the course and include online quizzes, in-course exams, tutorial worksheets and group research paper.

ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%

LEVEL: II
SEMESTER: 1
COURSE CODE: CHEM 2270
COURSE TITLE: ORGANIC CHEMISTRY I
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1065 OR CHEM 1070, AND AT LEAST CHEM 1067 AND CHEM 1068; (OR CHEM 1061)

COURSE DESCRIPTION: This course will be the first of the two basic organic chemistry courses required for students who have completed the Introductory Chemistry programme and wish to pursue a major in chemistry. Students are introduced to the basic reactions, principles and tools which will enable them to devise reasonable schemes for the synthesis of given molecules, to determine the structures of these molecules and to explain the formation of the products obtained from reactions. This will be achieved through six lectures in Stereochemistry, six lectures in Spectroscopy and 12 lectures on Synthetic Design which will focus on applying knowledge of aromatic and carbanion chemistry and retrosynthetic analysis to the synthesis of given organic molecules. There will be twelve weekly tutorials during which assigned problems will be discussed. Students will be assigned to work in small groups on the problems and hand in their solutions before each tutorial.

ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%

LEVEL: II
SEMESTER: 1
COURSE CODE: CHEM 2370
COURSE TITLE: PHYSICAL CHEMISTRY I
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1065 OR CHEM 1070 AND AT LEAST CHEM 1067 AND CHEM 1068; (OR CHEM 1061)

COURSE DESCRIPTION: Introduction and fundamental theory of spectroscopic techniques important to chemists and how the techniques can be used to find out more about atoms and molecules. The course also includes reaction kinetics, particularly its application to real world chemistry problems. This is a core subject area in physical chemistry. The course covers important material that will be needed in subsequent courses in all disciplines of chemistry. The course is assessed by two in-course examinations, and tutorial activities, along with a final examination.

ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%
LEVEL: II
SEMESTER: 1
COURSE CODE: CHEM 2470
COURSE TITLE: INTRODUCTION TO ANALYTICAL CHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1065 OR CHEM1070 AND AT LEAST ONE OF CHEM 1066, CHEM 1067, CHEM 1068; (OR CHEM 1060 AND CHEM 1061)
COURSE DESCRIPTION: This course emphasizes classical methods in analytical chemistry. In the first of two units, students are introduced to the basic tools needed in all chemical analyses. The techniques of chemical measurements of mass and volume, for example, are studied, along with relevant units and interconversions. The errors associated with chemical analyses are discussed; students will be able to describe these errors, identify how they can occur in an analysis and suggest methods for minimizing or eliminating them. Simple statistical analysis is also considered in this unit. In the second unit, students are introduced to a survey of classical and modern analytical methods. This is followed by the principles of chemical equilibria, and how these apply to the important classical analytical chemistry methods of gravimetry and titration. The teaching/learning strategies in use in this course are based on the classroom lecture along with small group activities, supported by myeLearning components. The course is assessed by in-course examinations, tutorial activities and participation, along with a final examination.
ASSESSMENT:
Coursework 50%
Final Examination - 2-hour written paper 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: CHEM 2471
COURSE TITLE: ANALYTICAL METHODS IN CHEMISTRY I
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2460 OR CHEM 2470
COURSE DESCRIPTION: This is a compulsory course for students who wish to pursue the Minor in Analytical Chemistry, which continues the study of analytical chemistry concepts begun in CHEM 2470. More advanced concepts are presented, including further development of titrimetric techniques, focusing on complexometric titrations. The understanding and use of instrumental techniques begins in this course, with electrochemical methods, basic spectroscopy and separation techniques. The unit on electrochemical methods covers the chemical theory that is exploited in potentiometric and other analytical techniques as well as more applied issues to do with the appropriate use of these methods. The units on basic spectroscopy and separation techniques provide a general introduction to these advanced instrumental techniques. The teaching/learning strategies used in this course are based on the classroom lecture along with small group activities and participation; all of this supported by myeLearning components. The course is assessed by in-course examination, tutorial activities, poster preparation, a literature review and a final examination.
ASSESSMENT:
Coursework 50%
Final Examination - 2-hour written paper 50%
LEVEL: II
SEMESTER: 2
COURSE CODE: CHEM 2472
COURSE TITLE: ANALYTICAL CHEMISTRY LABORATORY
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2460 OR CHEM 2470
COURSE DESCRIPTION: This is a compulsory course for students who wish to pursue the Minor in Analytical Chemistry, which provides a general survey of the most common laboratory activities required by the modern analytical chemist. These activities include planning and design, techniques for the acquisition, handling and processing of samples, analytical techniques, data analysis and quality control and quality assurance concepts. The course is organised as a semester-long “research project” with the students working on one site/problem over the whole semester using a range of analytical techniques. In the first year, the site/problem under investigation will be an environmental survey of a contaminated river. Each week a different set of relevant analytical techniques will be emphasised, while some critical areas will be repeated in a variety of labs for better understanding by students. For example, the use of replicates, simple statistical analysis and error evaluation will be conducted in every lab. Group learning is emphasised, as students will carry out all course activities in small groups. The course is assessed entirely by coursework, which consists of a variety of activities; including laboratory skill demonstrations, weekly lab reports, a final lab report and an oral presentation.
ASSESSMENT:
Coursework 100%

LEVEL: II
SEMESTER: 1
COURSE CODE: CHEM 2672
COURSE TITLE: CORE CHEMISTRY LABORATORY I
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1070 OR CHEM 1065
COURSE DESCRIPTION: CHEM 2672 reinforces and further develops basic and intermediate laboratory skills covered in CHEM 1070. The course also introduces students to advanced techniques and skills such as advanced separation and purification techniques; chemical quantitation; reaction thermodynamics and kinetics; one step and basic multistep reaction syntheses; interpretation of spectral data; structure elucidation and chemical characterization; stereochemistry; as well as the basic analytical & spectroscopic instrumentation skills required of a chemist: HPLC, GC, Flame Atomic Absorption, UV-Visible Spectroscopy, IR, 1H NMR and mass spectrometry. The final grade for CHEM 2672 will be determined from an assessment of student performance in the following activities: pre-lab preparation, general laboratory reports / exercises, laboratory quizzes oral and written, practical lab skills and tutorial/group discussions.
ASSESSMENT:
Coursework 100%

LEVEL: II
SEMESTER: 2
COURSE CODE: CHEM 2673
COURSE TITLE: CORE CHEMISTRY LABORATORY II
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1070 OR CHEM 1065
COURSE DESCRIPTION: This course integrates and further develops the basic laboratory skills covered in CHEM 1070 and CHEM 2672 courses. The course also introduces students to further advanced experimental techniques and skills ranging from experimental design and planning of multistep reaction syntheses to product purification and quantitation; complex structure/mixture elucidation and chemical characterization with the aid of advanced spectroscopic techniques to the investigation and measurement of the physical parameters (thermodynamics, equilibria and kinetics) of reactions. In this course students will be continuously evaluated throughout the semester on pre-lab preparation, experimental planning and design, post lab report write-up, practical lab skills through the acquisition of meaningful accurate experimental data as well as on their chemical knowledge through short lab quizzes, oral examinations and tutorial/group discussions.
ASSESSMENT:
Coursework 100%
LEVEL: II
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: CHEM 2770
COURSE TITLE: INTRODUCTION TO RESEARCH IN CHEMISTRY LEARNING
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1065 OR CHEM 1070, CHEM 1066, CHEM 1067 AND CHEM 1068 OR (CHEM 1060 AND CHEM 1061)
COURSE DESCRIPTION: CHEM 2770 is one of an intended series of courses that a student with an interest in the field of Chemical Education will take. This course thus provides an introduction to a variety of research topics in Chemical Education Research (CER). The course begins with an investigation into what exactly is research in Chemistry Education followed by an exploration of the chemical education literature in the following areas: chemistry problem-solving and the development of misconceptions among chemistry learners; the application of learning theories to the practice of chemistry teaching and learning; the use of non-traditional assessment methods in measuring chemistry learning and the impact of CER on college-level chemistry teaching and learning. The topics were chosen as they represent examples of on-going areas of research in the developing field of CER. Learning in this course will be facilitated in large part through interactive weekly discussion forums based on thorough reading of the course materials by all class participants. Students will also experience small-group learning activities during the weekly tutorial sessions. The course will be assessed via a series of exercises that will be conducted during the course of the semester, namely, preparation/participation in weekly discussions, review of journal articles, exploratory essays and a research paper. There will be no final examination in this course.
ASSESSMENT:
Coursework 100%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3163
COURSE TITLE: CHEMISTRY OF TECHNOLOGICALLY IMPORTANT MATERIALS
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2160 OR CHEM 2170
COURSE DESCRIPTION: The properties, characterization and applications of various advanced technologically important materials such as Liquid Crystals for LCD applications, Semiconductors for electronic device and Solar Cell applications, lanthanide phosphors for LED applications and Nanomaterials.
ASSESSMENT:
Theory Coursework 50%
Final Examination - 2-hour written paper 50%

LEVEL: II/III
SEMESTER: 2
COURSE CODE: CHEM 3163
COURSE TITLE: FUNDAMENTALS OF INORGANIC CHEMISTRY II
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2160 OR CHEM 2170
COURSE DESCRIPTION: This course is part II of the core inorganic chemistry courses and provides comprehensive fundamental basis for chemistry students and designed with the aim of introducing the salient features of the vast inorganic chemistry of main group, transition metal and inner transition metal compounds. The course is structured into three subtopics which specifically discusses exclusively the chemistry of their compounds. These topics include: chemistry of the main group elements with a focus on hydrides, oxides and halides, etc; coordination and organometallic chemistry, the basis of which is ligand field theory and molecular orbital theory and then extending into chemistry of organometallic compounds, electronic spectroscopy and magnetic properties; and finally, chemistry of the lanthanides and actinides.
The assessment approach will be varied and continuous throughout the course and include online quizzes, in-course exams, tutorial worksheets and group research paper.
ASSESSMENT:
Coursework 40 %
Final Examination - 2-hour written paper 60 %
LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3172
COURSE TITLE: ADVANCED INORGANIC CHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM2170 AND CHEM 3170
COURSE DESCRIPTION: This course is the result of a major revision of the advanced programme being offered in the Department of Chemistry and is an essential component for students who are likely to either pursue the single Chemistry discipline for their Bachelor’s Degree or to cover the special topics offered within in preparation for graduate study and research. The course builds on the knowledge base and experiences of the student who has successfully completed core Level II inorganic chemistry. The course content is therefore specialized in depth rather than diversity, and heavily biased toward topics which cover areas of active research in the department. It is intended that students who complete this course will be well exposed to and competent in the usage of common methodologies for the characterization and study of metal complexes, with a good grasp of the principles, limitations, calculations and derivations that apply in each general case.
ASSESSMENT:
Coursework: 40%
Final Examination: 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3268
COURSE TITLE: CHEMISTRY OF NATURAL PRODUCTS
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2260 OR CHEM 2270
COURSE DESCRIPTION: Importance of natural products to man - medicine, agriculture - and in plant-plant and plant-animal interactions. Biosynthesis of natural products in acetate-malonate (polyketides), mevalonate (terpenoids), shikimic acid (aromatics), amino acids (alkaloids), modern methods of characterization of natural products; manipulating biosynthetic pathways.
ASSESSMENT:
Theory Coursework: 40%
Final Examination - 2-hour written paper: 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3270
COURSE TITLE: ORGANIC CHEMISTRY II
NUMBER OF CREDITS: 3
PREREQUISITE: CHEM2260 OR CHEM 2270
COURSE DESCRIPTION: This course follows on the Organic Chemistry I course which students would have already taken and is designed to complete the organic chemistry theoretical knowledge considered essential for a major in Chemistry. Students will apply the knowledge they have gained in stereochemistry, spectroscopy and synthetic methodology. The course introduces the student to the basic chemistry and synthesis of heterocyclic compounds, amino acids, peptides and carbohydrates and to the mechanistic features of important types of organic reactions, namely substitution and elimination. The properties and role of reactive intermediates, eg carbenes, nitrenes, radicals and carbocations, in organic chemistry are also discussed.
ASSESSMENT:
Coursework: 40%
Final Examination - 2-hour written paper: 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3273
COURSE TITLE: SYNTHESES OF BLOCKBUSTER DRUGS
NUMBER OF CREDITS: 3
PREREQUISITE: CHEM 3270
COURSE DESCRIPTION: The course introduces the student to the modern organic chemistry and synthesis of selected modern blockbuster drugs. The synthesis of the ring systems are underpinned by theoretical organic chemistry. Application of the Woodward Hoffmann rules and the Baldwin ring closure rules will be discussed. The mechanistic features of important types of selected organic reactions in organic chemistry will also be discussed. Modern Mass and NMR spectrometric methods for determining the structures of intermediates and target drugs will also be presented.
ASSESSMENT:
Coursework: 40%
Final Examination: 60%
LEVEL: II/III
SEMESTER: 2
COURSE CODE: CHEM 3370
COURSE TITLE: PHYSICAL CHEMISTRY II
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1065 OR CHEM1070, CHEM 1066, CHEM 1067 and CHEM 1068 OR CHEM 1061
COURSE DESCRIPTION: This is a core course for anyone pursuing the BSc or a major in chemistry. This rigorous and comprehensive course continues building student knowledge of concepts in modern physical chemistry. The material covers: Gases, Liquids & Solids introducing the student to adhesive forces and the characteristics of ideal and non-ideal gases; Surface Chemistry and discusses catalytic activity at surface; and Electrochemistry and oxidation-reduction reactions with insight into industrial chemical processes as related to redox reactions. The knowledge and understanding gained in this course will be important for the more advanced physical chemistry and elective courses. The final grade for CHEM 2370 will be determined from student performance in the in-course examinations, graded tutorials and the final examination.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3470
COURSE TITLE: ANALYTICAL METHODS IN CHEMISTRY II
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2470 AND CHEM 2471
COURSE DESCRIPTION: The course “Analytical Methods in Chemistry II” is a compulsory course for students who wish to pursue the Minor in Analytical Chemistry. It seeks to reinforce the principles and practices of chemical analyses that were taught in CHEM 2470 and CHEM 2471 by use of appropriate training materials and methods to the application of analysis of real samples. This course also introduces students to experimental designs and project management which utilizes problem solving skills to solve real-world problems. The teaching/learning strategies in use in this course are based on the classroom lecture along with small group activities, supported by myeLearning components. The course is assessed entirely by coursework, involving in-course exams, the production of an experimental proposal, and the design and construction of a functioning analytical instrument. In order to be awarded with a Minor in Analytical Chemistry, students must also successfully complete two additional optional courses.
ASSESSMENT:
Coursework 100%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3373
COURSE TITLE: ADVANCED TOPICS IN PHYSICAL CHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2370 AND CHEM 3370
COURSE DESCRIPTION: Statistical Thermodynamics: microstates and configurations, Boltzmann distribution; Partition functions for translation, rotation and vibration; Calculation of internal energy, entropy and Gibbs free energy and equilibrium constants. Computational chemistry: molecular mechanics- potential energy functions - stretching, bending and torsions. Molecular Orbital Theory - Ab initio Methods, Hartree-Fock approximation self consistent field (SCF) theory, basis sets electron correlation. Comparison of available software and practical workshop.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3560
COURSE TITLE: ENVIRONMENTAL CHEMISTRY
NUMBER OF CREDITS: 4
PREREQUISITES: AT LEAST THREE OF CHEM 2160 OR CHEM 2170;CHEM 2260 OR CHEM 2270; CHEM 2360 OR CHEM 3370, CHEM 2015, CHEM 2025, CHEM 2460 OR CHEM 2470
COURSE DESCRIPTION: Introduction to the structure of the environment; the physicochemical characteristics and processes of natural waters: equilibrium, redox, and microbiological reactions; function and processes in the atmosphere: major element cycles, ozone, climate change, acid rain, smog; characteristics of, and processes in soils; sources, effects and control of selected water, air and soil pollutants; introduction to environmental analytical chemistry.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%
LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3561
COURSE TITLE: INTRODUCTION TO POLYMER CHEMISTRY
NUMBER OF CREDITS: 4
PREREQUISITES: CHEM 2260 OR CHEM 2270, AND AT LEAST TWO (2) OF CHEM 2160 OR CHEM 2170, CHEM 2360 OR CHEM 3370, CHEM 2015, OR CHEM 2025
COURSE DESCRIPTION: Macromolecules, molecular weights, characterisation, step polymerisation, chain reaction polymerisation, co-polymerisation; polymer morphology, testing and characterisation; flow properties and elasticity; solubility, thermodynamics; polymer technology.
ASSESSMENT:
Coursework 25%
Final Examination - 2-hour written paper 75%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3563
COURSE TITLE: ENVIRONMENTAL DEGRADATION OF MATERIALS
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2360 OR CHEM 3370
COURSE DESCRIPTION: This course is a revised version of Corrosion Science - CHEM3562. It is an applied chemistry elective which covers environmental degradation of materials with particular reference to the degradation of metals in their environment. Topics include the basic principles of aqueous corrosion of metals, costs resulting from corrosion, different forms of corrosion, corrosion rate expressions, monitoring and visualization, testing, and prevention techniques. The course also includes degradation of plastics by UV and high temperatures and the degradation of concrete. A candidate for this course should have a clear understanding of the thermodynamics and electrochemistry theory covered in CHEM1067, CHEM1068 and CHEM 2360 or 3370. If you feel uncertain in those areas a thorough review of that material is advised before the start of this course. This is a Level III course as such there are two, 1-hour, lectures and one tutorial weekly. There will be one field trip on a Thursday to be announced. This visit will be to a company where corrosion affects the way they do business. A written report from this visit will contribute to the course mark.
ASSESSMENT:
Coursework: 40%
Final Examination: 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3564
COURSE TITLE: PRINCIPLES OF POLYMER CHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: PASSES IN CHEM 2470, CHEM 2672 AND ONE OF CHEM 2160, CHEM 2170, CHEM 2260, CHEM 2370.
COURSE DESCRIPTION: This chemistry elective introduces students to the field of macromolecular chemistry, from both industrial and research perspectives. Students will be introduced to various elements involved in the study of polymers, from their synthesis and characterization to applications in industry and everyday life. The two laboratory-based demonstration exercises will allow students to interact with various models of polymers as well as observe at least one synthesis performed on a laboratory scale. This component is especially useful for what can be viewed as a largely practical area of study.
ASSESSMENT:
Coursework: 40%
Final Examination: 60%
LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3569
COURSE TITLE: INDUSTRIAL CHEMISTRY I
NUMBER OF CREDITS: 4
PREREQUISITES: AT LEAST THREE OF CHEM 2160 OR CHEM 2170; CHEM 2260 OR CHEM 2270; CHEM 2360 OR CHEM 3370 OR CHEM 2370; CHEM 2015
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3570
COURSE TITLE: CHEMISTRY OF THE ENVIRONMENT
NUMBER OF CREDITS: 3
PREREQUISITES: ANY TWO (2) OF CHEM 2160 OR CHEM 2170; CHEM 2260 OR CHEM 2270; CHEM 2360 OR CHEM 2370; CHEM 2460 OR CHEM 2470.
COURSE DESCRIPTION: CHEM 3570 is a broad-based introduction to environmental chemistry for advanced chemistry students. The goal of the course is to introduce you, using unusual and innovative learning experiences, to the application of chemical facts and principles to processes occurring in the environment, and the solution of problems relating to environmental processes and pollution.
ASSESSMENT:
Coursework: 50%
Final Examination: 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3573
COURSE TITLE: CONTEMPORARY CHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: PASS IN ONE OF CHEM 2160, CHEM 2170, CHEM 2260, CHEM 2270, CHEM 2370, CHEM 2460 OR CHEM 2470.
COURSE DESCRIPTION: This course focuses on recent advances in chemistry and on the role of chemistry in helping to address the challenges faced by modern society in the areas of energy, health and nutrition, the environment and food security. It also places emphasis on the development of skills of scientific writing, on critical analysis of published articles and on publication of research work in peer reviewed journals. The topics to be dealt with each year will vary depending on the developments both in the area of chemistry itself and in its application to the contemporary social challenges. The course will be delivered through a multimodal teaching-learning approach and will include lectures and discussions of emerging topics in chemistry as a basis for further assigned reading which will be from articles chosen from the recent scientific literature. Online discussion, oral presentations and in-class discussions involving critical analysis of the assigned reading material will be other features of the course. Students will also be required to produce written reviews and analyses of articles in the major emerging areas of chemical science and its applications towards the solution of major problems. Students will critically assess the scientific method as a means of generating knowledge, and discuss modern research strategies or methodologies including building value through interdisciplinary research at an advanced level.
ASSESSMENT:
Coursework: 100%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3575
COURSE TITLE: CHEMISTRY AND INDUSTRY I
NUMBER OF CREDITS: 3
PREREQUISITES: ANY TWO OF CHEM 2160 OR CHEM 2170; CHEM 2260 OR CHEM 2270; CHEM 2360 OR CHEM 2370; CHEM 2460 OR CHEM 2470.
COURSE DESCRIPTION: The course introduces the student to the chemical principles involved in the production and use of a wide range of food, household and industrial products. Discussion of the chemical processes involved will draw on the knowledge already gained from all areas of chemistry.
ASSESSMENT:
Coursework: 40%
Final Examination: 60%
LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3576
COURSE TITLE: CHEMISTRY OF MEDICINES
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2260 OR CHEM 2270
COURSE DESCRIPTION: The course introduces the student to the chemical principles involved in modern medicinal chemistry. The chemical processes involved in the production of these products in everyday life will be discussed. Aspects of general and organic chemistry will be employed in the discussion and understanding of the chemical principles and reactions involved in the efficacy and use of these products.
ASSESSMENT:
Coursework: 40%
Final Examination: 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3577
COURSE TITLE: GREEN CHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: ANY TWO OF CHEM 2160 OR CHEM 2170; CHEM 2260 OR CHEM 2270; CHEM 2360 OR CHEM 2370; CHEM 2460 OR CHEM 2470.
COURSE DESCRIPTION: This exciting new elective is based on the recently elaborated concept of Green Chemistry. It encompasses the use of sustainable design from the viewpoint of the chemical reaction itself to the choice of reaction materials or process design. Areas such as hetero- and homogeneous catalysis, material synthesis, assisted reactions, use of solvents and others will be presented in relation to introducing inherently green design. The information presented in lectures and developed in tutorials (hands-on) will give the student a sound basis for chemical design in a like manner to other international courses adopted by world leading institutions.
ASSESSMENT:
Coursework: 50%
Final Examination: 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3578
COURSE TITLE: ENERGY FOR A SUSTAINABLE FUTURE
NUMBER OF CREDITS: 3
PREREQUISITES: PASS IN ONE OF CHEM 2160, CHEM 2170, CHEM 2260, CHEM 2270, CHEM 2370, CHEM 2460 OR CHEM 2470
COURSE DESCRIPTION: Energy is an integral part of the future of mankind. By 2050 it is estimated that 9 billion people will be housed on planet earth...9 billion people to feed, clothe and provide facilities such as education, work, housing, health care and others. Each and every human activity requires energy and how energy is used in the modern world goes beyond the simple process of growing and eating food crops. As the energy demand grows human innovation and creative design of new systems based on chemically sound technologies will become increasingly necessary. This course will take you from the layman’s perspective on energy to the current status of the energy industry and then into the technologies being proposed for a sustainable future. This course is truly an applied chemistry module and will be underpinned by your previous learning of fundamental chemical principles and as such more emphasis will be placed on the chemistry involved in specific applications as opposed to an overview of knowledge garnered in earlier courses. The course approach is an integrated one where the student has the opportunity to utilise the material presented in lectures in real-life applications, thereby gaining a deeper understanding of the topic in the wider sense, i.e. beyond the chemistry taught in the classroom. The fundamentals of, as well as advances in, biomass (alternative bio-renewable energy), traditional renewable energy and the hydrogen economy will be presented through examples of the best-in-class proven and emerging technologies for each area. This will be positioned in the context of fossil and nuclear fuels currently used for the energy and chemicals industry.
ASSESSMENT:
Coursework: 50%
Final Examination: 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3579
COURSE TITLE: CHEMISTRY AND INDUSTRY II
NUMBER OF CREDITS: 3
PREREQUISITES: PASSES IN ANY TWO OF CHEM 2460 OR 2470; CHEM 2160 OR CHEM 2170; CHEM 2260 OR CHEM 2270; CHEM 2360 OR CHEM 2370
COURSE DESCRIPTION: The chemical industry sustains human activity across the globe. Industrialised and developing nations depend on a vast array of chemical products for agriculture, energy and consumer needs. This course is designed to provide students with an overview of the manufacture and used of major industrial chemicals, and processes, as well as some appreciation of production levels, costs and future directions. This will be delivered through lectures that cover the fundamental principles in the manufacture of selected chemicals, with a focus on how the chemistry taught in core courses is integrated into the chemical industry. Additionally, students be exposed to the working environment of local industrial plants through site visits and recent literature on chemical production (markets and outlooks) Finally health and safety aspects of the manufacturing processes and the chemical products themselves will be presented to students for discussion.

ASSESSMENT:
Coursework: 40%
Final Examination: 60%

LEVEL: III
SEMESTER: 1 OR 2
COURSE CODE: CHEM 3670
COURSE TITLE: RESEARCH PROJECT FOR CHEMISTRY MAJORS
NUMBER OF CREDITS: 3
PREREQUISITES: PASSES IN EITHER CHEM 2670 AND CHEM 2671 OR CHEM 2672 AND CHEM 2673
COURSE DESCRIPTION: CHEM 3670 is a one semester condensed chemistry research project course for students pursuing a Chemistry Major in which the skills and techniques acquired in the Level I and II lab courses are utilized in solving a research problem. In this course each student will engage in guided research under the supervision of a member of staff on a project which may be interdisciplinary or in one of the sub-disciplines: analytical, inorganic, organic and physical chemistry. The student will be required to meet each week with his/her supervisor to discuss/review their experimental results, progress on the project and weekly work plan before executing their plan each week. Students are expected to work more independently in this course but will receive further guidance on specific safety issues; searching, reviewing and critically assessing the chemical literature; developing and testing a research question/hypothesis; interpreting and drawing conclusions from experimental results and in presenting research results in written and oral formats. The course also introduces students to specialized advanced techniques and skills specific to individual projects and provides hands-on experience with modern research instrumentation. CHEM 3670 comprises sixty hours of bench work, two two-hour sessions of instruction and ten one-hour non-lab based research work sessions each semester. A compulsory research project specific safety test must be passed within the first two weeks of the course before lab work can commence. Assessment will focus primarily on the chemical knowledge, practical competency, problem-solving skills and research capability of students through the preparation and quality of milestone reports, the final project report, and oral presentation as well as the quality of research work performed, and active participation in group discussions.

ASSESSMENT:
Coursework 100%
LEVEL: III
SEMESTER: (YEAR-LONG)
COURSE CODE: CHEM 3671
COURSE TITLE: RESEARCH PROJECT FOR B.SC. CHEMISTRY
NUMBER OF CREDITS: 6
PREREQUISITES: PASSES IN EITHER CHEM 2670 AND CHEM 2671 OR CHEM 2672 AND CHEM 2673
COURSE DESCRIPTION: CHEM 3671 is a year-long intensive chemistry research project course for students in the B.Sc. chemistry programme in which the skills and techniques acquired in the Level I and II lab courses are utilized in solving a research problem. In this course each student will get involved in guided research under the supervision of a member of staff on a project which may be interdisciplinary or in one of the sub-disciplines in chemistry. Students will get hands-on experience on addressing laboratory safety issues; searching, reviewing and critically assessing the chemical literature; developing a research proposal and testing a research question/hypothesis, interpreting and drawing conclusions from experimental results, and in presenting research results in written and oral formats. The course also introduces students to specialized advanced techniques and skills specific to individual projects and provides hands-on experience with modern research instrumentation. Assessment will focus primarily on the chemical knowledge, practical competency, problem-solving skills and research capability of students through the preparation and quality of milestone reports, the final project report, and oral presentation as well as the quality of research work performed, and active participation in group discussions.
ASSESSMENT:
Coursework 100%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3870
COURSE TITLE: PRINCIPLES OF CHEMICAL BIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: PASS IN ONE OF CHEM 2260, CHEM 2270, CHEM 2370, CHEM 2460 OR CHEM 2470
COURSE DESCRIPTION: This chemistry elective provides knowledge of the three major classes of bioactive molecules (Carbohydrates, Proteins and Nucleic Acids). Quite distinct from simply examining the chemical reactions of the three molecular classes, this course focuses on their structures, functioning in signalling and recognition pathways, and their role in diseases and the aging process. For each biomolecule, its use and potential in the design of new drug therapies is addressed. The section on free radicals acts as a tie-in for the three biomolecules, in terms of relating the onset and prognosis of all diseases to a free radical origin. The two laboratory-based demonstration exercises (Carbohydrates and Nucleic Acids) will allow students to appreciate the dynamic 3-D nature of these molecules and the implications of their structure, conformation and configuration on their chemical and biological properties.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3871
COURSE TITLE: METHODS IN CHEMICAL BIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: PASSES IN ONE OF CHEM 2260, CHEM 2270, CHEM 2370, OR CHEM 2460 OR CHEM 2470
COURSE DESCRIPTION: This chemistry elective introduces the practical/ experimental techniques available to study the biomolecules described in CHEM 3870, Principles of Chemical Biology. Description of the chemical biology tools available for researchers at this interfacial discipline, provided in lectures, is followed by hands-on laboratory demonstrations; where students can immerse themselves in the actual execution and manipulation of different techniques. This is a very practical / technique oriented course. Each section concludes with research opportunities available and potential future developments, to address current needs as well as deficiencies in techniques and understanding.
ASSESSMENT:
Coursework 40%
Final Examination 60%
CHINESE : CHIN

LEVEL: I
SEMESTER: 1
COURSE CODE: CHIN 1003
COURSE TITLE: LEVEL 1A CHINESE (MANDARIN)
NUMBER OF CREDITS: 2
PREREQUISITES: NONE
COURSE DESCRIPTION: The course which involves four skills (listening, speaking, reading and writing) introduces students to Mandarin Chinese and some aspects of Chinese culture and daily life. Students will develop an ability to communicate in Chinese in basic situations relating to their personal lives via exposure to the new language and culture. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by two hours of independent study for each contact hour.

ASSESSMENT:
In-course testing: 100%: 40% [mid-semester]; 40% [end of semester]; 20% [two assignments]

LEVEL: I
SEMESTER: 1
COURSE CODE: CHIN 1004
COURSE TITLE: LEVEL 1B CHINESE (MANDARIN)
NUMBER OF CREDITS: 2
PREREQUISITES: CHIN 1003/1A CHINESE OR EQUIVALENT
COURSE DESCRIPTION: This course introduces the further study of Mandarin Chinese (listening, speaking, reading, and writing) and Chinese culture begun in CHIN 1003/1A Chinese. Students will develop a minimal level of communicative competence for socializing in everyday situations. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by two hours of independent study for each contact hour.

ASSESSMENT:
In-course testing: 100%: 40% [mid-semester]; 40% [end of semester]; 20% [two assignments]

COMPUTER SCIENCE: COMP

LEVEL: I
SEMESTERS: 1 AND 2
COURSE CODE: COMP 1011
COURSE TITLE: INTRODUCTION TO INFORMATION TECHNOLOGY
NUMBER OF CREDITS: 3
PREREQUISITE: NONE
COURSE DESCRIPTION: This course will provide the knowledge needed to formulate a sound but basic understanding of Information Technology, its major components and its broad applications. Students will acquire hands-on experience with computers. They will become familiar with the components of a computer and learn about the various elements that make up an information system. The course deals with hardware, software, telecommunications and computer networks.

ASSESSMENT:
Practical Coursework 50%
Project Report 25%
Mid-term examination 25%
(NO FINAL WRITTEN EXAMINATION)

LEVEL: I
SEMESTER: 1
COURSE CODE: COMP 1600
COURSE TITLE: INTRODUCTION TO COMPUTING CONCEPTS
NUMBER OF CREDITS: 3
PRE-REQUISITE(S): NONE
COURSE DESCRIPTION: This course presents an overview of computing technology and the field of computer science. Discussion topics will include the organization of modern computers, operating systems, algorithms, programming languages and database systems.

ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: I
SEMESTER: 1
COURSE CODE: COMP 1601
COURSE TITLE: COMPUTER PROGRAMMING I
NUMBER OF CREDITS: 3
PRE-REQUISITE(S): NONE
COURSE DESCRIPTION: This course uses an appropriate programming language as a tool to teach fundamental programming concepts. The main concepts covered are sequence, selection and repetition logic, character and string manipulation, functions, and a basic introduction to arrays and their applications.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: COMP 1602
COURSE TITLE: COMPUTER PROGRAMMING II
NUMBER OF CREDITS: 3
PRE-REQUISITE(S): NONE
COURSE DESCRIPTION: This course uses an appropriate programming language as a tool to teach intermediate programming concepts. The main concepts covered are structures, one and two dimensional arrays and applications involving searching, sorting and merging, random number generation, numerical methods, games and simulation.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: I
SEMESTER: 1 AND 2
COURSE CODE: COMP 1603
COURSE TITLE: COMPUTER PROGRAMMING III
NUMBER OF CREDITS: 3
PRE-REQUISITE(S): NONE
COURSE DESCRIPTION: This course uses an appropriate programming language as a tool to teach intermediate programming concepts. The main concepts covered are pointers, linked lists, stacks and queues and their implementations using arrays and linked lists and recursion.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: COMP 1604
COURSE TITLE: MATHEMATICS FOR COMPUTING
NUMBER OF CREDITS: 3
PRE-REQUISITE(S): NONE
COURSE DESCRIPTION: This course introduces students to the basic mathematical structures and computational techniques that are considered to be the foundation for courses in computer science and information technology. Students are also taught how to reason logically and how to solve problems using various proof techniques. The main mathematical structures covered are logic, sets, relations and functions.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 1 AND 2
COURSE CODE: COMP 2000
COURSE TITLE: DATA STRUCTURES
NUMBER OF CREDITS: 4
PREREQUISITES: COMP 1200 OR (COMP 1404 AND COMP 1405)
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%
LEVEL: II
SEMESTER: 2
COURSE CODE: COMP 2100
COURSE TITLE: DISCRETE MATHEMATICS FOR COMPUTER SCIENCE
NUMBER OF CREDITS: 4
PREREQUISITE: MATH 1140 OR COMP 1300 OR (COMP 1402 AND COMP 1406)
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: II
SEMESTER: 1
COURSE CODE: COMP 2300
COURSE TITLE: PROGRAMMING FOR BUSINESS APPLICATIONS
NUMBER OF CREDITS: 4
PREREQUISITES: COMP 1200 OR (COMP 1401 AND EITHER COMP 1404 OR COMP 1405)
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: II
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: COMP 2400
COURSE TITLE: INFORMATION SYSTEMS
NUMBER OF CREDITS: 4
PREREQUISITES: COMP 1200 OR (COMP 1401 AND EITHER COMP 1404 OR COMP 1405)
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%
LEVEL: II
SEMESTER: 2
COURSE CODE: COMP 2500
COURSE TITLE: OBJECT-ORIENTED PROGRAMMING
NUMBER OF CREDITS: 4
PREREQUISITES: COMP 1200 OR (COMP 1404 AND COMP 1405)

ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: II
SEMESTER: 1
COURSE CODE: COMP 2600
COURSE TITLE: THEORY OF COMPUTING I
NUMBER OF CREDITS: 4
PREREQUISITES: MATH 1140 OR COMP 1300 OR (MATH 1141 AND MATH 1152 OR COMP 1402 AND MATH 1151)

COURSE DESCRIPTION: Strings and Languages and Induction. Finite Automata and Regular Languages. Context-free Languages. Computability; Turing machine.

ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: COMP 3000
COURSE TITLE: DESIGN AND ANALYSIS OF ALGORITHMS
NUMBER OF CREDITS: 4
PREREQUISITE: COMP 2000

ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%
LEVEL: III
SEMESTER: 1
COURSE CODE: COMP 3100
COURSE TITLE: OPERATING SYSTEMS
NUMBER OF CREDITS: 4
PREREQUISITE: COMP 2200
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: COMP 3150
COURSE TITLE: COMPUTER NETWORKS
NUMBER OF CREDITS: 4
PREREQUISITE: COMP 2500
Introduction to Network Design. The network design and implementation process. Stages: Feasibility Study, preparing network design plan, understanding current network, defining new network requirements, identifying geographic scope, calculating circuit requirements, identifying security and control measures, designing network configurations, determining network costs, network implementation. Common WAN, LAN and backbone designs. Examples.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: COMP 3220
COURSE TITLE: HUMAN-COMPUTER INTERACTION
NUMBER OF CREDITS: 4
PREREQUISITE: COMP 1200 OR COMP 1404 AND COMP 1405
ASSESSMENT:
Coursework 60%
Final Examination - One 2-hour written paper 40%
LEVEL: III
SEMESTER: 1
COURSE CODE: COMP 3250
COURSE TITLE: SOFTWARE ENGINEERING
NUMBER OF CREDITS: 4
PREREQUISITE: COMP 2000
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: COMP 3275
COURSE TITLE: WIRELESS & MOBILE COMPUTING
NUMBER OF CREDITS: 4
PREREQUISITES: COMP 3150
COURSE DESCRIPTION: Introduction to the ISO and other network architectures, History and Evolution of wireless standards, Special problems of wireless and mobile computing, Wireless Local loops, Mobile Internet Protocol, Mobile aware adaptation, Mobile client/server networks, Mobile data access, Software support for mobile and wireless computing (includes MIDP programming, SMS and Bluetooth based applications), Wireless Local loops, Mobile Internet Protocol, Application aware and application transparent adaptation, Mobile data address, The role of middleware, Performance Issues, Emerging Technologies.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: COMP 3300
COURSE TITLE: PROGRAMMING LANGUAGES I
NUMBER OF CREDITS: 4
PREREQUISITE: COMP 2000
COURSE DESCRIPTION: This course will focus on two programming paradigms: imperative and logic. For the imperative paradigm, the programming language C (or any other language representative of this paradigm) will be used. For the logic programming paradigm, the programming language Prolog (or any other language representative of this paradigm) will be used.
The Imperative Programming Paradigm: Basic types, Expressions and statements, Functions/procedures and programme structure, Arrays, pointers, Structures/records, Structures input/output, File input/output.
The Logic Programming Paradigm: Motivation and introduction, Knowledge bases, unification and variable instantiation, backtracking, relations, conjoined goals, disjoint goals, negative goals, equality testing, Structures and operators, Input/output, Problem-solving strategies.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: COMP 3400
COURSE TITLE: ARTIFICIAL INTELLIGENCE
NUMBER OF CREDITS: 4
PREREQUISITE: COMP 2000
COURSE DESCRIPTION: The concept of problem solving as search through a state space, Basic search algorithms, Depth-first, breadth-first, best-first, hill-climbing, branch-and-bound, A*. Mini-max algorithm with alpha-beta pruning, Logic and theorem proving, Propositional logic, First order predicate logic, Unification, Clausal form, Resolution theorem proving, Natural language processing, Parsing expressions, Semantic transition trees, Planning, Basic goal regression using STRIPS type actions, Production rule systems, Basic concepts, An expert system shell.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%
LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: COMP 3600
COURSE TITLE: THEORY OF COMPUTING II
NUMBER OF CREDITS: 4
PREREQUISITE: COMP 2100
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: COMP 3700
COURSE TITLE: DATABASE MANAGEMENT SYSTEMS II
NUMBER OF CREDITS: 4
PREREQUISITE: COMP 2700
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: COMP 3750
COURSE TITLE: NUMERICAL COMPUTING
NUMBER OF CREDITS: 4
PREREQUISITE: COMP 2100
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%
LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: COMP 3800
COURSE TITLE: CRYPTOGRAPHY AND SECURITY
NUMBER OF CREDITS: 4
PREREQUISITE: COMP 2100
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: COMP 3850
COURSE TITLE: INTELLIGENT SYSTEMS
NUMBER OF CREDITS: 4
PREREQUISITE: COMP 2000
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: COMP 3900
COURSE TITLE: SPECIAL TOPICS IN COMPUTER SCIENCE (GAME PROGRAMMING)
NUMBER OF CREDITS: 4
PREREQUISITES: COMP 2000 AND COMP 2500
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%
LEVEL: II
SEMESTER: 2
COURSE CODE: ECNG 2001
COURSE TITLE: COMMUNICATION SYSTEMS I
NUMBER OF CREDITS: 3
PREREQUISITES: ECNG 2011 SIGNALS AND SYSTEMS & ECNG 2013 MATHEMATICS FOR ELECTRICAL ENGINEERS II
* STUDENTS WILL BE ALLOWED TO DO THIS COURSE WITH MODIFIED PREREQUISITE I.E PHYS 2150 (MATHEMATICS FOR PHYSICISTS)
DEPARTMENT RESPONSIBLE: ELECTRICAL AND COMPUTING ENGINEERING
COURSE DESCRIPTION: This is the introductory course in Communications in the Department. It establishes the technical foundation for the topic by introducing the fundamentals of communications and exploring the common principles that underpin communications systems. The course provides a detailed treatment of amplitude modulation (AM) techniques (such as conventional AM, double-sideband suppressed carrier AM, and single sideband AM) as well as that of angle modulation techniques (i.e., frequency modulation and phase modulation) in the presence of additive white Gaussian noise. Once these communication principles are well established, the course illustrates their application to a representative set of analog communication systems. This course will be assessed through simulation exercises, in-course examination, group project and a final examination.

LEVEL: III
SEMESTER: 1
COURSE CODE: ECNG 3001
COURSE TITLE: COMMUNICATION SYSTEMS II
NUMBER OF CREDITS: 3
PREREQUISITE: ECNG 2001 COMMUNICATION SYSTEMS I
DEPARTMENT RESPONSIBLE: ELECTRICAL AND COMPUTING ENGINEERING
COURSE DESCRIPTION: Digital communications is the primary means of electronic communications today, enjoying tremendous levels of reach around the world. ECNG 3001 Communications II provides students with the basic theoretical tools required for the modeling, analysis and design of digital communication systems. It begins with a brief review of analog communication systems and an overview of digital communication systems. The course then explores the key principles which underlie the characterization of information sources and the basic techniques employed in processing analog and digital information signals for transmission. Considerations for the digital transmission of information over various media are explored. Digital signal reception and detection techniques are introduced. The course closes with a concise treatment of the overall design of a basic digital communication system. This course is assessed through a design project and a final examination.
ASSESSMENT:
Coursework 30%
Final Examination (one 3-hr paper) 70%
LEVEL: III
SEMESTER: 1
COURSE CODE: ECNG 3002
COURSE TITLE: DATA COMMUNICATION SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: ELECTRICAL AND COMPUTING ENGINEERING
COURSE DESCRIPTION: ECNG 3002 explores the organization and operation of contemporary data networks by presenting fundamental principles and applying these to the architecture of the global Internet. It begins by identifying applications and requirements of data communication and exploring network structure and architecture. It distinguishes between the communication of data between a pair of computers and across a network of computers. Current standards, including the OSI and TCP/IP reference models are investigated. Once layered network architecture is established a top down approach is employed, investigating the functions, implementation and performance of the Application, Transport, Network, Data Link and Physical Layers. This course will be assessed through practical/laboratory based coursework and a final examination.

ASSESSMENT:
Coursework 30%
Final Examination (one 3-hr paper) 70%

LEVEL: III
SEMESTER: 2
COURSE CODE: ECNG 3003
COURSE TITLE: TELECOMMUNICATION NETWORKS
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: ELECTRICAL AND COMPUTING ENGINEERING
COURSE DESCRIPTION: ECNG 3003 is a capstone course in contemporary telecommunications networks and technologies. Assuming prior understanding of fundamental communications including coding, modulation and error analysis, the course starts by dismantling the telecommunications network into its transmission, switching/routing, access and signaling network subsystems. Key technologies used in each sub network are explored, paying particular attention to those that facilitate the delivery of voice service over circuit switched networks. The course identifies the benefits, requirements, and challenges of transporting various traffic types on a single, converged network. The example of Voice over Internet Protocol (VoIP) is explored in detail and its implementation and performance compared to that of traditional circuit switched voice service. This course will be assessed through practical based coursework, in-course exam and a final examination.

ASSESSMENT:
Coursework 30%
Final Examination (One 3-hr paper) 70%

LEVEL: III
SEMESTER: 1 AND 2
COURSE CODE: ECNG 3025
COURSE TITLE: DISCRETE SIGNAL PROCESSING
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: ELECTRICAL AND COMPUTING ENGINEERING
COURSE DESCRIPTION: In this course, we will examine the techniques of discrete-time signal processing and digital signal processing, investigate the development of digital FIR and IIR filters, study the Discrete-time Fourier Transform and in particular, a numerical, efficient version called the Fast Fourier Transform (FFT) and use the FFT to carry out spectral analysis of some sample signals. We will also examine some Digital Signal Processors which are specialized microprocessors created for the sole purpose of performing numerical calculations. This course will be assessed through in-course exam and a final examination.

ASSESSMENT:
Coursework 20%
Final Examination (One 3-hr paper) 80%
LEVEL: III
SEMESTER: 1
COURSE CODE: ECNG 3019
COURSE TITLE: ADVANCED CONTROL SYSTEMS DESIGN
NUMBER OF CREDITS: 3
PREREQUISITE: ECNG 2009 (Control Systems)
DEPARTMENT RESPONSIBLE: ELECTRICAL AND COMPUTING ENGINEERING
COURSE DESCRIPTION: This course first reviews the typical techniques for classical control analysis and design as covered in earlier undergraduate study such as Bode plots, Nyquist, Root Locus etc. Control System Development such as lead/lag compensator design methods are comprehensively reviewed with continuous time approach first covered. After the fundamentals of digital control implementation are introduced, these classical control design methods are revisited in a digital/hybrid system development context. The second part of the course focuses on the introduction to modern control strategy using state space system analysis and development. State space representation, State diagrams, Canonical forms of system representation, controllability and observability as well as observer design are all introduced. This course will be assessed through in-course exam and a final examination.

ASSESSMENT:
Coursework 10%
Final Examination (One 3-hr paper) 90%

* Students will be allowed to do this course with modified prerequisite i.e. PHYS 3201 (Advance Electronics and Control Theory)

ECONOMICS: ECON
LEVEL: I
SEMESTER: 1
COURSE CODE: ECON 1001
COURSE TITLE: INTRODUCTION TO MICROECONOMICS
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: ECONOMICS
COURSE DESCRIPTION: This course provides students to the history of economic thought highlighting some of the key economic issues, which have preoccupied the discipline from its origins. The course also provides an introduction to the basic principles of micro-economic analysis together with the main perspectives on the functioning of the macro-economy. The micro-economic analysis is illustrated by reference to a key export sector in the Caribbean (e.g. oil or bananas). The implications of trends in the latter for the Balance of Payments and macro economy conclude this first semester course.

LEVEL: I
SEMESTER: 2
COURSE CODE: ECON 1002
COURSE TITLE: INTRODUCTION TO MACROECONOMICS
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
CO-REQUISITE: ECON 1001
DEPARTMENT RESPONSIBLE: ECONOMICS
COURSE DESCRIPTION: This course emphasises macro-economic theory and policy and the related national income accounting together with international trade and the balance of payments. There is a significant stress on the implications of these economic issues for the Caribbean reality.

LEVEL: I
SEMESTER:
COURSE CODE: ECON 1005
COURSE TITLE: INTRODUCTION TO STATISTICS
NUMBER OF CREDITS: 3
PREREQUISITES:
DEPARTMENT RESPONSIBLE: ECONOMICS
COURSE DESCRIPTION: Descriptive Statistics; Probability and Probability distributions, Sampling distributions, Estimation, Hypothesis testing, simple correlation and regression.
ENVIRONMENTAL SCIENCE: ESST

LEVEL: I
SEMESTER: 2
COURSE CODE: ESST 1000
COURSE TITLE: PHYSICS FOR ENVIRONMENTAL SCIENCES
NO. OF CREDITS: 3
PREREQUISITES: ONE CAPE SCIENCE SUBJECT (OR EQUIVALENT) IN EITHER BIOLOGY, GEOGRAPHY OR ENVIRONMENTAL SCIENCE OR AN APPROVED ASSOCIATE DEGREE IN SCIENCE WITH A MINIMUM GPA OF 2.50
COURSE DESCRIPTION: Physics for Environmental Sciences offers an introduction into the physics of the Earth's climate system and the physical methods which are developed and applied to investigate quantitatively different environmental systems. The principal topics covered are the physics of the built environment, the physics of human survival, energy for living, environmental health, revealing the planet, the sun and the atmosphere, the biosphere, the global climate, and climate change. It provides an essentially non-mathematical treatment suitable for a first year undergraduate level course. Course delivery would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials

ASSESSMENT
Coursework 50%
Final Examination 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: ESST 1001
COURSE TITLE: BIOLOGY FOR ENVIRONMENTAL SCIENCES
NO. OF CREDITS: 3
PREREQUISITES: ONE CAPE SCIENCE SUBJECT (OR EQUIVALENT) IN EITHER BIOLOGY, GEOGRAPHY OR ENVIRONMENTAL SCIENCE OR AN APPROVED ASSOCIATE DEGREE IN SCIENCE WITH A MINIMUM GPA OF 2.50
COURSE DESCRIPTION: This course introduces the biological principles underlying the study of environmental science, and provides an introduction to the diversity of microbes, plants and animals. It also examines the importance and diversity of the biological component of the environment. It will also cover basic principles of biochemistry and genetics, and is a necessary foundation course for several Level II-III courses in the Environmental Sciences programme. Delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials

ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: I
SEMESTER: 1
COURSE CODE: ESST 1002
COURSE TITLE: CHEMISTRY FOR ENVIRONMENTAL SCIENCES
NO. OF CREDITS: 3
PREREQUISITES: ONE CAPE SCIENCE SUBJECT (OR EQUIVALENT) IN EITHER BIOLOGY, GEOGRAPHY OR ENVIRONMENTAL SCIENCE OR AN APPROVED ASSOCIATE DEGREE IN SCIENCE WITH A MINIMUM GPA OF 2.50
COURSE DESCRIPTION: Introduction to Environmental Chemistry offers an introduction to the field of environmental chemistry. It is designed to provide fundamental understanding in the underlying concepts of Chemistry along with the more specific areas relevant to environmental concepts. Students will be introduced to the fundamentals of general, physical and organic chemistry within the context of their application to environmental issues. To achieve this, qualitative and quantitative aspects of environmental processes will be studied. Specific topics include processes in the atmosphere, natural waters, and soils, along with the transport and fate of chemicals in the environment. Wherever possible, examples involving local/regional issues and current events will be used to illustrate the concepts in the course. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT
Coursework 50%
Final Examination 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: ESST 1004
COURSE TITLE: SCIENCE COMMUNICATION
NO. OF CREDITS: 3
PREREQUISITE(S): ONE CAPE SCIENCE SUBJECT (OR EQUIVALENT) IN EITHER BIOLOGY, GEOGRAPHY OR ENVIRONMENTAL SCIENCE OR AN APPROVED ASSOCIATE DEGREE IN SCIENCE WITH A MINIMUM GPA OF 2.50
COURSE DESCRIPTION: The ability to communicate information and ideas to others is fundamental to every branch of science. Communications skills are reported by employers to be the qualities they most desire in potential job applicants. Scientists are often required to report their findings to a range of audiences using various delivery methods. Unfortunately, communication skills do not come naturally, nor can they be learned by simply reading about the subject. They require development, with the opportunity for practice and feedback, before students can feel truly comfortable expressing themselves orally and in writing, in logical, clear and concise terms. The aim of this course is to provide students entering the Environmental Science and Sustainable technology with instruction on developing effective scientific communication skills relevant to areas of research and employment. Some of the main skills would include reporting writing, literature reviews, oral presentation and team-work. The course content would be delivered in 5 modules using a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT
Coursework 100%
LEVEL: 1
SEMESTER: 2
COURSE CODE: ESST 1005
COURSE TITLE: INFORMATION TECHNOLOGY
FUNDAMENTALS
NO. OF CREDITS: 3
PREREQUISITES: ONE CAPE SCIENCE SUBJECT (OR EQUIVALENT) IN EITHER BIOLOGY, GEOGRAPHY OR ENVIRONMENTAL SCIENCE OR AN APPROVED ASSOCIATE DEGREE IN SCIENCE WITH A MINIMUM GPA OF 2.50
COURSE DESCRIPTION: This course provides an introduction of the discipline of IT. It describes how it relates to environmental science and sustainable technology. The goal is to help students understand the diverse contexts in which IT is used and the challenges inherent in the diffusion of innovative technology. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT
Coursework 50%
Final Examination 50%

LEVEL: 1
SEMESTER: 2
COURSE CODE: ESST 1006
COURSE TITLE: HUMAN IMPACTS ON THE ENVIRONMENT
NO. OF CREDITS: 3
PREREQUISITES: ONE CAPE SCIENCE SUBJECT (OR EQUIVALENT) IN EITHER BIOLOGY, GEOGRAPHY OR ENVIRONMENTAL SCIENCE OR AN APPROVED ASSOCIATE DEGREE IN SCIENCE WITH A MINIMUM GPA OF 2.50
COURSE DESCRIPTION: This course gives an overview of human-environment interactions exploring causes, effects and solutions of human impacts using a broad temporal and spatial perspective. We consider the evolutionary and historical changes in human-environment interactions and the main drivers of change: population growth, technological and lifestyle changes. Regional variation in these drivers along with issues of economy, urbanisation and inequality will also be considered. The bulk of the course illustrates the complex and dynamic ecological interactions between humans and specific resources and components of the environment necessary for human wellbeing namely ecosystems and biodiversity, food, freshwater, clean air, materials and energy. The consequences of these interactions such as resource depletion, environmental degradation and global climate change will be highlighted. Future scenarios and management solutions will be explored. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT
Coursework 50%
Final Examination 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: ESST 2001
COURSE TITLE: PRINCIPLES OF ENVIRONMENTAL CHEMISTRY 1
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 1002, and (MATH 1115 or MATH 1125)
COURSE DESCRIPTION: This course is a broad-based introduction to environmental chemistry for advanced environmental science students. The goal of the course is to introduce the application of chemical facts and principles to processes occurring in the environment, and the solution of problems relating to environmental processes and pollution. This course will cover issues surrounding water, air, soil chemistry, and the processes that occur naturally within them, along with the study of what happens when human interference changes the picture. There will be a specific effort made to include local and regional examples to illustrate the concepts covered in this course. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSessment
Coursework - 50%
Final Examination - 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: ESST 2002
COURSE TITLE: ENVIRONMENTAL TECHNOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 1006
COURSE DESCRIPTION: ESST 2002 – Environmental Technology provides students with an understanding of the connection between environmental science and technological advancement. Students would gain insights into the basic concepts in environmental sciences, detailing the structure, problems and their interrelated causes in the ecosphere. It explains how technology has contributed to these problems and how clean-up and clean technology initiatives can be used to minimize, mitigate and reduce impacts. It also introduces students to the concepts of green science and green engineering and highlights their role in ensuring sustainability and sustainable development.
ASSessment
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: ESST 2003
COURSE TITLE: DATA MANAGEMENT FOR ENVIRONMENTAL SCIENCE
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 1005
COURSE DESCRIPTION: This course provides an introduction the interdisciplinary field of environmental informatics which provides the information processing and communication mechanisms to the field of environmental sciences. Information processing involves organizing data and therefore students will be introduced to data management tools such as spreadsheets and database technologies from a user perspective rather than a design perspective. In the communication infrastructure aspect of the course students will be introduced to Geographic Information Systems (GIS).
ASSessment
Coursework 100%

LEVEL: II
SEMESTER: 1
COURSE CODE: ESST 2004
COURSE TITLE: PHYSICS FOR ENVIRONMENTAL SCIENCE II
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 1000
COURSE DESCRIPTION: Environmental Physics builds on the level I courses, Physics for Environmental Sciences, Chemistry for Environmental Sciences, Mathematics for Environmental Sciences I and Mathematics for Environmental Sciences II. There is a quantitative approach to the physics of the processes of the environment together with a more of an integrated view of the science of the environment. Topics to be covered include energy and the environment, weather and climate, climate change and global warming, radiative forcing and pollution. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSessment
Coursework 50%
Final Examination 50%
LEVEL: II
SEMESTER: 2
COURSE CODE: ESST 2005
COURSE TITLE: POLLUTION MANAGEMENT AND ABATEMENT TECHNOLOGIES
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 1006; ESST 1002
COURSE DESCRIPTION: This course examines the various approaches used for pollution management taking into account legislative, management systems and engineering approaches. This would be addressed within the context of sustainable development. It also highlights some of the major environmental problems and focuses on how these are addressed. It would cover major strategies used for dealing with waste/pollution control in different matrices (air water and soils). The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT:
Coursework - 50%
Final Examination - 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: ESST 2006
COURSE TITLE: POLLUTION BIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITE: ESST 1001 OR BIOL 1262, BIOL 1263 AND BIOL 1362
COURSE DESCRIPTION: Healthy ecosystems rely on interactions between the living portions of the environment and its non-living components. However, human activities can cause significant disturbance as a result of the accidental or deliberate introduction of pollutants into the environment. These disturbances can cause significant alterations in the interactions between the various components that make up the ecosystem. The main focus would be on the effects of these pollutants and how they can be assessed using physicochemical and biological endpoints. Particular attention would be placed on describing (1) what pollution is and how/why it is harmful at multiple levels of biological organization, (2) what the root sources and causes of pollution are, (3) what happens to pollutants (chemical, biological and physical) when they enter the environment, and (4) how each pollutant class affects individual and community health over acute to chronic exposure periods. The course will focus on a variety of anthropogenic stressors in outdoor and indoor environments such as (1) chemical agents including ozone, asbestos, radon, smoke, nanoparticles, heavy metals, chlorination by-products, pesticides, petroleum hydrocarbons and endocrine active chemicals; (2) physical stressors including radiation, heat and noise; and (3) food/water-borne stressors such as bacteria, viruses, algae/biotoxins and parasites. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT:
Coursework - 50%
Final Examination - 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: ESST 3000
COURSE TITLE: ENVIRONMENTAL TOXICOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 2001
COURSE DESCRIPTION: Healthy ecosystems rely on interactions between the living portions of the environment and its non-living components. However, human activities can cause significant disturbance as a result of the accidental or deliberate introduction of contaminants into the environment. These disturbances can cause significant alterations in the interactions between the various components that make up the ecosystem. This course introduces the concepts of environmental toxicology. It is concerned with the toxic effects of environmental chemicals (both natural and anthropogenic) on living organisms. Fundamental toxicological concepts will be covered including dose-response relationships; absorption of toxicants; distribution and storage of toxicants; biotransformation and elimination of toxicants; acute and sub-lethal toxicity; target organ toxicity and risk assessment. The interaction between toxicants and organisms would be investigated at varying levels of biological organizations, ranging from molecular, tissue, organ, individual, population and ecosystem. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT
Coursework - 50%
Final Examination - 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: ESST 3001
COURSE TITLE: ENVIRONMENTAL FATE AND TRANSPORT
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 2001, ESST 2004 AND (MATH 1115 OR MATH 1125)
COURSE DESCRIPTION: A significant aspect of environmental studies is the ability to predict the fate (end point) and transport mechanisms (how the contaminants get to the endpoint) of environmentally relevant chemicals. This course is designed to introduce students to the concepts of environmental fate and transport. The factors that affect the movement of chemicals in the air, soil, water and biotic environments will be discussed, including vapour pressure, wind, water movement, soil/water and biota/water partitioning and chemical transformation reactions. Mathematical and chemical treatments will be utilized to predict the final distribution of chemicals in the various environmental compartments. The delivery of course materials would involve a combination of lectures, tutorials and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT
Coursework - 75%
Final Examination 25%

LEVEL: III
SEMESTER: 1
COURSE CODE: ESST 3002
COURSE TITLE: ENVIRONMENTAL MODELING
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2163 AND (MATH 1115 OR MATH 1125)
COURSE DESCRIPTION: This course introduces advanced statistical concepts that can be applied to data in the biological, life sciences and environmental sciences. It covers more advanced statistical concepts in the arena of experimental design, quantitative analysis of data and statistical inference. This course emphasises applications and will empower students to use sound statistical methods in the analysis of environmental data. Assessment is designed to make students work continuously with the course materials, exploring and critically analysing research and real world data. Assessment will be continuous through assigned problem sheets allowing continuous feedback and guidance on problem solving techniques.

ASSESSMENT
Coursework 100%
COURSE CODE: ESST 3003
COURSE TITLE: ENVIRONMENTAL MONITORING AND ASSESSMENT
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2163

COURSE DESCRIPTION: Environmental monitoring is a broad field which intends to answer both very specific questions such as “what is the concentration of lead in the water and is it above a threshold of safety” to very broad questions such as “what is the condition of a particular ecosystem and is it changing?” Answering such questions with an effective monitoring strategy takes very different approaches. The lectures, discussions, readings and field exercises for this course are intended to expose the student to a wide range of monitoring strategies and current environmental issues. This course will introduce students to broad principles within the field of environmental monitoring and give students a basic understanding of various monitoring techniques that can be used to assess environmental impacts. It would focus on chemical, biological and ecological methods applied to air, water and soil. It would emphasize why monitoring is important and focus on some approaches, sample management and quality control. The delivery of course materials would involve a combination of lectures, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT
Coursework 100%

LEVEL: III
SEMESTER: 2
COURSE CODE: ESST 3006
COURSE TITLE: FUNDAMENTALS OF GEOGRAPHIC INFORMATION SYSTEMS (GIS)
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2163

COURSE DESCRIPTION: A basic course that focuses on how geographical information science (GIS) is used and applied in environmental research and resource management. It introduces students to fundamental concepts in GIS including the basic data structures in GIS, sources of data, geographic positioning systems and other data collection techniques, geodesy (including geoids, datums, geographic coordinate systems and map projections) and data management (including fundamental concepts in the development of geodatabases). Using examples from the natural sciences, we will explore basic spatial and tabular analyses, and how GIS is used to assist environmental scientists and natural resource managers, how it is employed for data management, landscape ecology and how it aids in decision making. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT
Coursework 100%
LEVEL: III
SEMESTER: 2
COURSE CODE: ESST 3007
COURSE TITLE: ENVIRONMENTAL MANAGEMENT INFORMATION SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 3003
COURSE DESCRIPTION: Environmental management information systems (EMIS) present ICT solution for environmental management: planning, assessment, compliance monitoring and impact assessment as well as emergency. They integrate a number of advanced analytical functions for operational real-time control, but also scenario analysis, strategic planning, and optimization, within a shared common information basis. EMIS should be compliant with environmental management system standard ISO 14001 on integrated pollution prevention and control, including industrial emissions, and noise monitoring and management for construction, operations, and traffic. Students will learn what hardware, software and techniques are appropriate for building an EMIS. They will be familiar with EMIS design principles and guidelines illustrated by a number of case studies. Industrial EMIS support strategic planning and environmental impact assessment with real-time monitoring, on-line reporting, and operational control including emergency management options. They could include EMIS modules like: 1) tools addressing resources (e.g. water, energy) efficiency, emission optimization and techno-economic valuation; 2) model supported tools for monitoring, reporting and forecasting of environmental impacts from normal operations with online compliance reporting, alerts and alarms; 3) tools for risk assessment and emergency management of accidental release of hazardous materials; 4) administrative data bases of emission sources, MSDS and hazardous substances data base, use and storage, waste streams; 5) tools for simulation model-based analysis, environmental and strategic impact environmental assessment.
ASSESSMENT
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: ESST 3101
COURSE TITLE: ENVIRONMENTAL ERGONOMICS
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 2002
COURSE DESCRIPTION: The course concentrates on the interaction between the user and his or her physical environment. The principles, methods and models used in environmental ergonomics are provided in terms of the effects of heat and cold, vibration, noise and light on the health, comfort and performance of people. Humans do not respond to the environment in a way monotonically related to direct measures of the physical environment. There are human characteristics which determine human sensitivities and responses. Practical methods for assessing responses to individual environmental components are presented as well as responses to ‘total’ environments. The course provides a basic explanation of the systems of the body to establish a foundation for understanding and consistently applying ergonomic principles. Covers the human senses and the sensory process for each, including techniques for assessing sensory impact. Explains the functionality, relationship, and elements of the integrated roles of the musculo-skeletal system. Introduces the basic ergonomic principles of work place and work tool design. Includes coverage of the concepts of information processing and user experience design of digital workplaces. The course introduces the green ergonomics approach and the relationship between ergonomics and sustainable development. Design principles for green ergonomics based on ecological and ergonomics science are introduced. Environmental health and safety principles are presented. The course content is oriented to the model of European Ergonomist. Study of this course is beneficial to students wishing to qualify for the title Eur. Ergs. in this subject.
ASSESSMENT
Coursework 100%
LEVEL: III
SEMESTER: 2
COURSE CODE: ESST 3102
COURSE TITLE: ENVIRONMENTAL IMPACT ASSESSMENTS
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 3003
COURSE DESCRIPTION: This course introduces the methodology of environmental impact assessment (EIA) as a vital tool for sound environmental decision-making. It provides an introduction to the concepts, methods, issues and various stages of the EIA process. The role of the various stages of the EIA process, such as screening, scoping, EIA document preparation, public involvement, review and assessment, monitoring and auditing, appeal rights and decision-making are examined. The course mainly focuses on EIA in the Caribbean drawing on case studies from the region, but also includes other EIA systems of other countries. The delivery of course materials would involve a combination of lectures, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: ESST 3103
COURSE TITLE: ENVIRONMENTAL HEALTH
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2464 AND ESST 1006
COURSE DESCRIPTION: This course provide an understand of how both the natural and built environment affect human health, by looking at the impact of physical, chemical and biological factors external to humans. It examines health issues, scientific understanding of causes, and possible future approaches to control of the major environmental health problems in industrialized and developing countries. Topics include how the body reacts to environmental pollutants; physical, chemical, and biological agents of environmental contamination; vectors for dissemination (air, water, soil); solid and hazardous waste; susceptible populations; biomarkers and risk analysis; the scientific basis for policy decisions; and emerging global environmental health problems. The delivery of course materials would involve a combination of lectures, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT
Coursework 100%

LEVEL: III
SEMESTER: 1
COURSE CODE: ESST 3104
COURSE TITLE: CLIMATE CHANGE AND ABATEMENT TECHNOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 2005
COURSE DESCRIPTION: Climate change and its effects are a major environmental concern today; this is particularly so for small island developing states in the Caribbean. This course will develop students' understanding of the nature of climate change and the strategies that can be used to mitigate its effects. The course will have two main units; the first will discuss the issues surrounding climate change, primarily the science behind climate change; the mechanisms that underpin the greenhouse effect, energy balances, molecular energy absorption by greenhouse gases, the sources of these gases and the general global effects of the global warming and how this translates into climate change. The consequences of climate change will be discussed, as well as the continuing debate on whether or not global warming/climate change are happening at all, or being caused by rising carbon dioxide concentrations in the atmosphere. The second unit will introduce the mechanisms that are in use to mitigate the potential hazards of climate change. This will include legislative and technical efforts to reduce greenhouse gas emissions. The course will cover international agreements like the Kyoto Protocol, local and regional legislation, technological solutions, like alternative energy sources and strategies to reduce the current climate change impacts being experienced by some nations. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT
Coursework 50%
Final Examination 50%
FOUNDATION COURSES: FOUN

LEVEL: I
SEMMESTERS: 1 AND 2
COURSE CODE: FOUN 1101
COURSE TITLE: CARIBBEAN CIVILISATION
NUMBER OF CREDITS: 3
PREREQUISITES:
FACULTY RESPONSIBLE: FACULTY OF HUMANITIES & EDUCATION
COURSE DESCRIPTION: (NOT FOR HUMANITIES STUDENTS)
OBJECTIVES:
1. To develop an awareness of the main process of cultural development in Caribbean societies, highlighting the factors, the problematic and the creative output that have fed the emergence of Caribbean identities.
2. To develop a perception of the Caribbean as wider than island nations or linguistic blocs.
3. To stimulate students’ interest in, and commitment to Caribbean civilisation and to further their self-definition.

Modules:
1. Origins
 I. Caribbean space / physical environment / Amerindian peoples and Cultures: their legacy.
 II. European conquest, settlement and demographic changes.
2. Fighting for Freedom
 I. Slavery, maroonage and rebellion.
 II. New in/out- migration, indenture, and their consequences: 19th and 20th centuries.
3. Quest for Identity
 I. Race and nationalism.
 II. Independence, dependence and regionalism.
 III. Creolisation and ethnic identity.
4. Ideas, Ideologies and Theologies
 I. Education/religion in the Caribbean.
 II. Caribbean Intellectual Traditions.
5. Caribbean Expressions
 I. Caribbean music - Calypso, Reggae.
 II. Caribbean festivals.
 III. Sports.
 IV. Caribbean voices - French, English, Spanish, Linguistic Identity.

ASSESSMENT
In-course test 40%
Final 2-hour examination 60%

LEVEL: I
SEMESTER: 2
COURSE CODE: FOUN 1105
COURSE TITLE: SCIENTIFIC AND TECHNICAL WRITING
NUMBER OF CREDITS: 3
PREREQUISITES:
Any one of the following:
• CSEC English Language Grade I (General Proficiency) Grade I or II in CAPE Communication Studies
• General Paper Grade A or B
• A Pass in the English Language Proficiency Test
• A Pass in English as a Foreign Language (Intermediate)
FACULTY RESPONSIBLE: FACULTY OF HUMANITIES & EDUCATION
COURSE DESCRIPTION: The aim of this course is to develop students writing skills in areas related to their academic disciplines. There will be twenty-four (24) contact hours. Classroom activity will be supplemented by printed materials.
Option C
Scientific and Technical Writing (Compulsory for FST Students)
Technical Description
Expository Writing for Scientific and Technical Purposes

ASSESSMENT
Coursework 50%
Final Examination 50%

Students must pass both coursework and final examination in order to qualify for an overall pass in the course.

Attendance Regulation:
A student in any of the Foundation courses in English Language who misses two (2) out of any six (6) class hours will be warned, and after two warnings any further absence without prior permission or an acceptable medical certificate will result in automatic exclusion from the examination.

NB: FST students should not register for FOUN 1001 – English for Academic Purposes

FOUN 1210 Not offered to FST Students.
LEVEL: I
SEMESTERS: 1 AND 2
COURSE CODE: FOUN 1301
COURSE TITLE: LAW, GOVERNANCE, ECONOMY AND SOCIETY (UNIVERSITY FOUNDATION COURSE) (FACULTY OF SOCIAL SCIENCES)
NUMBER OF CREDITS: 3
PREREQUISITES:
FACULTY RESPONSIBLE: FACULTY OF SOCIAL SCIENCES
COURSE DESCRIPTION: This course is delivered through the medium of print. The print package comprises a student manual, a study guide and a reader. In addition to the print material there are teleconferencing and/or tutorials. The course introduces students to some of the major institutions in Caribbean society. It exposes the student to both the historical and contemporary aspects of Caribbean society, including Caribbean legal, political and economic systems. In addition, Caribbean culture and Caribbean social problems are discussed.
ASSESSMENT: is based solely on a final examination at the end of the semester. It consists of twelve (12) essay-type questions, of which students are required to write on three (3). All questions carry equal marks. The examination is divided into four (4) sections corresponding to the four (4) subject areas in the course. Students are not allowed to do more than one question in any one section.

FRENCH: FREN

LEVEL: I
SEMESTERS: 1 AND 2
COURSE CODE: FREN 1001
COURSE TITLE: LEVEL 1A FRENCH
NUMBER OF CREDITS: 2
PREREQUISITES: NONE
COURSE DESCRIPTION: This is a beginners’ course for students with no previous knowledge of French. It develops the communicative, linguistic, and intercultural competence of learners by focusing on their speaking, listening, reading and writing skills. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by one hour of independent study for each contact hour.
ASSESSMENT:
In-course testing: 100%: 40% [mid‐semester]; 40% [end of semester]; 20% [two assignments]

FACULTY COURSE: FST

LEVEL: I
SEMESTER: 1
COURSE CODE: FSTF 1000
COURSE TITLE: STUDY SKILLS FOR THE SCIENCES
NUMBER OF CREDITS: 1
PREREQUISITE: NONE
RESTRICTIONS: FOR FST STUDENTS ONLY
COURSE DESCRIPTION: This course is designed to help students improve their learning effectiveness, attitudes, and motivation. The following are part of the curriculum: Time management, concentration, coping with life challenges and studying, note taking skills, textbook study methods, test taking strategies, and critical thinking skills. Teaching and learning will be done by mixed mode with traditional lectures supported by online components. There will be continuous assessments with 100 % coursework for this programme. The assessments will employ different methodologies such as multiple choice test, group work with presentations, journal writing and term research paper.
ASSESSMENT:
Coursework 100%
Term paper 25%
Multiple choice exam 25 %
Poster 25%
Course journal for every class 25%
LEVEL: I
SEMESTER: 3 (SUMMER)
COURSE CODE: FSTF 2000
COURSE TITLE: HISTORY OF SCIENCE
NUMBER OF CREDITS: 3
PREREQUISITE: NONE
RESTRICTIONS: FOR FST STUDENTS ONLY
COURSE DESCRIPTION: This course examines the development and impact of science in society. The course begins with the earliest scientific ideas, and progresses to science in the modern era with a focus on major contributions from the Caribbean as well. A philosophical analysis of the advances, role, and implications of science in society is used to study how science has changed over time, the challenges experienced by scholars to implement these changes and how such have impacted our world. Focus will be placed also on how knowledge progresses, ideas change and get superseded. The discussion addresses issues such as societal attitudes toward science, the achievements of great scientists, women in science and the effect on future generations. Some of the central questions to be addressed will include: What and who, is science for and how has science changed over time?

ASSESSMENT:
Coursework 100%
- Multiple choice exam 25%
- Short answers/essay 25%
- Research paper* 25%
- Group project with presentations
- Or posters 25%

* Students must select topics not related to their major or study programme.

INFORMATION TECHNOLOGY: INFO

LEVEL: I
SEMESTER: 1
COURSE CODE: INFO 1600
COURSE TITLE: INTRODUCTION TO INFORMATION TECHNOLOGY CONCEPTS
NUMBER OF CREDITS: 3
PREREQUISITE: NONE
COURSE DESCRIPTION: This is a foundation course in Information Technology and introduces students to the discipline of Information Technology. It describes how it relates to other computing disciplines. At the end of the course, students will be able to appreciate what is Information Technology and how it is used by organizations today to improve their efficiency and profitability. The course also provides a general overview of the B.Sc. in Information Technology so that when the course concludes, students will understand how the whole degree fits together in a cohesive manner. Numerous examples are presented throughout the course so that students can get a concrete picture of the role of information technology in organizations.

ASSESSMENT:
Coursework 50%
- Final Examination 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: INFO 1601
COURSE TITLE: INTRODUCTION TO WWW PROGRAMMING
NUMBER OF CREDITS: 3
PREREQUISITE: NONE
COURSE DESCRIPTION: This is an introduction to web technologies and systems, including hypertext, self-descriptive text, web page design, web navigational systems, and various mark-up languages and scripting languages. Programming examples, exercises and projects are drawn from practical web-based applications. Good programming practice and program clarity is emphasized throughout the course. At the end of the course, students will be able to appreciate the need for web related technologies and how they are used by organizations to improve their efficiency, marketability and profitability.

ASSESSMENT:
Coursework 50%
- Final Examination 50%
| Course Code | Course Title | Credits | Prerequisites | Course Description | Assessment |
|------------|-------------------------------|---------|---| | |
| INFO 2400 | INFORMATION SYSTEMS DEVELOPMENT | 4 | INFO 1400 OR INFO 1500 | Systems development. Throughout the course, information is seen as a valuable corporate resource, one that can be used to maximize profit and improve competitiveness of a business organization. Consequently, the course takes an in-depth look at business processes and the ways in which they can be automated through an Information System. There is extensive coverage of the technical foundations of modern Information Systems as well as the process of developing and implementing a suitable Information System for an organization. The development of web-based information systems is also covered. | Coursework 40%
Final Examination - One 2-hour written paper 60% |
| INFO 2405 | DISCRETE MATHEMATICS | 4 | INFO 1415 OR INFO 1503 | This course seeks to build formal mathematical competence required in many fields in Information Technology such as information security, cryptography and data structures. Students are exposed to formal logic and reasoning and use this to construct proofs and develop algorithms. The course also introduces various problem solving strategies especially thinking algorithmically both iterative and recursive. The course also motivates the need for discrete structures and techniques by introducing computer applications. | Coursework 40%
Final Examination - One 2-hour written paper 60% |
| INFO 2410 | FUNDAMENTAL DATA STRUCTURES | 4 | INFO 2420 | This course covers the major data structures used in programming. The properties of the various data structures are studied as well as their appropriate use for different applications. In-memory data structures as well as structures for file organizations are considered. | Coursework 40%
Final Examination - One 2-hour written paper 60% |
| INFO 2415 | ENTERPRISE DATABASE SYSTEMS | 4 | (INFO 1400 AND INFO 1405) OR (INFO 1506 AND INFO 1501) OR [INFO 1400 OR INFO 1501] OR (INFO 1506 OR INFO 1405) | The course covers the design, implementation and management of Database Systems. Emphasis is placed on database design of real world business applications using Entity-Relationship modeling. SQL programming is covered in detail. Query Optimization concepts are introduced in the context of database performance tuning. Data Management concepts such as Transaction Management, Concurrency Control, Recovery, and Security are discussed. Several current database environments and applications including Distributed Databases and Web-enabled Databases are discussed. | Coursework 40%
Final Examination - One 2-hour written paper 60% |
| INFO 2420 | PROGRAMMING FUNDAMENTALS II | 4 | INFO 1420 OR INFO 1504 | The course introduces simple data structures that every novice programmer should become familiar with. It introduces the concept of Abstract Data Types, their characteristics and implementation, such as Linked list, stacks and queues. | Coursework 40%
Final Examination - One 2-hour written paper 60% |
LEVEL: II
SEMESTER: 1 AND EVENING UNIVERSITY
COURSE CODE: INFO 2425
COURSE TITLE: COMPUTER ARCHITECTURE
NUMBER OF CREDITS: 4
PREREQUISITES: (INFO 1415 AND INFO 1420) OR (INFO 1503 AND INFO 1504) OR (INFO 1415 OR INFO 1504) OR (INFO 1503 OR INFO 1420)
COURSE DESCRIPTION: This course covers the fundamentals of the operation and design of computers from the programmer’s and architect’s point of view. It describes the components of a computer, functions of each component, and how components interact with each other and with software.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: II
SEMESTER: 1
COURSE CODE: INFO 2430
COURSE TITLE: BUSINESS INFORMATION SYSTEMS
NUMBER OF CREDITS: 4
PREREQUISITE: (INFO 1400 AND INFO 1405) OR (INFO 1506 AND INFO 1501) OR (INFO 1400 OR INFO 1501) OR (INFO 1506 OR INFO 1405)
COURSE DESCRIPTION: The course focuses on Information Systems in terms of business processes. It covers transaction cycles, events, and activities of Revenue, Expenditure, Production, and Human Resources business processes. The course covers core application frameworks – customer relationship management, enterprise resource planning, revenue and expenditure management, and human resource management – with emphasis on modeling of business processes and data. The material is covered from the perspective of business in Trinidad & Tobago. E-Business concepts and principles are introduced.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: 1 AND EVENING UNIVERSITY
COURSE CODE: INFO 2500
COURSE TITLE: NETWORKING TECHNOLOGIES FUNDAMENTALS
NUMBER OF CREDITS: 4
PREREQUISITE: INFO 1500 AND INFO 1505 OR INFO 1400
COURSE DESCRIPTION: The course introduces the student to the world of computer networks. Principles and protocols for data communication are covered. Network architecture models are visited and students get exposure to the practical aspects of networking e.g. setting up a basic network, router configuration, crimping of cables.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: INFO 3400
COURSE TITLE: FUNDAMENTALS OF OPERATING SYSTEMS
NUMBER OF CREDITS: 4
PREREQUISITE: INFO 2425 OR INFO 2420
COURSE DESCRIPTION: This course provides the student with an introductory understanding of the role and functioning of an operating system. The basic algorithms used to manage processes, memory and disk devices will be presented.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: INFO 3410
COURSE TITLE: WEB SYSTEMS AND TECHNOLOGIES
NUMBER OF CREDITS: 4
PREREQUISITE: INFO 2420
COURSE DESCRIPTION: This course covers the design, implementation and testing of web-based applications and social software, and the incorporation of a variety of digital media into these applications. Students are exposed to a range of web technologies, both client-side and server-side.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%
LEVEL: III
SEMESTER: I COURSE CODE: INFO 3415
COURSE TITLE: INFORMATION ASSURANCE AND SECURITY
NUMBER OF CREDITS: 4
PREREQUISITE: INFO 2400 OR COMP 2200
COURSE DESCRIPTION: This course provides the knowledge to understand, apply and manage information assurance and security in computing, communication, and organizational systems. It covers operational issues, policies and procedures, attacks and defense mechanisms, risk analyses, recovery, and information security.
ASSESSMENT:
Coursework (test/assignments) 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: INFO 3420
COURSE TITLE: PROGRAMMING LANGUAGES
NUMBER OF CREDITS: 4
PREREQUISITE: INFO 2420 OR COMP 2500
COURSE DESCRIPTION: The aim of this course is to provide a conceptual framework that will enable students to understand already-learned programming languages more deeply and to learn new languages effectively as they will require skills in adopting new programming languages. Students will gain an understanding of the fundamental concepts and design issues of programming languages and become familiar with the major programming paradigms.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: INFO 3430
COURSE TITLE: INTRODUCTION TO SCIENTIFIC COMPUTING
NUMBER OF CREDITS: 4
PREREQUISITE: INFO 2405 AND INFO 2420
COURSE DESCRIPTION: This course provides a broad overview of numerical methods for students in computationally oriented disciplines who need to solve mathematical problems that arise in many fields, especially science and engineering. It focuses on the motivation and ideas behind the numerical algorithms and on the use of professionally written mathematical software for obtaining solutions whenever possible.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: INFO 3435
COURSE TITLE: E-COMMERCE
NUMBER OF CREDITS: 4
PREREQUISITE: INFO 2400
COURSE DESCRIPTION: This course provides broad coverage of e-commerce systems. It covers the various e-commerce business models and e-commerce payment systems.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: INFO 3440
COURSE TITLE: SOFTWARE ENGINEERING
NUMBER OF CREDITS: 4
PREREQUISITES: INFO 2400 AND INFO 2420
COURSE DESCRIPTION: This course introduces students to the fundamental concepts and techniques of software engineering. It examines various approaches for developing a software product, from the initial request for development right down to the delivery of the final product to the customer. All of these approaches involve steps such as determining the user requirements, structuring these requirements in the form of a requirements specification document, and designing, coding and testing the software. These aspects of software engineering form the major component of the course. Since project management skills are crucial for the successful development of a software product, the course also covers project management techniques as they pertain to software engineering. This includes the topics of project scheduling, software estimation, and risk management
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%
LEVEL: III
SEMESTER: 2
COURSE CODE: INFO 3490
COURSE TITLE: PROJECT
NUMBER OF CREDITS: 4
PREREQUISITES: INFO 2400 AND INFO 2420
COURSE DESCRIPTION: This course requires the student to implement an IT project of an appropriate scope. The student will liaise with an academic supervisor. Several lectures will be given on project management and research methodologies.
ASSESSMENT:
Coursework 80%
Presentation 20%
(NO FINAL WRITTEN EXAMINATION)

LEVEL: III
SEMESTER: SEMESTER 1
COURSE CODE: INFO 3500
COURSE TITLE: USER INTERFACE DESIGN AND DEVELOPMENT
NUMBER OF CREDITS: 4
PREREQUISITES: INFO 2400
COURSE DESCRIPTION: Human-computer Interaction is an interdisciplinary field that integrates theories and methodologies from Computer Science, cognitive psychology, design, and many other areas. The course is intended to introduce the student to the basic concepts of Human-computer Interaction. It will cover the basic theory and methods that exist in the field. The course will unfold by examining design and evaluation. Case studies are used throughout the readings to exemplify the methods presented and to lend a context to the issues discussed. The students will gain principles and skills for designing and evaluating interactive systems. Among the topics studied are the design and evaluation of effective user interaction designs, including principles and guidelines for designing interactive systems. Additionally, much emphasis is given to the development process for user interaction designs as an integral, but different, part of interactive software development. User interaction development activities include requirements and task analysis, usability specifications, design, prototyping, and evaluation. It is a goal of this course to help students realize that user interface development is an ongoing process throughout the full product life cycle, and developing the human-computer interface is not something to be done at the last minute, when the “rest of the system” is finished. During the course the students will be involved with a real problem solving/software development project. Students will be required to gather functional requirements, identify the problem, form a solution and present this solution.
ASSESSMENT:
Coursework 70%
Final Examination - One 2-hour written paper 30%
LEVEL: III
SEMESTER: NOT OFFERED 2016/2017
COURSE CODE: INFO 3530
COURSE TITLE: GEOGRAPHIC INFORMATION SYSTEMS FOR BUSINESS
NUMBER OF CREDITS: 4
PREREQUISITES: INFO 2415
COURSE DESCRIPTION: This course introduces students to the subject of geographic information systems. Students are introduced to the characteristics of geographical data including coordinate systems and projections. Spatial data models are presented with a view of laying the foundation to understanding the usefulness of Geographic Information Systems (GIS) in organizations that use geographic data. Database structure and design are delivered in the context of managing spatial records and analysis techniques for interrogating such data are discussed. GIS is also presented as a tool used to effect business process re-engineering; the type of Information System enhancement which can significantly alter the productivity of business positively.
ASSESSMENT:
Coursework 40%
Final Examination - One 2-hour written paper 60%

JAPANESE: JAPA

LEVEL: I
SEMESTER: 1
COURSE CODE: JAPA 1003
COURSE TITLE: LEVEL 1A JAPANESE
NUMBER OF CREDITS: 2
PREREQUISITES: NONE
COURSE DESCRIPTION: This is a beginners’ Japanese course that introduces students to the Japanese language and some aspects of Japanese culture and daily life. Classes are conducted as far as possible in the target language to give students maximum exposure to the new language and culture. During the course, students develop an ability to communicate in Japanese in basic situations relating to their personal lives. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by two hours of independent study for each contact hour.
ASSESSMENT:
In-course testing: 100%:
40% [mid-semester];
40% [end of semester];
20% [two assignments]

LEVEL: I
SEMESTER: 2
COURSE CODE: JAPA 1004
COURSE TITLE: LEVEL 1B JAPANESE
NUMBER OF CREDITS: 2
PREREQUISITES: JAPA 1003/1A JAPANESE OR EQUIVALENT
COURSE DESCRIPTION: JAPA 1004 is the second part of the introductory Japanese programme continuing the work begun in JAPA 1003/1A Japanese. Classes are conducted as far as possible in the target language to give students maximum exposure to the language and culture during class time. During the course, students develop an ability to communicate in Japanese in basic situations relating to their personal lives. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by two hours of independent study for each contact hour.
ASSESSMENT:
In-course testing: 100%:
40% [mid-semester];
40% [end of semester];
20% [two assignments]
MATHEMATICS: MATH

LEVEL: 0 (PRELIMINARY)
SEMESTER: 1
COURSE CODE: MATH 0100
COURSE TITLE: N1 MATHEMATICS I
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC MATHEMATICS OR EQUIVALENT
COURSE DESCRIPTION: The following topics will be treated with the minimum of rigour, but with emphasis on the understanding of the concepts involved. Algebra: Elementary logic, number sets, real numbers, functions, inequalities, complex numbers, surds, logarithms, linear and quadratic equations, finite series, binomial theorem, mathematical induction. Trigonometry: Trigonometric functions and their inverses, addition and multiplication formulae, identities, trigonometric equations, solutions of triangles.
ASSESSMENT:
Coursework - Test 50%
Final Examination - One 3-hour paper 50%

LEVEL: 0 (PRELIMINARY)
SEMESTER: 2
COURSE CODE: MATH 0200
COURSE TITLE: N1 MATHEMATICS II
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC MATHEMATICS OR EQUIVALENT
COURSE DESCRIPTION: The following topics will be treated with the minimum of rigour, but with emphasis on the understanding of the concepts involved. Calculus: Functions, limits, continuity, differentiability, higher derivatives and application, anti-derivatives, Simpson's rule and the integral. Elementary methods of integration and solutions of simple differential equations. Analytical Geometry: Equations and representations of elementary plane curves. Applications of calculus to determine equations of tangents, normals and in the computation of areas and volumes.
ASSESSMENT:
Coursework - Test 50%
Final Examination - One 3-hour paper 50%
LEVEL: I - UNDERGRADUATE SERVICE COURSE
SEMESTER: 2
COURSE CODE: MATH 1125
COURSE TITLE: FUNDAMENTAL MATHEMATICS FOR THE GENERAL SCIENCES II
NUMBER OF CREDITS: 3
PREREQUISITES: EITHER CSEC MATHEMATICS (OR EQUIVALENT) OR MATH 1115
ASSESSMENT:
Coursework 40%
Final Examination: One 2-hour written paper 60%

LEVEL: I
SEMESTER: 1
COURSE CODE: MATH 1142
COURSE TITLE: CALCULUS I
NUMBER OF CREDITS: 3
PREREQUISITES: TWO UNITS (1&2) OF CAPE PURE MATHEMATICS OR MATH 0100 AND MATH 0110, OR EQUIVALENT
COURSE DESCRIPTION: Functions; elementary functions; definition of derivative and rules of differentiation. Applications to maxima, minima and curve tracing; Taylor and Maclaurin Series. Evaluation of indefinite integrals using substitution, integration by parts and partial fractions. Length of curve and areas of regions. First order differential equations and second order differential equations with constant coefficients.
ASSESSMENT:
Coursework 50%
Final Examination - One 2-hour written paper 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: MATH 1141
COURSE TITLE: INTRODUCTORY LINEAR ALGEBRA AND ANALYTICAL GEOMETRY
NUMBER OF CREDITS: 3
PREREQUISITES: TWO UNITS OF CAPE PURE MATHEMATICS, OR MATH 0100 AND MATH 0110 OR EQUIVALENT
COURSE DESCRIPTION: Vectors in two and three dimensions, the dot product and cross – product. Applications to geometry of lines and planes. Complex numbers as vectors. De Moivres Theorem; basic algebra of matrices of any order. Determinants. Solutions of systems of linear equations
ASSESSMENT:
Coursework 50%
Final Examination: One 2-hour written paper 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: MATH 1152
COURSE TITLE: SETS AND NUMBER SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: TWO UNITS OF CAPE PURE MATHEMATICS, OR MATH 0100 AND MATH 0110 OR EQUIVALENT
COURSE DESCRIPTION: Set Theory. Elementary mathematical logic: logical statements, logical operations AND, OR and NOT. Illustration using Venn diagrams, Algebra of Sets. Relations and Binary operation Properties of the natural numbers; basic arithmetic of complex numbers. The polar and exponential forms of a complex number.
ASSESSMENT:
Coursework 50%
Final Examination: One 2-hour written paper 50%
LEVEL: I
SEMESTER: 1
COURSE CODE: MATH 1192
COURSE TITLE: MATHEMATICAL SOFTWARE I - A PRIMER ON EXCEL
NUMBER OF CREDITS: 1
PREREQUISITES: CAPE PURE MATHEMATICS (UNITS 1 & 2) OR MATH 1125 OR EQUIVALENT.
COURSE DESCRIPTION: This course will enhance the student's knowledge of Microsoft Excel, which will be used to solve frequently encountered mathematics and statistics problems. Microsoft Excel will be introduced as data management software, and popular features of Excel such as formatting, editing, chart types and ‘autofill’ will be covered at the beginning of the course. The student will later be introduced to statistical tools in Excel which assist in solving problems in inferential statistics. An introduction to the Visual Basic Editor and programming in Visual Basic is then offered to the student.
Teaching will take place entirely in weekly interactive lab sessions where the emphasis will be on active learning. Assessment will be based on coursework examinations and several lab assignments.
ASSESSMENT:
Coursework 100%

LEVEL: I
SEMESTER: 2
COURSE CODE: MATH 1193
COURSE TITLE: MATHEMATICAL SOFTWARE II - A PRIMER ON MAPLE
NUMBER OF CREDITS: 1
PREREQUISITES: CAPE PURE MATHEMATICS (UNITS 1 & 2) OR MATH 1125 OR EQUIVALENT.
COURSE DESCRIPTION: This course covers Maple software, which can be used to solve frequently encountered mathematics problems. Maple is a symbolic mathematical package with a wide range of applications. In this course, problem solving in algebra, calculus and differential equations will be covered. Maple’s word processing features will be shown to students, who will be expected to produce scientific documents using the Maple word processor. An introduction to the Maple programming language is also included in this module.
Teaching will take place entirely in weekly interactive lab sessions where the emphasis will be on active learning. Assessment will be based on coursework examinations and several lab assignments
ASSESSMENT:
Coursework 100%

LEVEL II
SEMESTER 1
COURSE CODE: MATH 1201
COURSE TITLE: APPLIED MATHEMATICS I
NUMBER OF CREDITS: 3
PREREQUISITES: CAPE PURE MATHEMATICS (UNITS 1 & 2) OR GCE A-LEVEL MATHEMATICS OR EQUIVALENT.
COURSE DESCRIPTION: This course will cover the basic concepts and techniques of vectors and some common topics in statics. It will provide undergraduate students with a good understanding of the fundamental laws and associated applications of vectors, as well the necessary tools used in solving elementary common problems in vectors and statics.
ASSESSMENT:
Coursework: 50%
Final Examination - one 2-hour written paper 50%
LEVEL II
SEMESTER 2
COURSE CODE: MATH 1202
COURSE TITLE: APPLIED MATHEMATICS II
NUMBER OF CREDITS: 3
PREREQUISITES: CAPE PURE MATHEMATICS (UNITS 1 & 2)
OR GCE A-LEVEL MATHEMATICS OR EQUIVALENT.
COURSE DESCRIPTION: This course will cover the basic
concepts and techniques of Dynamics, mostly particle
dynamics. It will provide students with a good understanding
of the laws and associated applications of particles in motion,
as well as supply the necessary tools used in solving
elementary common problems in the field.
ASSESSMENT:
Coursework: 50%
Final Examination - one 2-hour written paper 50%

LEVEL II
SEMESTER: 2
COURSE CODE: MATH 2115
COURSE TITLE: LIFE CONTINGENCIES I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2274 AND MATH 2211 COURSE
DESCRIPTION: This course is an introduction to life
contingencies as applied in actuarial practice. Topics include
present value random variables for contingent annuities and
insurance, their distributions and actuarial present values,
equivalence principle, and other principles for determining
premiums and reserves.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL II
SEMESTER: 1
COURSE CODE: MATH 2170
COURSE TITLE: INTRODUCTION TO COMBINATORICS
NUMBER OF CREDITS: 4
PREREQUISITE: MATH 1140 OR MATH 1141 AND MATH
1152
COURSE DESCRIPTION: Permutations and
Combinations. The Inclusion - Exclusion Principle. Linear
equations with unit coefficients; Recurrence relations;
Generating functions; Geometry of the plane; Colouring
problems; Combinatorial probability. Partitions of integer;
Random walks; Designs.
ASSESSMENT:
Coursework 25%
Final Examination - One 2-hour written paper 75%
LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 2270
COURSE TITLE: MULTIVARIABLE CALCULUS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1142 AND MATH 1151
COURSE DESCRIPTION: This is a one-semester, three-credit course at the intermediate level in multivariate calculus intended for students who have satisfactorily completed six credits in elementary differential and integral calculus. For this reason, MATH 1142 - Calculus I and MATH 1151 - Calculus II (or their equivalents) are listed as prerequisite courses.
In this course, vector notation is introduced and utilized for modelling and solving problems in multidimensional space. The first section of the course deals with the Calculus of functions of several real variables. The fundamental ideas of limits and continuity are introduced, followed by the technique of partial differentiation via the chain rule and its related applications. One key application covered is the use of the method of Lagrange multipliers for the determination of constrained extrema. This is followed by the calculus of vectors and their description of curves and surfaces in space.
Differentiation of vectors is more fully developed, extending elementary notions of differentiation to those involving multiple variables. Integration is developed to encompass double integrals and triple integrals. Finally, line and surface and volume integrals are considered. The Green’s Theorem in a plane, Stokes’ Theorem and the Divergence Theorem are introduced and utilized for the calculation of line, surface and volume integrals.
This course includes proofs and discussions at a level of complexity suitable for those intending to specialize in mathematics, as well as many examples and applications of the theory for those more interested in being able to make use of the theory in their various fields of interest.
ASSESSMENT:
Coursework: 50%
Final Examination - one 2-hour written paper 50%
LEVEL: II
SEMESTER: 2
COURSE CODE: MATH 2271
COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH1142, MATH1151 AND MATH 2273
COURSE DESCRIPTION: This is an introductory course that involves the solving of various ordinary differential equations of first and second order, as well as the solution of systems of differential equations. Methods of solution include separation of variables, various substitution techniques and use of integrating factors, undetermined coefficients, and variation of parameters. Laplace transforms, infinite series, and selected numerical methods are also incorporated. Uniqueness and existence theorems are covered.
A solid grounding in Calculus is necessary, as is knowledge of linear algebra for the theory of solution of systems of equations. For this reason, these are considered to be prerequisite courses. Prior knowledge of mathematical software (such as Maple and Matlab) will be an asset for the numerical work involved, but should not be considered to be a prerequisite.
Active learning will be achieved through assigned problem sheets allowing continuous feedback and guidance on problem solving techniques in tutorials and on myeLearning and through four major assignments.
ASSESSMENT:
Coursework: 50%
Final Examination - one 2-hour written paper 50%
LEVEL: II
SEMESTER: 2
COURSE CODE: MATH 2272
COURSE TITLE: ABSTRACT ALGEBRA I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1141 AND MATH 1152
COURSE DESCRIPTION: Students who take this course will require a basic grounding in set theory and logic. For this reason, Math 1152 is listed as a prerequisite. This course introduces students to basic structures of abstract algebra, including groups, rings and fields. In the introduction, the focus is on binary operations and equivalence relations, which will be used throughout this course. Then groups are introduced, and students will learn that they come in many varieties. Subgroups and maps between groups are studied. In the second part of the course, rings are studied. Again, examples are studied, some familiar and some new. As usual, subrings, ideals and maps between rings are studied. After this, Euclidean rings are studied. Finally, a brief introduction to fields is given. Since cogent communication of mathematical ideas is important in the presentation of proofs, the course will emphasize clear, concise exposition. This course will therefore be useful for all students who wish to improve their skills in mathematical proof and exposition, or who intend to study more advanced topics in mathematics.

ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 2274
COURSE TITLE: PROBABILITY THEORY I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1142 AND MATH 1151
COURSE DESCRIPTION: This is an introductory course that approaches probability theory from two perspectives: Probability theory is a branch of mathematics. As such, we will focus on the fundamental assumptions of Probability Theory and how the main properties of Probability Measures proceed from these assumptions. Throughout the course, therefore, students will be expected to be able to derive the main results that they use. Very little will be assumed without proof. Probability Theory is primarily concerned with modelling phenomena with uncertain outcomes. The course emphasizes this. It is most definitely not a course in Pure Mathematics. A knowledge of calculus (including a good understanding of limits, continuity, differentiability) is assumed (hence the need for Math1150). An appreciation of the idea of proof is expected but Math1140 is not essential (though it is desirable). The course begins with a discussion of the basic ideas of probability, including the axioms of probability, combinatorial probability, conditional probability and independence. The rest of the course focuses on distribution theory. The distribution theory of one discrete and one continuous random variable is discussed. Special attention is paid to well-known discrete and continuous distributions such as the Bernoulli, Binomial, Poisson, Exponential, Gamma and Normal. Then the distribution theory of several random variables is discussed. The idea of a statistic is introduced and the distribution theory of the mean and the sample variance is described. This leads finally to the idea of convergence in distribution and the Central Limit Theorem (without proof). The approach taken is non-rigorous. In particular, there will be no mention of sigma algebras or of measure theory. Assessment is designed to encourage students to work continuously with the course materials. Active learning will be achieved through weekly assignments and problem sheets allowing continuous feedback and guidance on problem solving techniques in tutorials and lectures.

ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%
LEVEL: II
SEMESTER: 2
COURSE CODE: MATH 2275
COURSE TITLE: STATISTICS I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2274
COURSE DESCRIPTION: The course is a survey of the major ideas of inference, experimental design and statistical methods. The course may be viewed as consisting of three closely connected parts. In the first section, students are introduced to the basics of the statistical packages Minitab and R and their use in descriptive statistics. Emphasis is placed on the use of real data and both summary statistical measures and graphical descriptive devices for continuous and discrete data are discussed. In the second section, we discuss the frequentist theory of inference, including point estimation, confidence intervals and hypothesis testing. Section three is devoted to various statistical methods. The major ones are regression models and the use of ANOVA in designed experiments. Several of the important basic designs are discussed. We also discuss methods for the analysis of discrete data, such as in contingency tables, and non-parametric procedures. A knowledge of Probability Theory I is assumed. This is needed since we derive the distributions of most statistics that are used and also discuss systematic mathematical methods for finding point estimators and constructing tests.

ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 2276
COURSE TITLE: DISCRETE MATHEMATICS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH1141 AND MATH1152
COURSE DESCRIPTION: Students who take this course will require a solid foundation of most topics that are examined in the level 1 courses Math 1141 and Math 1152. We begin with a study of methods of proofs and discrete mathematical structures. Some basic definitions in combinatorics and graph theory are given. In such a situation recurrence relations are formulated but linear type ones are solved. The solutions of various problems in enumeration are expressed in terms of recurrences. We introduce different general network structures and the models that generate them. Some of the notations and terminology of graphs are used that would lead to established properties of networks, combinatorial designs and the efficiency of the Hungarian algorithm.

ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: MATH 2277
COURSE TITLE: INTRODUCTION TO REAL ANALYSIS I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH1141, MATH1142, MATH1151 AND MATH1152 OR EQUIVALENT
COURSE DESCRIPTION: This is a classical course in analysis, providing a foundation for many other mathematical courses. Knowledge of Calculus, analytical geometry and basic set theory is required. The course exposes students to rigorous mathematical definitions of limits of sequences of numbers and functions, classical results about continuity and series of numbers and their proofs. A major emphasis is placed on the proper use of definitions for the rigorous proof of theorems. The following topics will be covered: The real number system, topological properties of real numbers, sequences, continuity and differentiation.

ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 2400
COURSE TITLE: ELEMENTARY NUMBER THEORY
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1152 AND MATH 1141 OR COMP 1402 AND COMP 1406
COURSE DESCRIPTION: Without assuming any algebra or analysis beyond the first year we cover topics such as prime numbers, GCDs and modular arithmetic. This allows us to introduce the basics of the RSA cryptographic scheme. It also serves as an invitation to explore some of the structural properties of the integers modulo a fixed prime. We study primitive roots, quadratic residues and quadratic reciprocity. We are also naturally drawn to study the order of the multiplicative group of units modulo \(n \), giving us the Euler-\(\phi \) function. We study the properties of this function as well as other arithmetic functions. Then we study Diophantine approximation and continued fractions. We study computational problems such as primality testing and factorization. Finally, we will study the RSA cryptoscheme and other related cryptographic algorithms.

ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%
ABSTRACT ALGEBRA I and LINEAR ALGEBRA are both listed as prerequisites.

RATIONAL FIELD, AND SEVERAL KEY RESULTS CONCERNING POLYNOMIALS OVER THE RATIONALS ARE PROVED. THE COURSE NATURALLY PROGRESSES TO INVESTIGATE THE EXISTENCE OF THE ROOT OF A POLYNOMIAL IS DONE IN DETAIL, WITH SEVERAL INTERESTING AND MOTIVATING EXAMPLES. THE COURSE CONTINUES TO PROVE THE EXISTENCE OF A SPLITTING FIELD, AND CONCLUDES WITH A STATEMENT OF THE FUNDAMENTAL THEOREM OF ALGEBRA.

ASSSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: III
SEMESTER: 2
COURSE TITLE: LINEAR ALGEBRA II
COURSE CODE: MATH 3273
PREREQUISITES: MATH 2272, MATH 2273 AND MATH 2273
NUMBER OF CREDITS: 3
COURSE DESCRIPTION: Students who take this course will require knowledge of the basic and some advanced concepts of Algebra. Thus, ABSTRACT ALGEBRA I & II and LINEAR ALGEBRA I are both listed as prerequisites. The first part of the course continues the treatment of Vector Spaces and Linear Transformations started in LINEAR ALGEBRA I. The Rank-Nullity Theorem is stated and proved. Linear transformations are then viewed as elements of a larger algebraic structure, the algebra. In this formal context, the idea of polynomials of linear transformations is developed. The theory of eigenvalues and eigenvectors is fundamental to Linear Algebra, and the course proceeds to study the same in detail. The connection between polynomials of matrices and their eigenvalues is explored and the celebrated Cayley-Hamilton Theorem is proved. At this point, the students become aware that an algorithm for writing a matrix in a standard form, where the eigenvalues of the matrix may be easily obtained, is desirable. With this motivation, the existence and uniqueness of the Jordan Normal Form is proved. Techniques for computing the Jordan Normal Form are presented. The applications and limitations of the Jordan Normal Form are discussed.

The module is a natural generalisation of a vector space, and any student of advanced Linear Algebra should be familiar with the structure. The course therefore proceeds to define the module, giving motivating examples. The fundamental theorems are proved, drawing parallels with the algebraic structures which the students have already met. The existence and uniqueness of the Rational Canonical Form are stated here. Proofs may be sketched, but are not examinable.
The course then turns to vector spaces over the complex numbers, where the concept of an inner product is introduced. The properties of the inner product are discussed, and the fundamental definitions of unitary and Hermitian (in the context of linear transformations and matrices) are made. The base field is then further restricted to the reals, and the results developed are specialised to this case. An elegant proof of the Spectral Theorem for real symmetric matrices is given. The material developed here is applied to the study of quadratic forms.

The true power of Linear Algebra lies in its adaptability to computational tasks. As an illustration of this, the Singular Value Decomposition is introduced and its applications are discussed.

Traditionally, the tools of Linear Algebra have been heavily used in geometrical applications. As a demonstration of this, the material developed on quadratic forms is used to investigate the nature of quadric surfaces.

Since cogent communication of mathematical ideas is important in the presentation of proofs, the course will emphasize clear, concise exposition. This course will therefore be useful for all students who wish to improve their skills in mathematical proof and exposition, or who intend to study more advanced topics in mathematics.

ASSESSMENT:
- Coursework 50%
- Final Examination - one 2-hour written paper 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: MATH 3277
COURSE TITLE: INTRODUCTION TO REAL ANALYSIS II
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2277 OR EQUIVALENT
COURSE DESCRIPTION: This is the follow-up course for MATH 2277 Introduction to Real Analysis I. The course exposes students to rigorous mathematical definitions, proofs and classical results on differentiation, Riemann integration, sequences and series of functions. Major emphasis is placed on the proper use of definitions for the rigorous proof of theorems. The following topics will be covered: Differentiation, Riemann integration, sequences and series of functions and metric spaces. Assessment is designed to encourage students to work continuously with the course materials. Active learning will be achieved through weekly problem sheets, allowing continuous feedback and guidance on problem solving techniques in tutorials and lectures, and periodic marked assignments
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 3278
COURSE TITLE: PROBABILITY THEORY II
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2270 AND MATH 2274
COURSE DESCRIPTION: The course begins with a discussion of the axioms of probability. We point out that not all subsets of an arbitrary sample can be events and introduce the idea of a sigma field. There is a careful discussion of distribution functions in general (including continuous, absolutely continuous and discrete cases). The rest of the section on distribution theory focuses on the distribution theory of several random variables. Joint density functions, transformations, joint mgfs, order statistics, convolution are discussed. We then define conditional expectation and give its main properties. The section on distribution theory closes with a discussion of multivariate distributions, including the multinomial and multivariate normal. We prove that the sample mean and sample variance in a sample from the normal distribution are independent and obtain the distribution of the sample variance.
ASSESSMENT:
Coursework 50%
Final Examination - One 2-hour written paper 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: MATH 3400
COURSE TITLE: GRAPH THEORY
NUMBER OF CREDITS: 4
PREREQUISITE: MATH 2100
ASSESSMENT:
Coursework 15%
Final Examination - One 2-hour written paper 85%
LEVEL: III
SEMESTER: 1
COURSE CODE: MATH 3401
COURSE TITLE: MATHEMATICAL MODELLING
NUMBER OF CREDITS: 3
PREREQUISITE: MATH 1194, MATH 2270, MATH 2271 OR EQUIVALENT
COURSE DESCRIPTION: The course outlines the different stages of the mathematical modeling process. It is designed to guide the student through carefully chosen examples designed to illustrate the process of constructing and analyzing a mathematical model. Discrete and continuous system models are analysed throughout using mathematical and computer-based methods. Knowledge of Multivariable Calculus, elementary Linear Algebra and Ordinary Differential Equations is essential for this course. As Matlab will be utilized extensively in the compulsory computer lab sessions, an introductory course in Matlab is also listed as a mandatory prerequisite. All lectures, assignments, handouts, and review materials are available online through myeLearning to all students. Blended leaning techniques will be employed. Lectures will be supplemented with laboratory work and group discussions.
ASSESSMENT:
Coursework 50%
Final Examination - One 2-hour written paper 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: MATH 3402
COURSE TITLE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS
NUMBER OF CREDITS: 3
PREREQUISITE: MATH 2271 AND MATH 2270 OR EQUIVALENT
COURSE DESCRIPTION: This course is a basic introduction to PDEs and is designed for students who are interested in applied mathematics or analysis. It is an elective third level course for advanced undergraduate students. The concentration is on concrete examples of PDEs that arise in various physical systems. The most widely utilized methods for solving these problems will be covered. This elective course requires prior knowledge of ODEs and Multivariate Calculus. For this reason, these courses are listed as prerequisites.
ASSESSMENT:
Coursework 50%
Final Examination - One 2-hour written paper 50%

MANAGEMENT: MGMT

LEVEL: II
SEMESTER: 2
COURSE CODE: MGMT 2006
COURSE TITLE: MANAGEMENT INFORMATION SYSTEMS I
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course provides an overview of Management Information Systems. It describes the components of Management Information Systems and the relationship of MIS to the larger area of Organisation and Management. Information Systems Technology is covered.
ASSESSMENT:
Coursework 25%
Final Examination 75%
LEVEL: II
SEMESTER:
COURSE CODE: MGMT 2007
COURSE TITLE: INTRODUCTION TO E-COMMERCE
NUMBER OF CREDITS: 3
PREREQUISITES/CO-REQUISITE: MKTG 2080 AND MGMT 2006
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course aims to prepare students with the requisite fundamentals to enable them to provide the business perspective/inputs to the e-commerce adoption process. Emphasis will be on the underlying commercial principles of e-commerce rather than on the technological processes. Topics to be covered include: internet demographics; internet business models; customer support strategies; security issues in e-commerce; legal issues in e-commerce; logistical challenges for Caribbean e-commerce.
ASSESSMENT:
Coursework 40%
Final Examination 60%

LEVEL: II
SEMESTER: 1
COURSE CODE: MGMT 2012
COURSE TITLE: INTRODUCTION TO E-COMMERCE
NUMBER OF CREDITS: 3
PREREQUISITES: FOR CHEMISTRY AND MANAGEMENT STUDENTS: ECON 1001 AND CHEM1060
FOR COMPUTER SCIENCE & MANAGEMENT STUDENTS: ECON1002 AND MATH1140
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course uses the systems approach to organisations to highlight how interrelated variables such as people, technology, task, structure and external environments impact on organisational effectiveness. Emphasis is on the nature of behavioural issues and how and why they impact on the functioning of organisations.
ASSESSMENT:
Coursework 25%
Final Examination 75%

LEVEL: II
SEMESTER: 2
COURSE CODE: MGMT 2008
COURSE TITLE: ORGANISATIONAL BEHAVIOUR
NUMBER OF CREDITS: 3
PREREQUISITES: FOR CHEMISTRY AND MANAGEMENT STUDENTS: SOC 1002 OR MGMT 1001 OR AGEX 1000
FOR COMPUTER SCIENCE AND MANAGEMENT STUDENTS: SOC 1002 OR MGMT 1001 OR AGEX 1000 OR COMP 1100
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course uses the systems approach to organisations to highlight how interrelated variables such as people, technology, task, structure and external environments impact on organisational effectiveness. Emphasis is on the nature of behavioural issues and how and why they impact on the functioning of organisations.
ASSESSMENT:
Coursework 40%
Final Examination 60%
LEVEL: II
SEMESTERS: 2
COURSE CODE: MGMT 2023
COURSE TITLE: FINANCIAL MANAGEMENT I
NUMBER OF CREDITS: 3
PREREQUISITES:
FOR CHEMISTRY AND MANAGEMENT STUDENTS: ACCT 1002 AND ECON 1003 OR CHEM1060
FOR COMPUTER SCIENCE & MANAGEMENT STUDENTS: ACCT 1002 AND MATH 1140
FOR BSC ACTUARIAL STUDENTS: ECON 1002 AND ACCT 1002
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course is concerned with the core concepts of financial decision-making; the time-value of money, the cost of capital and trade-offs between risk and return. Students should develop a thorough understanding of these basic concepts and how to apply them in real-world examples
ASSESSMENT:
Coursework 40%
Final Examination 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: MGMT 2026 (MGMT 3057)
COURSE TITLE: PRODUCTION AND OPERATIONS
NUMBER OF CREDITS: 3
PREREQUISITES: MGMT 2012
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course is intended to present students with an up-to-date view of primary activities of the production/operations functions in organisations. The production/operations function is an area of management that has a profound effect on efficiency, productivity and the quality of our daily lives. Focusing on Caribbean economies, the course will examine the resources that are required in the production of goods and services and illustrate the method of their acquisition utilisation, and upkeep. The topics to be covered will be shown to apply not only to the manufacturing sector but to the service sectors as well such as banks, hospitals, etc.
ASSESSMENT:
Coursework 30%
Final Examination 70%

LEVEL: II
SEMESTER: 2
COURSE CODE: MGMT 2032
COURSE TITLE: MANAGERIAL ECONOMICS
NUMBER OF CREDITS: 3
PREREQUISITES:
FOR CHEMISTRY AND MANAGEMENT STUDENTS: ECON 1001 AND CHEM 1060
FOR COMPUTER SCIENCE & MANAGEMENT STUDENTS: ECON 1002 AND MATH1140
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course is concerned with the application of economic principles and methodologies to the decision-making process of the business firm operating under conditions of risk and uncertainty. Emphasis is also placed on the firm’s competitive strategy.
ASSESSMENT:
Coursework 25%
Final Examination 75%

LEVEL: III
SEMESTER: 1
COURSE CODE: MGMT 3011
COURSE TITLE: MANAGEMENT INFORMATION SYSTEMS II (ANALYSIS AND DESIGN)
NUMBER OF CREDITS: 3
PREREQUISITES: MGMT 2006
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course addresses the need for managers to understand the requirements for Information Systems, to participate in the design of systems and to manage the procurement of systems.

LEVEL: III
SEMESTER: 1
COURSE CODE: MGMT 3017
COURSE TITLE: HUMAN RESOURCE MANAGEMENT
NUMBER OF CREDITS: 3
PREREQUISITES: MGMT 2008
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course provides participants with a broad overview of issues pertaining to human resource management with special reference to the Caribbean environment.
LEVEL: III
SEMESTER: 2
COURSE CODE: MGMT 3060
COURSE TITLE: OPERATIONS, PLANNING AND CONTROL
NUMBER OF CREDITS: 3
PREREQUISITE: MGMT 2026
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: Building on the earlier course in Production and Operations Management, this course is intended to illustrate the array of planning and control techniques available to management to ensure the maximum productivity, quality, efficiency and profitability of the various operation systems involved in the production of goods and services.
ASSESSMENT:
Coursework 25%
Final Examination 75%

LEVEL: III
SEMESTER: 2
COURSE CODE: MKTG 3007
COURSE TITLE: MARKETING PLANNING
NUMBER OF CREDITS: 3
PREREQUISITES: MGMT 2003, MGMT 2012 AND MGMT 2023
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This intention is to equip students with the tools necessary for effective marketing planning in the public and private sectors. Analytical methods and data sources necessary in defining competition, analysing an industry and customers, and forecasting market potential is covered in depth. Students are expected to develop an actual marketing plan as a coursework project.
ASSESSMENT:
Coursework 30%
Final Examination 70%

MARKETING: MKTG

LEVEL: II
SEMESTERS: 2
COURSE CODE: MKTG 2001
COURSE TITLE: PRINCIPLES OF MARKETING
NUMBER OF CREDITS: 3
PREREQUISITES: ECON 1001 AND ACCT 1002
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course is intended to provide students with the conceptual framework and analytical skills necessary for the analysis of markets and marketing activities of firms in a dynamic environment.
ASSESSMENT:
Coursework 40%
Final Examination 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: MKTG 3000
COURSE TITLE: MARKETING MANAGEMENT
NUMBER OF CREDITS: 3
PREREQUISITES: MGMT 2003
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course is concerned with the development of the student’s marketing decision-making and students are expected to undertake a marketing project based on fieldwork.
ASSESSMENT:
Coursework 30%
Final Examination 70%
PHYSICS: PHYS

LEVEL: 0 (PRELIMINARY)
SEMESTER: 1
COURSE CODE: PHYS 0100
COURSE TITLE: N1 PHYSICS I
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC PHYSICS OR EQUIVALENT.

COURSE DESCRIPTION: This course focuses on the fundamentals of Mechanics, Heat and Waves. Students will study the kinematic and dynamic motion of particles in one and two dimensions, the fundamental forces and equations describing the motion of satellites in orbit around the earth, the conditions leading to equilibrium in mechanical systems and fluids, and the conservation of energy and its conversion with special reference to renewable energy sources (solar, wind, geothermal and wave). The course also allows you to describe the simple oscillating motion of a pendulum and the characteristics of simple wave motion. Students will be able to construct simple thermometers using properties of thermal equilibrium and thermal expansion, describe the variation of state properties of ideal gases using the ideal gas equation and use the kinetic nature of gas molecules to determine the state of the gas. You will learn how to calculate how much energy is conducted and radiated which depends on the nature of the material, how much work a gas does when expanding, whether thermal energy supplied or removed would be able to cause a phase change in a substance, and whether thermal energy is conserved. In this course, students will also have the opportunity to perform and interpret the results of simple experiments and demonstrations of physics.

ASSESSMENT:
- Theory Coursework 20%
- Practical Coursework 30%
- One 3-hour Final Examination 50%

LEVEL: 0 (PRELIMINARY)
SEMESTER: 2
COURSE CODE: PHYS 0200
COURSE TITLE: N1 PHYSICS II
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC PHYSICS OR EQUIVALENT.

COURSE DESCRIPTION: This course focuses on the fundamentals of Electricity & Magnetism, Optics and Modern Physics. Students will be able to describe electric fields, apply Ohm’s law and Kirchoff’s law in designing electric circuits, and determine the size of a capacitor in a circuit to store electric energy and to discharge this energy across a resistor. Other designs you will encounter will be determining the speed of a charge moving in a magnetic field so that it does not undergo angular deviations, and the force between current-carrying conductors. Applications that you will meet in electromagnetic induction will include motors, generators and transformers. Under the optics component you will be able to appreciate the wave-particle nature of matter and energy and the concepts of reflection, total internal reflection and refraction. In addition, students will compute the optical characteristics of concave and convex mirrors and thin lenses for different optical applications for image formation which may include image formation for the eye, simple camera, telescope and spectrometer. Modern Physics will take you through a journey from the structure of the stable nucleus and “binding energy” to nuclear instability, radioactive decay and “mass defect” with applications in radioactive shielding, archaeology, and medicine. In this course, students will also have the opportunity to perform and interpret the results of simple experiments and demonstrations of physics.

ASSESSMENT:
- Theory Coursework 20%
- Practical Coursework 30%
- One 3-hour Final Examination 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: PHYS 1001
COURSE TITLE: INTRODUCTION TO ASTRONOMY
NUMBER OF CREDITS: 3
PREREQUISITES: NONE

COURSE DESCRIPTION: This course develops the ideas of Ancient Astronomy leading up to the contributions of Copernicus, Brahe, Galileo and Newton. Optics and instrumentation. The solar system, stars: composition and evolution, white dwarfs, neutron stars, black holes. Extragalactic Astronomy: Galaxies, dark matter, dark energy, Cosmology. Life in the Universe.

ASSESSMENT:
- Coursework 40%
- One 2-hour Final Examination 60%
LEVEL: I
SEMESTER: 1
COURSE CODE: PHYS 1221
COURSE TITLE: INTRODUCTION TO MECHANICS
NO. OF CREDITS: 3
PREREQUISITES: CAPE PHYSICS (UNITS I AND II) OR CAPE MATHEMATICS (UNITS I AND II) AND CSEC (CXC) PHYSICS OR PHYS 0070 AND PHYS 0071 OR THEIR EQUIVALENT
COURSE DESCRIPTION: This course introduces the students to topics in Mechanics. The topics covered address Newtonian Mechanics including: kinematics, laws of motion, work and energy, systems of particles, momentum, circular motion, oscillations, and gravitation and concludes with topics in fluid mechanics. Through in-class discussions, problem-solving sessions and practical sessions, the student will have the opportunity to improve his/her ability to reason through challenging situations in the physical world using basic principles to develop appropriate solutions.
ASSESSMENT:
Final Examination (one 2-hr paper): 50%
Coursework: 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: PHYS 1223
COURSE TITLE: INTRODUCTION TO ELECTRICITY AND MAGNETISM
NO. OF CREDITS: 3
PREREQUISITES: CAPE PHYSICS (UNITS I AND II) OR CAPE MATHEMATICS (UNITS I AND II) AND CSEC (CXC) PHYSICS OR PHYS 0070 AND PHYS 0071 OR THEIR EQUIVALENT
COURSE DESCRIPTION: This course introduces the student to topics in Electricity, Magnetism and AC Theory. Through in-class discussion, problem-solving sessions and practical sessions, the student will have the opportunity to improve his/her ability to reason through challenging situations in the physical world using basic principles to develop appropriate solutions.
ASSESSMENT:
Final Examination (one 2-hr paper): 50%
Coursework: 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: PHYS 1222
COURSE TITLE: INTRODUCTION TO OPTICS, OSCILLATIONS AND WAVES
NO. OF CREDITS: 3
PREREQUISITES: CAPE PHYSICS (UNITS I AND II) OR CAPE MATHEMATICS (UNITS I AND II) AND CSEC (CXC) PHYSICS OR PHYS 0070 AND PHYS 0071 OR THEIR EQUIVALENT
COURSE DESCRIPTION: The theoretical aspect of this course provides students with the fundamentals of Optics, Oscillations and Waves whereas the practical component allows all the Year I students to be exposed to a variety of techniques, concepts and skills in the experimental sciences. Through in-class discussion, problem solving sessions and practical exercises students will have the opportunity to improve their ability to reason through challenging situations in the physical world using basic principles to develop appropriate solutions.
ASSESSMENT:
Final Examination (one 2-hr paper): 50%
Coursework: 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: PHYS 1224
COURSE TITLE: INTRODUCTION TO THERMODYNAMICS & MODERN PHYSICS
NO. OF CREDITS: 3
PREREQUISITES: CAPE PHYSICS (UNITS I AND II) OR CAPE MATHEMATICS (UNITS I AND II) AND CSEC (CXC) PHYSICS OR PHYS 0070 AND PHYS 0071 OR THEIR EQUIVALENT
COURSE DESCRIPTION: This course introduces the student to topics in the fundamentals of Thermodynamics and Modern Physics. Through in-class discussion, problem solving sessions and practical exercises students will have the opportunity to improve their ability to reason through challenging situations in the physical world using basic principles to develop appropriate solutions.
ASSESSMENT:
Final Examination (one 2-hr paper): 50%
Coursework: 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: PHYS 2150
COURSE TITLE: MATHEMATICS FOR PHYSICISTS
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111 OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216 OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Cartesian and Curvilinear Coordinate Systems; Vector Analysis; Complex Variable Theory; Fourier Series Analysis; Differential Equations (up to second order); and Applications of these methods in Physics.
ASSESSMENT:
Coursework: 40%
Final Examination (one 2-hour paper): 60%
LEVEL: II
SEMESTER: 2
COURSE CODE: PHYS 2151
COURSE TITLE: CLASSICAL AND STATISTICAL MECHANICS
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111
OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216
OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: This course provides a formal introduction to classical mechanics and statistical mechanics. Topics covered are under Classical Mechanics include Newtonian Mechanics for a system of particles, Lagrangian dynamics and Hamiltonian dynamics. Topics under Statistical Mechanics include microcanonical, canonical, and grand canonical ensemble probabilistic tools, with applications to thermodynamic systems involving ideal gases, solids, and quantum gases.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: II
SEMESTER: 1
COURSE CODE: PHYS 2152
COURSE TITLE: VIBRATIONS, WAVES AND OPTICS
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111
OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216
OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Optics: Review of thin lens imaging; reflection and refraction at a spherical surface; Lensmaker formula; Vergeance and refracting power; Newtonian equation for a thin lens; Matrix methods; Aberration Theory. Oscillations and Waves: Simple, damped and forced harmonic motion; Equations of motion and their solutions; Different aspects and applications of these motions; Equation of wave motion in one dimension; Longitudinal and transverse waves and the consideration of different examples of the propagation of these waves.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: II
SEMESTER: YEAR-LONG
COURSE CODE: PHYS 2155
COURSE TITLE: MAJOR LABORATORY LEVEL II
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111
OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216
OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Laboratory experiments and numerical modelling using MAPLE and/or MATLAB are to be performed corresponding to the theory courses of the Major. The students will be expected to perform the exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.
ASSESSMENT:
Coursework: 100%
Students will be required to submit a lab report for each of the experiments they will perform. Each lab report will be marked and this will constitute the coursework.
LEVEL: II
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: PHYS 2156
COURSE TITLE: METEOROLOGY AND CLIMATOLOGY
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111 OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216 OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hour paper) 60%

LEVEL: II
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: PHYS 2157
COURSE TITLE: SOLID EARTH GEOPHYSICS
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111 OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216 OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Physics of the Earth: The shape of the Earth: The Geoid and reference Spheroid, Gravity of the Earth, Measurement of gravity, Corrections to gravity measurements (gravity reductions); Latitude; Elevation; Topographs of surrounding terrain; Earth tides, and Density variations in the subsurface. Testing Isostasy by gravity measurements.Geoid height anomalies.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hour paper) 60%
LEVEL: II
SEMESTER: 2
COURSE CODE: PHYS 2166
COURSE TITLE: TECHNOLOGICAL MATERIALS
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2165 OR PHYS 2294
COURSE DESCRIPTION: Earth Materials: Raw Materials, metals and their ores, importance of these materials, basic building blocks of earth materials, mineral chemistry, metal chemistry, glasses, ion conducting glasses, crystal structures, effect of temperature, pressure and environment on these minerals and metals

Material Extraction Processes: Importance of extraction, principles of extraction, crushing of ores, separation of ores: gravity separation, magnetic separation, froth floatation process, leeching, calcination, roasting, reduction of free metal: smelting, reduction of aluminium, self-reduction process, electrolytic reduction, cyanide method, refining/purification; liqation, distillation, poling, zone refining, Mond’s process, Van Arkel process.

Characterization: Structure of metals and minerals, methods to determine structure, metallography, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, phase diagrams, electrical properties and their variations with phases, physical property determination.

ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: PHYS 3150
COURSE TITLE: ELECTROMAGNETISM
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2150 OR PHYS 2280
COURSE DESCRIPTION:
Electromagnetic Theory
The electric field: Coulomb’s law. Discrete and continuous charge distributions. Divergence and curl of electrostatic fields; The electric potential: The potential of a localized charge distribution. Work and energy in electrostatics; Electric fields in matter: Polarization. The electric displacement and linear dielectrics; The magnetic field: The magnetic field, magnetic forces and currents. The Biot-Savart law. The magnetic field of a steady current. The divergence and curl of magnetic fields; Magnetic fields in matter: Magnetization. Response of materials to magnetic fields. The magnetic field inside matter. Ampere’s law in magnetized materials; Electrodynamics: Electromotive force and electromagnetic induction. Maxwell’s equations and the displacement current in vacuum and in matter; Electromagnetic waves: The wave equation for E and B. Electromagnetic waves in a vacuum. Electromagnetic waves in conductors and dielectrics.

Applications of Electromagnetism:
Waveguides: The rectangular waveguide. Transverse electric modes (TE) and transverse magnetic modes (TM). Propagation characteristics of rectangular waveguides; Antennas: Introduction to types of antennas. Antenna parameters in terms of the time-averaged Poynting vector.

ASSESSMENT:
Coursework 40%
Final Examination (one 2-hr paper) 60%
LEVEL: III
SEMESTER: 2
COURSE CODE: PHYS 3151
COURSE TITLE: QUANTUM MECHANICS
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2150 OR PHYS 2280
COURSE DESCRIPTION:
- The origins of quantum physics: Review of Blackbody radiation, the Photoelectric effect and the Compton Effect. Wave properties of material particles and electron diffraction. The Bohr atom.
- One-dimensional problems: The free particle. Solutions to the Schrödinger equation for the infinite potential well. Stationary states of the infinite well. The potential barrier and quantum tunnelling. The harmonic oscillator. Applications.
- Three-dimensional problems: Wave functions of the infinite cubical well. Degeneracy of the energy levels. Wave functions of the hydrogen atom and degeneracy of the spectrum.

ASSESSMENT:
Coursework 40%
Final Examination (one 2-hr paper) 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: PHYS 3152
COURSE TITLE: ADVANCED THERMODYNAMICS AND SOLID STATE PHYSICS
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111 OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216 OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION:
Solid State Physics: Structure of solids, elementary crystallography and crystal diffraction, free electron theory of metals, energy band theory, semiconductors, superconductivity.

ASSESSMENT:
Coursework 40%
Final Examination (one 2-hr paper) 60%

LEVEL: III
SEMESTER: 1 AND 2
COURSE CODE: PHYS 3153
COURSE TITLE: PHYSICS MAJOR RESEARCH PROJECT
NO. OF CREDITS: 3
PREREQUISITES: AVAILABLE ONLY TO PHYSICS MAJORS
COURSE DESCRIPTION: Students will be required to complete a 12 weeks research project for completion of their Major in Physics. Projects will be offered in the various disciplines of Physics and each Project will be assigned a Project Supervisor. Projects may involve pure research study toward a fundamental aspect of Physics or address more applied issues. It may involve field or laboratory based work or may be a desk study involving data analysis or interrogation of legal documents. The project should, however, give the student a chance to further develop skills from the toolbox and a more detailed understanding of some component of the course. This course is offered in both Semester I & II
ASSESSMENT:
Oral 20%
Report 80%
1. Only students who need not more than 30 credits to graduate will be assigned a project.
LEVEL: III
SEMESTER: YEAR-LONG
COURSE CODE: PHYS 3155
COURSE TITLE: PHYSICS MAJOR LABORATORY NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111, OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216, OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Laboratory experiments are to be performed corresponding to the theory courses of the major. The students will be expected to perform the exercises and collect their data and depending on the complexity of the exercise will submit a written report at the end of the exercise or the following week for assessment.
ASSESSMENT:
Coursework: 100%
Students will be required to submit a lab report for each of the experiments they will perform. Each lab report will be marked and this will constitute the coursework.

LEVEL: III
SEMESTER: 1
COURSE CODE: PHYS 3156
COURSE TITLE: PRINCIPLES OF PHYSICAL OCEANOGRAPHY AND GEODYNAMICS
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111 OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216 OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hour paper) 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: PHYS 3157
COURSE TITLE: EARTH SCIENCE
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111 OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216 OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Earth processes and Caribbean Stratigraphy: Properties of minerals and crystals; composition, occurrence, distribution, classification and field recognition of igneous, sedimentary and metamorphic rocks; tectonic and structural features of the earth; volcanic activity; formation of soils and sediments; stratigraphy and geologic time; plate tectonics. The Caribbean environment in relation to: man, water supply, soils, petroleum, engineering geology and minerals. Introduction to Earth Materials: the origin, occurrence, world distribution and development of major earth resources-metalliferous and non-metal ores, petroleum, coal building materials, chemical raw materials, biomass resources. Earth seismology: the nature of earthquakes; the propagation and detection of seismic wave; geographical distribution of earthquakes; surface effects of earthquakes, earthquake history of the Caribbean.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hour paper) 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: PHYS 3158
COURSE TITLE: FUNDAMENTALS OF RENEWABLE ENERGY
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111 OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216 OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Introduction to current sources of Energy and World’s Oil production; Renewable Energy requirements, types and effects; Renewable Energy Technologies; Conservation, conversion and efficiency; applications and evaluation of renewable energy systems - solar energy, biomass, wind energy, geothermal energy and hydropower.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hour paper) 60%
LEVEL: III
SEMESTER: YEAR-LONG
COURSE CODE: PHYS 3159
COURSE TITLE: ENVIRONMENTAL PHYSICS LABORATORY
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111
OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215, AND PHYS 1216
OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Laboratory experiments and field trips with site work are to be performed corresponding to the taught components of the Environmental Physics Minor. Students will be expected to perform the exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.

ASSESSMENT:
Coursework: 100%
The students will be required to submit a lab report for each of the experiments they will perform. Each lab report will be marked and this will constitute the coursework.

LEVEL: III
SEMESTER: YEAR-LONG
COURSE CODE: PHYS 3160
COURSE TITLE: MEDICAL PHYSICS & BIOENGINEERING LABORATORY
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111
OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216 OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Laboratory experiments and field trips with site work are to be performed corresponding to the taught components of the Medical Physics & Bioengineering minor. The students will be expected to perform the exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.

ASSESSMENT:
Coursework: 100%
The students will be required to submit a lab report for each of the experiments they will perform. Each lab report will be marked and this will constitute the coursework.

LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: PHYS 3164
COURSE TITLE: CERAMICS SCIENCE
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111
OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216 OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Definition and classification of ceramics; typical properties; engineering/industrial applications based on properties; crystal structure; raw materials; fabrication and processing; mechanical, thermal, electrical and magnetic properties; glasses; cement and concrete.

ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%
LEVEL: III
SEMESTER: NOT OFFERED IN 2016/2017
COURSE CODE: PHYS 3165
COURSE TITLE: MATERIALS SCIENCE II
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2165 OR PHYS 2294
COURSE DESCRIPTION: Iron and Steel: Raw Materials, Iron ore, purification processes, steel, steel making, blast furnace, electric arc furnace, types of steels and applications, processing of steels, forging, dye formation, extrusion, rolling, heat treatment. Steel phase diagram, isothermal phase transformations, cooling curves, properties and effect of impurities
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: PHYS 3167
COURSE TITLE: RADIATION BIOPHYSICS AND MEDICINE
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111
OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216
OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Introduction to cell biology and DNA: this part of the course addresses cell structure, division and functioning, DNA as the main target for radiation, genetics, functioning of cell and damages caused by different types of radiation.
Radiation damage and DNA repair. Cell death and mutation. Organ, tissue and organism effects of irradiation: This part of course addresses cell survival after irradiation and different biological and chemical mechanisms affecting the survival as well as DNA damage and repair. Tissue, organs and organism, effects of irradiation. Here the key knowledge of radiation effects is learned.
Modern methods of radiotherapy: This part of course addresses the main principles, modern methods of radiotherapy and combined therapies as well as tumor biology and responses of tumor and of normal tissues to radiation.
Radiation Carcinogenesis: This part of course addresses the development of cancer after radiation: type of malignancy, dosage, time responses and concepts of for risk estimations.
Radiation protection and legislation: This part of course addresses radiation accidents, radioecology, risk estimation and current legislation in radiation (International and Local). What we have learned after certain accidents and how to avoid high radiation doses or to minimize the consequences of irradiation.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: III
SEMESTER: YEAR-LONG
COURSE CODE: PHYS 3166
COURSE TITLE: MATERIALS SCIENCE LABORATORY
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111, OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216 OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Laboratory experiments and a field trip with site work are to be performed corresponding to the taught components of the Materials Science Minor. The students will be expected to perform the exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.
ASSESSMENT:
Coursework: 100%
Students will be required to submit a lab report for each of the experiments they will perform. Each lab report will be marked and this will constitute the coursework.
LEVEL: III
SEMESTER: 2
COURSE CODE: PHYS 3168
COURSE TITLE: MEDICAL INSTRUMENTATION
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1110 AND PHYS 1111
OR ALL CREDITS FROM PHYS 1211, PHYS 1212, PHYS 1213, PHYS 1214, PHYS 1215 AND PHYS 1216
OR ALL CREDITS FROM PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
COURSE DESCRIPTION: Electronic Instruments: voltmeters e.g. VTVM Transistor voltmeter, multimeter, use of cathode-ray oscilloscope for the measurement of voltage, current phase and frequency, special purpose oscilloscopes, measurement of resistance, inductance, capacitance, using Kelvin’s, Maxwell’s and Schering bridge, measurement of effective resistance at high frequency, R meter, LCR meter. Signal generators, function generator, wave analyzer, harmonic distortion analyzer, spectrum analyzer, spectrum analysis. Transducers: operation of strain gauge, electromechanical transducer e.g. Linear Variable Differential Transformer (LVDT), thermocouple, piezo- electric crystal, photoelectric transducers, light detecting resistor (LDR), SQUID, thermistors. Digital-to-analog and analog-to-digital conversion techniques. Data Acquisition System for patient monitoring: recording equipment: types e.g. graphic, strip chart, magnetic tape, digital tape and requirements. Safety issues: Macro and micro current shock, special design from safety consideration, safety standards, testing, ensuring protection of equipment and personnel.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: II
SEMESTER: 1
COURSE CODE: PHYS 2401
COURSE TITLE: OPTOELECTRONICS
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1223 OR PHYS 1212 OR PHYS 1110 AND PHYS 1111
COURSE DESCRIPTION: This course introduces the student to the fundamentals of analog electronics. It begins with semiconductor theory and its application to various electronic and optoelectronic devices. Semiconductor diodes, zener diodes and bipolar junction transistors, their types, construction, related theory, I/V characteristics, biasing techniques, ac/dc analysis and their applications are studied. Optoelectronics related to devices/systems such as light emitting diodes, laser diodes, optical detectors, fiber-optics and solar cells are discussed along with applications. The course provides the fundamentals for other electronics courses in particular the course on PHYS 3201 - Advance Electronics and Control Theory for which it is the prerequisite. Assessment and evaluation is done in the form of in-course tests and a final examination.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: II
SEMESTER: 2
COURSE CODE: PHYS 2402
COURSE TITLE: DIGITAL CIRCUITS AND LOGIC DESIGN
NUMBER OF CREDITS: 3
PREREQUISITES: PHYS 2401 OR PHYS 2163
COURSE DESCRIPTION: This course introduces the student to the fundamentals of digital electronic and logic circuit design. It covers basics of digital electronic i.e. logic gates, Boolean algebra, logic minimization & implementation, logic families, number systems, binary codes and binary arithmetic. Combinational and sequential logic circuit design fundamentals are explained along with their applications. Various type of registers and counters along with design steps and applications are also covered in this course. As such it provides building blocks for the other courses in particular the course PHYS 3203 Microprocessor and Modern Digital Design for which it is the prerequisite. Assessment and evaluation is done in the form of in-course tests and a Final examination.
ASSESSMENT:
Coursework 40%
Final Examination (one 2-hr paper) 60%
LEVEL: III
SEMESTER: 1
COURSE CODE: PHYS 3201
COURSE TITLE: ADVANCE ELECTRONICS AND CONTROL THEORY
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2401 or PHYS 2163
COURSE DESCRIPTION: This course deals with two major areas of electronics. First part deals with the advance analog electronics and covers the concept of feedback, feedback amplifiers, multivibrators, differential amplifiers, operational amplifiers; related theory and their applications. Second part deals with control theory and explores modeling, analysis and design of feedback control systems using classical approach. This course builds foundation for the course ECNG 3019 - Advance Control System Design and prepares students for automation industry.
ASSESSMENT:
Coursework 40%
Final Examination (one 2-hr paper) 60%

LEVEL: III
SEMESTER: YEAR-LONG
COURSE CODE: PHYS 3202
COURSE TITLE: PRACTICAL ELECTRONICS - I
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2401 and PHYS 2402 or PHYS 2162 and PHYS 2163
COURSE DESCRIPTION: This laboratory course addresses the practical component of the Electronics Minor and covers all topic areas taught in four courses of the minor. This course provides the necessary practical knowledge in the field of basic as well as advance analog and digital electronics. The purpose of this laboratory course is to give students hands-on experience and to allow them to test the principles which they learn from the theoretical components of the courses. The students will be expected to perform the laboratory exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.
ASSESSMENT:
Coursework 100%

LEVEL: III
SEMESTER: 2
COURSE CODE: PHYS 3203
COURSE TITLE: MICROPROCESSOR AND MODERN DIGITAL DESIGN
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2402 or PHYS 2162
COURSE DESCRIPTION: The main objective is to build a strong foundation for the students in the area of modern digital electronics and microprocessors fundamentals and to expose them to the entire digital systems design process from gate level to system level. An overview of advanced digital system design technologies and industrial grade Electronics Design and Automation (EDA) tools is provided to develop skilled manpower in the highly demanding area of System- On- Chip Design and to encourage entrepreneurship.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: PHYS 3204
COURSE TITLE: PRACTICAL ELECTRONICS II
NO. OF CREDITS: 3
PREREQUISITES: ECNG 2001 or PHYS 3161 or PHYS 3201
COURSE DESCRIPTION: This laboratory based course consists of advance level laboratory exercises and mini project from analog & digital communication and control systems. Laboratory experiments covering topic areas of the courses ECNG 2001 –Communication System –I, ECNG 3001 - Communication Systems –II and PHYS 3201 - Advance Electronics and Control Theory will be performed. The purpose of this experimental based laboratory course is to give students hands-on experience and to allow them to test the principles which they learn from the theoretical components of the courses. The students will be expected to perform the laboratory exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.
ASSESSMENT:
Coursework 100%
SPANISH: SPAN

LEVEL: I
SEMESTERS: 1 AND 2
COURSE CODE: SPAN 1101
COURSE TITLE: LEVEL 1A SPANISH
NUMBER OF CREDITS: 2
PREREQUISITES: NONE

COURSE DESCRIPTION: This is a beginners’ course for students with no previous knowledge of Spanish. This communicative course focuses on the development of the four skills: listening, speaking, reading and writing as well as on the development of knowledge of the Hispanic culture. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by one hour of independent study for each contact hour.

ASSESSMENT:
In-course testing: 100%:
40% [mid-semester];
40% [end of semester];
20% [two assignments]

LEVEL: I
SEMESTERS: 1 AND 2
COURSE CODE: SPAN 1102
COURSE TITLE: LEVEL 1B SPANISH
NUMBER OF CREDITS: 2
PREREQUISITES: SPAN 1101/1A SPANISH OR EQUIVALENT

COURSE DESCRIPTION: Students in this course have some basic knowledge of Spanish. This course will build on the skills learnt in SPAN 1101/1A Spanish and aims to continue to promote communicative and intercultural competence. The focus will be on the development of the four skills: speaking, listening, reading and writing. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by one hour of independent study for each contact hour.

ASSESSMENT:
In-course testing: 100%:
40% [mid-semester];
40% [end of semester];
20% [two assignments]

STATISTICS: STAT

LEVEL: III
SEMESTER: 1
COURSE CODE: STAT 3000
COURSE TITLE: REGRESSION WITH TIME SERIES ANALYSIS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2275

COURSE DESCRIPTION: This course builds on the applied aspects of Statistics I. It is primarily concerned with the construction of regression and time series models relevant to econometric modelling.

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: STAT 3001
COURSE TITLE: EXPERIMENTAL DESIGN AND SAMPLING THEORY
PREREQUISITES: MATH2275

COURSE DESCRIPTION: This course aims to deliver basic ideas of sampling and experimental design from an applied perspective and to provide experience with real-like problems and data. The course will cover the main techniques used in actual sampling practice — simple random sampling, stratification, systematic selection and cluster sampling.

This is an applied statistical methods course. It differs from most statistics courses because it is concerned as much with the design of data collection as with the analysis of data. The course will concentrate on problems of applying sampling methods to human populations, because survey practices are widely used in that area, and because sampling human populations pose particular problems not found in sampling of other types of units. However, the principles of sample selection can be applied to many other types of populations. The experimental designs covered are sufficient to provide students with the knowledge and capability to execute and advise on experiments in and of the sciences. Students get exposure to the analysis of real datasets using appropriate statistical software like SPSS and R to analyze survey data.

ASSESSMENT:
Coursework 50%
Final Examination (One 2-hr paper) 50%
LEVEL: III
SEMESTERS: Not offered in 2016/2017
COURSE CODE: STAT 3010
COURSE TITLE: REGRESSION ANALYSIS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2275
COURSE DESCRIPTION: The course will consist of a mixture of lectures and practical work (which will be assessed by the student’s completion of practical assignments to be submitted). Computer practical session, in which R, the statistical package will be used on which the continuous assessment is based. The lectures will focus on statistical modelling, including selection of appropriate models, the analysis and interpretation of results and diagnostics. Exploratory and graphical techniques will be considered, as well as formal statistical procedures.
ASSESSMENT:
Coursework 50%
Final Examination (One 2-hr paper) 50%

LEVEL: III
SEMESTER: Not offered in 2016/2017
COURSE CODE: STAT 3011
COURSE TITLE: DESIGN OF EXPERIMENTS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2275
COURSE DESCRIPTION: The main objective of this course is to provide undergraduates with the ability to design and properly analyze experimental data. Statisticians contribute to experiments by helping to make them more efficient. In a designed experiment the scientist is free to fix and/or randomize and/or mix the levels of the exploratory variables. Design is about choosing the combinations of these levels at which to observe the response variable. The course will describe the various ways of structuring data to eliminate the effects of confusing factors so that the main factors of interest can be investigated more reliably. The course will be very practical involving the use of the packages MINITAB and R (and SPSS where possible). Theory will be studied but the emphasis will be on the practical interpretation of the data and appropriate models.
ASSESSMENT:
Coursework 50%
Final Examination (One 2-hr paper) 50%

LEVEL: III
SEMESTERS: 2
COURSE CODE: STAT 3012
COURSE TITLE: APPLIED MULTIVARIATE STATISTICS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2273 OR ECON 2015 AND MATH2275 OR ECON 2006
COURSE DESCRIPTION: The main objective of this course is to provide undergraduate students with a set of statistical tools that will enable them to analyze multivariate data properly using sound statistical methods and appropriate computer software. Possible topics to be covered include multivariate data screening, principal component analysis, discriminant analysis, cluster analysis and factor analysis. Students should expect to spend approximately 3-5 hours per week on homework assignments and readings (beyond class time). All methods will be illustrated via real data sets, using the open source statistical software R (http://cran.r-project.org/). This course will also expose students to use of statistical software such as MINITAB and SPSS.
ASSESSMENT:
Coursework 50%
Final Examination (One 2-hr paper) 50%