TABLE OF CONTENTS

HOW TO USE THIS HANDBOOK ... 3
DISCLAIMER - PROGRAMMES & COURSES ... 3
DISCLAIMER – PRIZES & AWARDS ... 3

CAREER ACTION PLAN ... 4

ACADEMIC CALENDAR 2019/2020 ... 5

MESSAGE FROM THE DEAN .. 6

SECTION I - STAFF LISTING .. 7

SECTION II – INTRODUCTION .. 19

SECTION III - GLOSSARY ... 25

SECTION IV - FACULTY REGULATIONS .. 27

SECTION V - REGULATIONS GOVERNING THE FST SUMMER SCHOOL PROGRAMME ... 36

SECTION VI – GENERAL REGULATIONS GOVERNING THE PRE-SCIENCE (N1) PROGRAMME ... 38

SECTION VII – APPROVED SCIENCE CAPE/GCE A-LEVEL SUBJECTS ... 39

SECTION VIII - PRE-REQUISITES FOR CROSS FACULTY COURSES ... 40

SECTION IX – LIST OF ANTI-REQUISITES .. 42

SECTION X - UNIVERSITY REGULATIONS ON PLAGIARISM ... 43

PLAGIARISM DECLARATION .. 46
INDIVIDUAL PLAGIARISM DECLARATION ... 46
GROUP PLAGIARISM DECLARATION ... 47
ADDITIONAL ACCOUNTABILITY STATEMENT WHERE WORK HAS BEEN PREVIOUSLY SUBMITTED ... 48

SECTION XI - PRIZES .. 49

SECTION XII - PROGRAMME OUTLINES ... 53

OFFICE OF THE DEAN .. 53

PRE-SCIENCE (N1) PROGRAMME ... 53

DEPARTMENT OF CHEMISTRY .. 54

MAJORS, MINORS, and SPECIAL OPTIONS .. 56
Major in Chemistry .. 57
Major in Industrial Chemistry ... 58
Minor in Chemistry .. 59
Minor in Analytical Chemistry ... 59
Minor in Industrial Chemistry ... 60
Minor in Chemical Biology .. 60
Minor in Materials Chemistry ... 61
BSc CHEMISTRY (SPECIAL) ... 62
BSc CHEMISTRY AND MANAGEMENT (SPECIAL) 64

DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY ... 66

BSc COMPUTER SCIENCE (SPECIAL) .. 68
BSc COMPUTER SCIENCE WITH MANAGEMENT (SPECIAL) 70
Major in Computer Science ... 72
Minor in Computer Science ... 73
BSc INFORMATION TECHNOLOGY (SPECIAL) .. 74
BSc INFORMATION TECHNOLOGY WITH MANAGEMENT (SPECIAL) 76
Major in Information Technology .. 77
Minor in Information Technology .. 78
BSc SOFTWARE ENGINEERING (Mobile Application Technologies) 80
DEPARTMENT OF LIFE SCIENCES ...81

MAJORS & MINORS ...83
Major in Biochemistry..83
Major in Biology ...84
Major in Environmental Science ..86
BSc BIOLOGY WITH SPECIALISATIONS ..88
BSc ENVIRONMENTAL SCIENCE AND SUSTAINABLE TECHNOLOGY (ESST) (SPECIAL)91

MINORS ..93
Minor in Biochemistry..93
Minor in Biology ..93

DEPARTMENT OF MATHEMATICS & STATISTICS ...95
MAJORS, MINORS and SPECIAL OPTIONS ..96
Major in Mathematics ..96
BSc ACTUARIAL SCIENCE (SPECIAL) ..97
BSc MATHEMATICS (SPECIAL) ..99
BSc MATHEMATICS AND APPLIED STATISTICS (SPECIAL) ...101
BSc STATISTICS (SPECIAL) ..103
BSc STATISTICS AND ECONOMICS (SPECIAL) ..105
Minor in Mathematics ..107
Minor in Statistics ...107

DEPARTMENT OF PHYSICS ..108
MAJORS, MINORS, and SPECIAL OPTION. ..109
Major in Electronics ..109
Major in Physics ..110
Minor in Electronics ...111
Minor in Environmental Physics ...111
Minor in Materials Science ..111
Minor in Medical Physics & Bioengineering ..112
BSc BIOMEDICAL TECHNOLOGY (SPECIAL) ...113

LANGUAGE COURSES ..115

SECTION XIII: COURSE DESCRIPTIONS ..116
HOW TO USE THIS HANDBOOK

The Faculty Handbooks (also known as Faculty Booklets) are available on the Campus website in PDF format at http://sta.uwi.edu/faculty-booklet-archive. The Handbooks include:

- Relevant Faculty Regulations – e.g. Admission Criteria, Exemptions, Progression, GPA, Leave of Absence, etc.
- Relevant University Regulations including the Plagiarism Regulations and Declaration Forms
- Other Information on Co-Curricular courses, Language courses and Support for Students with physical and other disabilities or impairments.
- Programme Descriptions and Course Listings which include the list of courses to be pursued in each programme (degrees, diplomas and certificates), sorted by level and semester; course credits and credits to be completed for each programme – majors, minors and specials.
- Course Descriptions which may include details such as prerequisites and methods of assessment.

Students should note the following:
The Regulations and Syllabuses issued in the Faculty Handbooks should be read in conjunction with the following University Regulations:

- The Undergraduate Regulations and Syllabuses should be read in conjunction with the University Regulations contained in the Undergraduate Handbook and the University’s Assessment Regulations (with effect from August 2018)
- The Postgraduate Regulations and Syllabuses should be read in conjunction with the University Regulations contained on the Postgraduate Admissions website and the Board for Graduate Studies and Research Regulations for Graduate Certificates, Diplomas and Degrees (with effect from August 2018)

Progress through a programme of study at the University is governed by Faculty Regulations and University Regulations. Should there be a conflict between Faculty Regulations and University Regulations, University Regulations shall prevail, where appropriate.

DISCLAIMER - PROGRAMMES & COURSES

Notwithstanding the contents of Faculty Handbooks, course outlines or any other course materials provided by the University, the University reserves the right at any time to altogether withdraw or modify programmes or courses as it deems necessary.

DISCLAIMER – PRIZES & AWARDS

In the case where Faculty/Student Prizes or Awards may be listed, the Faculty does not bind itself to award any or all of the listed prizes/awards contained herein or its stated value and reserves the right to modify or altogether remove certain prizes/awards as described in either or both the electronic and printed versions of the Faculty Handbooks.
CAREER ACTION PLAN

Use your time at UWI to shape the future YOU desire.

<table>
<thead>
<tr>
<th>CHOICE MAJOR AND CAREER</th>
<th>LEVEL 1 STUDENTS</th>
<th>LEVEL 2 STUDENTS</th>
<th>FINAL YEAR STUDENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOOSE MAJOR AND CAREER</td>
<td>• Consult with your academic adviser</td>
<td>• Meet with your Faculty adviser to explore major and appropriate career paths. If unsure about major or unclear about course requirements</td>
<td>• Visit CAP workshops to discuss transition from school to work</td>
</tr>
<tr>
<td></td>
<td>• Visit Career Advice Programme (CAP) workshops to identify career path, which is best suited to your interests, abilities and values</td>
<td>• Visit CAP workshops about major/career choices</td>
<td>• Identify and research potential employers</td>
</tr>
<tr>
<td></td>
<td>• Read the University of the West Indies Faculty Booklet</td>
<td>• Begin to build career network</td>
<td>• Learn to market yourself effectively. Attend seminars sponsored by DSSD</td>
</tr>
<tr>
<td>SUPPLEMENT ACADEMIC STUDIES</td>
<td>• Attend recruitment fairs related to major/career interests</td>
<td>• Participate in campus leadership activities. Contact DSSD for information</td>
<td>• Attend conferences, meetings or career related events</td>
</tr>
<tr>
<td></td>
<td>• Visit library; browse published articles</td>
<td>• Assume an active role in clubs or organizations to develop or enhance leadership and other transferable skills</td>
<td>• Get involved in career related professional organizations</td>
</tr>
<tr>
<td></td>
<td>• Visit DSSD (Division of Students Services & Development) for information on campus activities</td>
<td>• Continue collection of portfolio materials. Include work in progress to show ability to edit, revise and improve</td>
<td>• Organize for presentation to employers. Solicit feedback on contents from adviser, department chair, and professionals in chosen field</td>
</tr>
<tr>
<td>DEVELOP PORTFOLIO</td>
<td>• Collect outstanding course work, projects, writing samples, accomplishments, letters of recommendation, photographs of activities, evaluation, etc.</td>
<td>• Increase marketability; build transferable skills through part time and summer jobs on-campus or off-campus at DSSD recruitment fair</td>
<td>• Participate in the World of Work Seminars via DSSD: resume writing, interview preparation, mock interviews, VIP cocktail reception, and recruitment fair</td>
</tr>
<tr>
<td>BUILD WORK EXPERIENCE AND VALUES</td>
<td>• Explore on-campus, off-campus, part-time and summer jobs at DSSD recruitment fair</td>
<td>• Determine and test work values in part-time and summer jobs</td>
<td>• Seek and apply for an internship to increase marketability</td>
</tr>
<tr>
<td></td>
<td>• Consider the student exchange programme at the International Office</td>
<td>• Attend Executive Transition Programme (ETP) workshops hosted by DSSD. ETP is designed to help students successfully transition into internship, and the workplace</td>
<td>• Create a list of references</td>
</tr>
<tr>
<td>CREATE RESUME</td>
<td>• Attend resume writing workshop and begin building your resume</td>
<td>• Add new volunteer, work experiences, and indicate newly developed skills</td>
<td>• Use the employment services at DSSD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Continue to update resume</td>
<td>• Continue to update resume</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Prepare a list of references</td>
</tr>
</tbody>
</table>

Return to Table of Contents
ACADEMIC CALENDAR 2019/2020

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>SEMESTER 1</th>
<th></th>
<th>SEMESTER 2</th>
<th></th>
<th>SUMMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester BEGINS</td>
<td>August 25, 2019</td>
<td>January 19, 2020</td>
<td>May 24, 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration BEGINS</td>
<td>August 19, 2019</td>
<td>January 13, 2020</td>
<td>May 18, 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration ENDS</td>
<td>September 13, 2019</td>
<td>January 31, 2020</td>
<td>June 13, 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching BEGINS</td>
<td>September 2, 2019</td>
<td>January 20, 2020</td>
<td>May 25, 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching ENDS</td>
<td>November 29, 2019</td>
<td>April 17, 2020</td>
<td>July 3, 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late registration/late payment Fee of TT$200.00 APPLIES from</td>
<td>September 9, 2019</td>
<td>February 01, 2020</td>
<td>June 8, 2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STUDENT PAYMENT PLAN (SPP)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Semester 1</th>
<th>Semester 2</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Installment (down payment)</td>
<td>Last working day August</td>
<td>Last working day January</td>
<td>Last working day May</td>
</tr>
<tr>
<td>2nd installment</td>
<td>Last working day September</td>
<td>Last working day February</td>
<td>Last working day June</td>
</tr>
<tr>
<td>3rd installment</td>
<td>Last working day October</td>
<td>Last working day March</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late day for payment of fees before course registration is removed / Compulsory leave of absence is recorded.</td>
<td>October 31, 2019</td>
</tr>
<tr>
<td>Examinations BEGIN</td>
<td>December 02, 2019</td>
</tr>
<tr>
<td>Examinations END</td>
<td>December 20, 2019</td>
</tr>
<tr>
<td>Semester ENDS</td>
<td>December 20, 2019</td>
</tr>
<tr>
<td>Application to Carry forward Coursework ENDS</td>
<td>September 13, 2019</td>
</tr>
<tr>
<td>Application for Leave of Absence ENDS</td>
<td></td>
</tr>
<tr>
<td>Application for Credit and Exemptions ENDS</td>
<td></td>
</tr>
<tr>
<td>Submission of Faculty Overrides BEGINS</td>
<td>August 19, 2019</td>
</tr>
<tr>
<td>Submission of Overrides END</td>
<td>September 10, 2019</td>
</tr>
<tr>
<td>Deadline for processing of overrides in Banner by Faculty</td>
<td>September 13, 2019</td>
</tr>
</tbody>
</table>

UWI LIFE - BREAKS

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester II - Break</td>
<td>August 19, 2019</td>
</tr>
<tr>
<td>ELPT: Scheduled for the following dates</td>
<td>August 19, 2019</td>
</tr>
</tbody>
</table>

SPECIALLY-ADMITTED 2019/2020

<table>
<thead>
<tr>
<th>Activity</th>
<th>Semester 1</th>
<th>Semester 2</th>
<th>Entire Academic Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application for Specially Admitted OPENS</td>
<td>November 12, 2018</td>
<td>November 12, 2018</td>
<td>November 12, 2018</td>
</tr>
<tr>
<td>Application for Specially Admitted ENDS</td>
<td>July 12, 2019</td>
<td>December 13, 2019</td>
<td>June 28, 2019</td>
</tr>
</tbody>
</table>

CEREMONIES

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriculation Ceremony</td>
<td>September 18, 2019</td>
</tr>
<tr>
<td>Graduation Dates</td>
<td>October 12, 2019 (Open Campus)</td>
</tr>
</tbody>
</table>

INTER-FACULTY AND INTER-CAMPUS TRANSFERS 2020/21

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Faculties</td>
<td>November 11, 2019</td>
</tr>
</tbody>
</table>

UNDERGRADUATE SCHOLARSHIPS & BURSARIES

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTINUING Students</td>
<td></td>
</tr>
<tr>
<td>First Year Students</td>
<td>September 1, 2019</td>
</tr>
</tbody>
</table>

Revised August 2019. This calendar is subject to change by the appropriate authorities. This is an abridged version of the Academic Calendar. For the full and most up-to-date calendar, visit https://sta.uwi.edu/registration/academiccalendar.asp

Return to Table of Contents
MESSAGE FROM THE DEAN

Welcome to the Faculty of Science & Technology (FST), The University of the West Indies, St. Augustine. We are proud and enthusiastic that you have chosen the FST for tertiary level certification and the attendant competencies that will serve you on your career path. Your programme may permit you the opportunity to explore more than one discipline within this or another faculty. As far as possible, you should acquire new skills that would complement your chosen discipline or which may contribute to the enhancement of your capabilities and adaptability within a rapidly changing workforce.

The FST offers programmes in the fundamental sciences: Mathematics, Physics, Chemistry, Computer Science and Biological Sciences. Reflective of our vibrant research activity, we also offer programmes in important areas of technology including Environmental Technology, Information Technology, Renewable Energy Technology, Biotechnology, Electronics, Computer Science & Technology, Environmental Science, Biomedical Technology and Biomedical Physics. At the St Augustine Campus, the FST delivers the most diverse suite of academic programmes by highly qualified and committed academic, administrative, technical and support staff. We offer you a robust educational experience.

This year we are excited to join The UWI China Institute of Information Technology (UWICIIT) as a part of their 2+2 BSc. Software Engineering programme. The UWICIIT is a collaborative effort between The UWI and the Global Institute of Software Technology (GIST) located in Suzhou, China. Students in this programme will spend the first two (2) years at The UWI and the final two (2) years in China. Regionally, The UWICIIT is located at four sites, the Cave Hill and Mona Campuses, as well as at a designated Open Campus site and now the St. Augustine Campus. At The UWI, this programme is delivered using both face-to-face lectures as well as online lectures and tutorials.

Finally, please allow me to point out that this booklet contains important information on Faculty Regulations as well as details on our programmes. It is an indispensable asset for navigating your progress and you will need to familiarise yourself with it to take advantage of the valuable guidance available from regular meetings with your academic advisors. Your ability to focus and remain dedicated will reap rich rewards. Most departments operate Help Desks which are designed to meet students at their particular skill level and assist in building frameworks for growth. On a broader perspective, there are also several support systems in place under the umbrella of the Division of Student Services & Development that are designed to foster your success and assist you in managing the challenges of university life.

On behalf of the staff of the FST, I offer you a warm welcome and wish you an enjoyable and successful time at the St Augustine Campus of The University of the West Indies.

Dr Brian N. Cockburn
DEAN
SECTION I - STAFF LISTING

OFFICE OF THE DEAN

DEAN
Dr Brian Cockburn
BSc, PhD (UWI)
Ext. 84484
Email: deanfst@sta.uwi.edu

DEPUTY DEANS
Dr Donna Dyer
BSc, MPhil, (UWI), PhD (Northwestern Univ.)
Undergraduate Student Matters
Exts. 84507, 83099
Email: fstdeputydean.ug@sta.uwi.edu

Dr Terry Mohammed
BSc, PhD (UWI), MBA (Herriot-Watt)
Outreach
Ext. 82283
Email: terry.mohammed@sta.uwi.edu

Dr Ricardo Clarke
BSc, MPhil, PhD (UWI)
Graduate Studies, Research and Innovation
Ext. 83121
Email: ricardo.clarke@sta.uwi.edu

Dr Russel Ramsewak
BSc, PhD (UWI)
Physical Facilities & Safety
Exts. 84504, 83536
Email: russel.ramsewak@sta.uwi.edu

SECRETARIAT:

ADMINISTRATIVE OFFICER
Mrs Indira Ousman
BSc, MSc (UWI)
Ext. 84479
Email: indira.ousman@sta.uwi.edu

DEAN’S SECRETARY
Mrs Wendy-Ann Wellington
BSc (UWI)
Ext. 84481
Email: wendy-ann.wellington@sta.uwi.edu

SECRETARY
Mrs Laneta Teemal
BSc (UWI)
Ext. 84480
Email: laneta.teemal@sta.uwi.edu

ACCOUNTING ASSISTANT
Mrs Claire Licorish
BSc (UWI)
Ext. 84477
Email: claire.licorish@sta.uwi.edu

OFFICE ATTENDANT
Ms Helga Boucher
Ext. 84476
Email: helga.boucher@sta.uwi.edu

CLEANER
Ms Pearlette Jordan
Ext. 84476
Email: pearlette.jordon@sta.uwi.edu

STUDENT SERVICES, SUPPORT & DEVELOPMENT UNIT:

SENIOR ADMINISTRATIVE ASSISTANT
Mrs Tara Sookhoo
BSc, MSc (UWI)
Ext. 84483
Email: tara.sookhoo@sta.uwi.edu

SENIOR ADMINISTRATIVE ASSISTANT
Mrs Laura Rambaran-Seeopersad
BSc, MBA (UWI)
Ext. 84508
Email: laura.rambaran-seeopersad@sta.uwi.edu

SECRETARY
Ms Kereen Olivier
BSc, MSc (UWI)
Ext. 84478
Email: kereen.olivier@sta.uwi.edu

CLERICAL ASSISTANT
Mrs Sue-Ann Lee Willock
Ext. 84509
Email: sue-ann.lee@sta.uwi.edu

INFORMATION COMMUNICATION MANAGEMENT UNIT:

LAN ADMINISTRATOR
(Vacant)

PC NETWORK SUPPORT TECHNICIAN
Mr Darren Granger
BSc, MSc (UWI)
Ext. 84473
Email: darren.granger@sta.uwi.edu
FACILITIES SUPPORT UNIT
FACILITIES ATTENDANTS
Mr Russell Thomas
Ext. 84525
Email: russell.thomas@sta.uwi.edu

Mr Deron McKenzie
Ext. 84525
Email: deron.mckenzie@sta.uwi.edu

Mr Nicholas Durity
Ext. 84525
Email: nicholas.durity@sta.uwi.edu

PRE-SCIENCE (N1) PROGRAMME
ADMINISTRATIVE ASSISTANT
Ms Afiya Jules
BSc, MSc (UWI)
Ext. 84474
Email: afiya.jules@sta.uwi.edu

CLERICAL ASSISTANT
Mr. Keron Brache
BSc (UWI)
Ext. 84505
Email: keron.brache@sta.uwi.edu

FOUN 1210 CO-ORDINATOR
Dr Indira Omah-Maharaj
BSc (UK), MSc (UK), PhD (UWI)
Ext. 84497
Email: indira.omah-maharaj@sta.uwi.edu

NATIONAL HERBARIUM OF TRINIDAD AND TOBAGO
2nd Floor, Frank Stockdale Building
Tel: (868) 662-2002 Ext. 83326
Tel: (Direct Line) (868) 645-3509
Fax: (868) 663-9686
Email: herbarium@sta.uwi.edu
Website: http://sta.uwi.edu/herbarium/

CURATOR
Mrs Yasmin Baksh-Comeau
Ext. 83326
Email: yasmin.baksh-comeau@sta.uwi.edu

SENIOR SECRETARY
Mrs Prudence Coelho-Roberts
Ext. 83326
Email: prudence.roberts@sta.uwi.edu

DEPARTMENT OF CHEMISTRY
MAIN OFFICE
Ground Floor, C3 Building
Tel: (868) 662-2002 Ext. 83570/82091
Tel: (Direct Line) 662-6013
Email: chemistry.department@sta.uwi.edu
Website: http://sta.uwi.edu/fst/chemistry/index.asp

HEAD OF DEPARTMENT
Dr. Richard Fairman
BSc, PhD (UWI)
Ext. 82091
Email: richard.fairman@sta.uwi.edu

SENIOR ADMINISTRATIVE ASSISTANT
Mrs Roxanne Ali-Hassan
BSc (UWI)
Ext. 83785
Email: roxanne.ali-hassan@sta.uwi.edu

SENIOR ADMINISTRATIVE ASSISTANT
(Occupational Environmental Safety and Health MSc Programme)
Mrs Tamika Elcock-John
BSc (Lond), MSc (UWI)
Ext. 83269
Email: tamika.elcock@sta.uwi.edu

SECRETARY
Mrs Charmaine Joseph-Peters
BA (Anglia Ruskin)
Exts. 83570, 82091; 662-6013
Email: charmaine.joseph-peters@sta.uwi.edu

ACADEMIC STAFF/ DEVELOPMENT ENGINEERS
Beckles, Denise
AB (Harvard), MSc, PhD (Rice University)
Lecturer, Environmental Chemistry
Exts. 83534/ 82456
Email: denise.beckles@sta.uwi.edu

Bent, Grace-Anne
BSc, PhD (UWI)
Lecturer, Analytical Chemistry
Ext. 83533
Email: grace-anne.bent@sta.uwi.edu

Cox, Leonette (on Leave for 2019/2020)
BS (Morgan); MS, PhD (Astate)
Contract Officer III - Research Consulting & Analytical Services
Ext. 84334
Email: leonette.cox@sta.uwi.edu

Fairman, Richard
BSc, PhD (UWI)
Lecturer, Inorganic Chemistry
Ext. 82281
Email: richard.fairman@sta.uwi.edu
Forde, Michael
MChem (Edin), PhD (Cardiff)
Lecturer in Chemistry
Ext. 83544
Email: michael.forde@sta.uwi.edu

Grierson, Lebert
BSc, PhD (Lond)
Lecturer, Physical Chemistry
Ext. 83523
Email: lebert.grierson@sta.uwi.edu

Jalsa, Nigel
BSc, PhD (UWI)
Lecturer, Biological Chemistry
Ext. 83546
Email: nigel.jalsa@sta.uwi.edu

Julien, Franklyn
BSc Chem Engineering (Hampton) BSc Electrical Engineering (Ryerson)
Development Engineer - Mass Spectrometry Services
Ext. 84150
Email: franklyn.julien@sta.uwi.edu

Kumar, Arvind
MSc (Gorakhpur); PhD (Tripura)
Senior Lecturer, Inorganic Chemistry
Ext. 83261
Email: arvind.kumar@sta.uwi.edu

TBA
Coordinator - Occupational and Environmental Safety and Health Programme
Ext. 83268

Mohammed, Terry
BSc, PhD (UWI), MBA (Herriot-Watt)
Lecturer, Analytical Chemistry
Ext. 82283
Email: terry.mohammed@sta.uwi.edu

Pingal, Ramish
BSc, PhD (UWI)
Laboratory Manager
Ext. 83535
Email: ramish.pingal@sta.uwi.edu

Ramsewak, Russel
BSc, PhD (UWI)
Senior Lecturer, Organic Chemistry
Ext. 83536
Email: russel.ramsewak@sta.uwi.edu

Singh, Gurdial
BSc (Liv.), PhD (Man)
Professor of Chemistry
Ext. 83538
Email: gurdial.singh@sta.uwi.edu

Singh, Nadia
BSc, PhD (UWI)
Development Engineer - NMR Services
Ext. 84053
Email: nadia.singh@sta.uwi.edu

Skellam, Elizabeth
MChem (Swansea), MBA (North Carolina), PhD (Bristol)
Lecturer, Organic Chemistry
Email: elizabeth.skellam@sta.uwi.edu

Taylor, Richard
BSc, PhD (UWI)
Lecturer, Inorganic Materials Chemistry
Ext. 82272
Email: richard.taylor@sta.uwi.edu

Wilson, Ann
BSc, PhD (UWI)
Lecturer, Physical/Corrosion Chemistry
Ext. 82283
Email: ann.wilson@sta.uwi.edu

Mootoo, Baldwin
BSc (Lond-UCWI), MSc (Lond), PhD (UWI)
Professor Emeritus
Ext. 83873
Email: baldwin.mootoo@sta.uwi.edu

Narinesingh, Dyer
BSc, PhD (UWI)
Professor Emeritus
Email: dyer.narinesingh@sta.uwi.edu

Pelter, Andrew
BSc, PhD, DSc (Brist)
Honorary Professor

Seaforth, Compton
BSc (Lond-UCWI), PhD (Wales)
Honorary Lecturer

ATS STAFF
Mr Azimuddin Abdool
BSc (UWI)
Ext. 82353
Email: azimuddin.abdool@sta.uwi.edu

Mr St. Bernard Antoine
Ext. 83265
Email: st.bernard.antoine@sta.uwi.edu

Mr Ronald Baksh
Ext. 83271
Email: ronald.baksh@sta.uwi.edu

Return to Table of Contents
Mr Ganesh Beepath
BSc (UWI)
Ext. 83252
Email: ganesh.beepath@sta.uwi.edu

Mr Robinson Constantine
Ext. 83265
Email: robinson.constantine@sta.uwi.edu

Mr Keegan Dial
BSc, MSc (UWI)
Ext. 84053
Email: keegan.dial@sta.uwi.edu

Ms Racquel Dolly
BSc (UWI)
Ext. 82092
Email: racquel.dolly@sta.uwi.edu

Ms Shirlyn Fernandez
Ext. 83570
Email: shirlyn.fernandez@sta.uwi.edu

Mr Darrin Grenade (on Leave for 2019/2020)
Ext. 83271
Email: darrin.grenade@sta.uwi.edu

Ms Alisha Hamid
BSc, MPhil (UWI)
Ext.84333
Email: alisha.hamid@sta.uwi.edu

Ms Joan Hernandez
BA (Anglia Ruskin)
Ext. 83266
Email: joan.hernandez@sta.uwi.edu

Mr Shurland James
BSc (UWI)
Ext. 82354
Email: shurland.james@sta.uwi.edu

Mr Hilton Lashley
Ext. 83265
Email: hilton.lashley@sta.uwi.edu

Dr Faisal Mohammed
BSc, PhD (UWI)
Exts. 83273, 84051
Email: faisal.mohammed@sta.uwi.edu

Mr Pernel Mohammed
Ext. 82355
Email: jade.mohammed@sta.uwi.edu

Ms June Nurse
Ext. 83570
Email: june.nurse@sta.uwi.edu

Mrs Denyse Phillip
BSc, MSc (UWI)
Ext. 82351
Email: denyse.phillip@sta.uwi.edu

Ms Avion Prospere
Ext. 83570
Email: avion.prospere@sta.uwi.edu

Mr Andrew Ramudit
BSc (UWI)
Ext. 82350
Email: andrew.ramudit@sta.uwi.edu

Mr Dereck Sealey
Ext. 83570
Email: dereck.sealey@sta.uwi.edu

Ms Pamela Swamber
Ext. 83570
Email: pamela.swamber@sta.uwi.edu

Ms Marisha Tang-Kai
BSc (Ryerson), MSc (UWI)
Ext. 84053
Email: marisha.tang-kai@sta.uwi.edu

Dr Simone Walcott
BSc, PhD (UWI)
Ext. 83272
Email: simone.walcott@sta.uwi.edu
DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY

2nd Floor, Natural Sciences Building
Tel: (868) 662-2002 Ext. 83080, 83640
Email: dct@sta.uwi.edu
Website: http://sta.uwi.edu/fst/dcit/

HEAD OF DEPARTMENT
Dr Wayne Goodridge
Ext. 83080/83640
Email: head.dcit@sta.uwi.edu

SENIOR ADMINISTRATIVE ASSISTANT
Mrs Avril Patterson-Pierre
BA (HW)
Ext. 85382
Email: avril.patterson-pierre@sta.uwi.edu

ACADEMIC STAFF

Goodridge, Wayne
BSc, MPhil (UWI), PhD (Dalhousie)
Lecturer, Computer Science
Ext. 85395
Email: wayne.goodridge@sta.uwi.edu

Hosein, Michael
BSc, MPhil (UWI), PhD (UWI)
Lecturer, Computer Science
Ext. 85390
Email: michael.hosein@sta.uwi.edu

Hosein, Patrick
BSc, MSc, EE, PhD (MIT)
Professor, Computer Science
Ext. 85388
Email: patrick.hosein@sta.uwi.edu

Kieu, Duc The
BSc, MSc (La Trobe), PhD (Feng Chia)
Senior Lecturer, Computer Science
Ext. 85396
Email: duc.kieu@sta.uwi.edu

Mohammed, Phaedra
BSc, MPhil, PhD (UWI)
Lecturer, Computer Science
Ext. 85391
Email: Phaedra.Mohammed@sta.uwi.edu

Mohan, Permanand (on Sabbatical Leave 2019/2020)
BSc (UWI), MSc (Sask), PhD (UWI)
Senior Lecturer, Computer Science
Ext. 85398
Email: permanand.mohan@sta.uwi.edu

Sultan, Salys
BSc (UWI), MSc (Univ. of Rwth Aachen), (Univ. of Trento)
Assistant Lecturer, Computer Science
Ext. 85397
Email: salys.sultan@sta.uwi.edu

NETWORK SYSTEMS ADMINISTRATOR
Seegobin, Naresh
BSc, MSc (UWI)
Ext. 82299
Email: naresh.seegobin@sta.uwi.edu

ATS STAFF
Mr Nirvan Bhagwandeen
Ext. 85384
Email: nirvan.bhagwandeen@sta.uwi.edu

Mr Garvin Cadogan
BSc (SAM)
Ext. 82299
Email: garvin.cadogan@sta.uwi.edu

Ms Sacha Callender
Ext. 83640
Email: sacha.callender@sta.uwi.edu

Ms Niala Ragoo
BSc (UH)
Ext. 83640/85385
Email: niala.ragoo@sta.uwi.edu

Mr Chris Sammy
Ext. 82299
Email: chris.sammy@sta.uwi.edu
DEPARTMENT OF LIFE SCIENCES

MAIN OFFICE
Ground Floor Natural Sciences Building
PBX: 1 868 662 2002;
Exts 83095; 83111; 83789; 82045; 82047; 83940
FAX: 1 868 645-2424
Email: Life.Sciences@sta.uwi.edu
dissstudent.support@sta.uwi.edu
Website: https://sta.uwi.edu/fst/lifesciences/

BIOCHEMISTRY OFFICE
First Floor Old Wing Natural Sciences Building

ZOOLOGY OFFICE
First Floor New Wing Natural Sciences Building

ZOOLOGY MUSEUM
Ground Floor, Natural Sciences Building
Tel: (868) 662-2002 Ext. 82237 (Zoology Room), 82239 (Insect Room)
Email: UWIZoologyMuseum@sta.uwi.edu
Website: https://sta.uwi.edu/fst/lifesciences/uwi-zoology-museum

HEAD OF DEPARTMENT
Dr. Judith Gobin
BSc, MPhil (UWI) PhD (Exeter)
Ext. 83095
Email: FST-LifeSciences-HOD@sta.uwi.edu

ACTING ADMINISTRATIVE ASSISTANT
Mrs Paulette Belfonte-Paul
BSc (UWI), MBA (AIB)
Ext. 83789
Email: paulette.belfonte@sta.uwi.edu

SECRETARIES
Ms Leisha Joseph
Acting Secretary - HOD
Ext. 83111
Email: leisha.joseph@sta.uwi.edu

Mrs Cassandra James-De Freitas
BBA, (AIB)
Ext. 83740
Email: cassandra.james-DeFreitas@sta.uwi.edu

ACADEMIC STAFF
Agard, John B. R.
BSc (UWI), MSc (Manch.), PhD (UWI)
Professor, Tropical Island Ecology
Director, Office of Research Development and Knowledge Transfer
Exts. 84485, 82046
Email: john.agard@sta.uwi.edu

Bowrin, Valerie J.
BSc (UWI), PhD (Purdue)
Lecturer, Biochemistry
Ext. 82079
Email: valerie.bowrin@sta.uwi.edu

Briggs, Georgette C. (on Leave for 2019/2020)
BSc (UWI), MSc. (University of Toronto), PhD (McGill), MEd. (UWI)
Lecturer, Plant Sciences
Ext. 85242
Email: georgette.briggs@sta.uwi.edu

Chinnaraja, Chinnadurai
BSc, MSc, PhD (Bharathiar)
Instructor, Biotechnology/Microbiology
Email: chinnadurai.chinnaraja@sta.uwi.edu

Cockburn, Brian N.
BSc, PhD (UWI)
Senior Lecturer, Biochemistry
Ext. 83541
Email: brian.cockburn@sta.uwi.edu

Deacon, Amy
BA (Oxon), MSc (Bangor), PhD (St Andrews)
Lecturer, Zoology
Ext. 83093
Email: amy.deacon@sta.uwi.edu

Duncan, E. Julian
BSc (Lond - UCWI), PhD (St. Andrews)
Professor Emeritus (Botany)
Email: julian.duncan@sta.uwi.edu

Elibox, Winston
BSc, PhD (UWI)
Senior Lecturer, Genetics
Ext. 83108
Email: winston.elibox@sta.uwi.edu

Farrell, Aidan D. (on Special Leave for Semester 2, 2019/2020)
BSc (Edinburgh); P. Dip, PhD (Trinity College, Dublin)
Senior Lecturer, Plant Physiology
Ext. 83110
Email: aidan.farrell@sta.uwi.edu

Gobin, Judith
BSc, MPhil (UWI) PhD (Exeter)
Senior Lecturer, Zoology
Ext. 83092
Email: judith.gobin@sta.uwi.edu

Kanhai, La Daana
BSc, MPhil (UWI) PhD (GMIT)
Instructor, Zoology
Ext. 83082
Email: ladaana.kanhai@sta.uwi.edu
Halfhide, Trina
BSc (UWI) M.S, PhD (USF)
Lecturer, Environmental Sciences
Ext. 83096
Email: trina.halfhide@sta.uwi.edu

Haraksingh, Rajini
SB (Biology, MIT), SB (Mathematics, MIT), MSc (Yale), PhD (Yale)
Lecturer, Biotechnology
Ext. 85243
Email: rajini.haraksingh@sta.uwi.edu

Hulme, Mark F.
BSc (Durham), MSc (Reading), PhD (St. Andrews)
Lecturer, Zoology
Ext. 82206
Email: mark.hulme@sta.uwi.edu

Jayaraman, Jayaraj (on Sabbatical Leave 2019/2020)
BSc, MSc, PhD (Annamalai)
Professor, Biotechnology and Plant Microbiology
Ext. 85244
Email: jayaraj.jayaraman@sta.uwi.edu

Khan, Ayub
BSc, PhD (UWI)
Senior Lecturer, Plant Sciences
Ext. 83087
Email: ayub.khan@sta.uwi.edu

Lennon, Adrian M.
BSc, DPhil (Sussex)
Senior Lecturer, Biochemistry
Ext. 83216
Email: adrian.lennon@sta.uwi.edu

Mechkarska, Milena
MSc (SU, Bulgaria), MSc (SMU DDE, India), PhD (WIAS, The Netherlands)
Senior Lecturer, Biochemistry
Ext. 83086
Email: milena.mechkarska@sta.uwi.edu

Mohammed, Azad
BSc, PhD (UWI)
Senior Lecturer, Ecotoxicology
Ext. 85603
Email: azad.mohammed@sta.uwi.edu

Oatham, Mike P.
BSc (Western Aust.), PhD (Kent)
Senior Lecturer, Plant Sciences
Ext. 83088
Email: mike.oatham@sta.uwi.edu

Rammarine, Indar W.
BSc (UWI), MSc (Wales), PhD (UWI), MBA (Heriot Watt)
Professor, (Fisheries & Aquaculture)
Email: indar.rammarine@sta.uwi.edu

Rampersad, Sephra N. (on Sabbatical Leave 2019/2020)
BSc (UWI), PhD (UWI)
Senior Lecturer, Biochemistry
Ext. 83109
Email: sephra.rampersad@sta.uwi.edu

Ransubhag, Adesh
BSc, PhD (UWI)
Senior Lecturer, Microbiology and Plant Pathology
Ext. 85304
Email: adesh.ransubhag@sta.uwi.edu

Rostant, Luke V.
BSc, MPhil (UWI); PhD (Univ. of Florida)
Lecturer, Wildlife Biology
Ext. 83739
Email: luke.rostant@sta.uwi.edu

Rouse-Miller, Judy
BSc, MPhil, PhD (UWI)
Lecturer, Plant Sciences
Ext. 83089
Email: judy.rouse-miller@sta.uwi.edu

Rutherford, Mike G.
BSc (Glasgow); MSc (James Cook)
Museum Curator
Ext. 82231
Email: mike.rutherford@sta.uwi.edu

ACTING CHIEF LABORATORY TECHNICIAN
Mr. Rajindra Mahabir
Ext. 83097
Email: rajindra.mahabir@sta.uwi.edu

ATS STAFF
Mrs Beverley Adams-Baptiste
BSc, MLIS (UWI)
Ext. 84500
Email: beverley.adams@sta.uwi.edu

Ms Renee Ali
BSc (UWI), MSc (NTU)
Ext. 83091
Email: renee.ali@sta.uwi.edu

Mr Jason Andrews
Ext. 83885
Email: jason.andrews@sta.uwi.edu

Ms Geeta Badloo
Ext. 83788
Email: geeta.badloo@sta.uwi.edu

Mr Rishi Baksh
Ext. 82595
Email: rishi.baksh@sta.uwi.edu
Mrs Susan Wisdom
BSc (UWI)
Ext. 83083, 82205
Email: susan.wisdom@sta.uwi.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS
2nd Floor, Natural Sciences Building
Tel: (868) 662-2002 Exts.82049, 83553, 83641
Fax: (868) 645-7132
Email: dms@sta.uwi.edu
Website: http://sta.uwi.edu/fst/dms

HEAD OF DEPARTMENT
Dr Gunakala Sreedhara Rao
BSc (Acharya Nagarjuna Univ.-India), MSc (Osmania Univ. - India), MPhil (Madurai Kamaraj Univ. - India), PhD (Sri Venkateswara Univ. - India)
Senior Lecturer, Mathematics
Ext. 82049
Email: sreedhara.rao@sta.uwi.edu

ADMINISTRATIVE ASSISTANT
Mrs Deloris Adams-Carrington
BSc (UWI)
Ext. 83780
Email: deloris.adams@sta.uwi.edu

SECRETARY
Ms Nisha Hazelwood
Exts. 82048, 82049
Email: nisha.hazelwood@sta.uwi.edu

ACADEMIC STAFF
Bhatt, Balswaroop
BSc, MSc, PhD (University of Rajasthan), FIMA
Professor Emeritus
Ext. 83859
Email: bal.bhatt@sta.uwi.edu

Dyer, Donna
BSc, MPhil, (UWI), PhD (Northwestern Univ.)
Senior Lecturer, Mathematics
Ext. 83099
Email: donna.comissiong@sta.uwi.edu

de Matas, Charles
BSc, MPhil (UWI), MA (Pgh), PhD (UWI)
Lecturer, Mathematics
Ext. 83499
Email: charles.dematas@sta.uwi.edu

Dialsingh, Isaac
BSc, MSc (UWI), PhD (PSU)
Lecturer, Mathematics
Ext. 83554
Email: isaac.dialsingh@sta.uwi.edu

Doctor, Dane
BSc, MSc (UWI), ASA
Lecturer, Actuarial Science
Ext. 83947
Email: dane.doctor@sta.uwi.edu

Farrell, Edward J.
BSc (UWI), M.Math. PhD (Wat), FTICA
Professor Emeritus
Ext. 83553
E-mail: edward.farrell@sta.uwi.edu

Gunakala, Sreedhara Rao
BSc (Acharya Nagarjuna Univ.-India), MSc (Osmania Univ. - India), MPhil (Madurai Kamaraj Univ. - India), PhD (Sri Venkateswara Univ. - India)
Senior Lecturer, Mathematics
Ext. 84491
Email: sreedhara.rao@sta.uwi.edu

Mohammed, Asad
B.Math (Waterloo), MSc (UWI)
Lecturer, Actuarial Science
Ext. 83101
Email: asad.mohammed2@sta.uwi.edu

Rahaman, Karim
BSc, PhD (UWI)
Senior Lecturer, Mathematics
Ext. 83082
Email: karim.rahaman@sta.uwi.edu

Ramkissoon, Harold
BSc (UWI), MSc (Tor), PhD (Calg)
Professor Emeritus
Ext.82529
Email: harold.ramkissoon@sta.uwi.edu

Sankar-Ramkarran, Alana
BSc, MSc (UWI)
Instructor
Ext. 82592
Email: alana.sankar@sta.uwi.edu

Shirley, Angela
BSc (UWI), MSc, PhD (Northeastern)
Lecturer, Mathematics
Ext. 82495
Email: angela.shirley@sta.uwi.edu

Smart, Stokeley
H.B.Sc (Univ. of Toronto), LL.B (Univ. of London), FSA, CERA, PRM
Senior Lecturer, Actuarial Science
Ext. 83778
Email: stokeley.smart@sta.uwi.edu

Tripathi, Vrijesh
BSc, MSc PhD (Agra)
Senior Lecturer, Statistics
Ext. 83872
Email: vrijesh.tripathi@sta.uwi.edu
Tweedle, David
BMATH, MMATH, PhD (Waterloo)
Lecturer
Ext. 83102
Email: david.tweedle@sta.uwi.edu

Wahid, Shazanaz
BSc, MPhil, PhD, (UWI), FTICA
Senior Lecturer, Mathematics
Ext. 83081
Email: shazan.wahid@sta.uwi.edu

ATS STAFF
Mr Kevin Awai
BSc (UWI)
Ext. 83553
Email: kevin.awai@sta.uwi.edu

Mr Jason Chamaroo
Ext. 83130
Email: jason.chamaroo@sta.uwi.edu

Ms Trisha Prince
Ext. 83641
Email: trisha.prince@sta.uwi.edu

DEPARTMENT OF PHYSICS
3rd Floor, Natural Sciences Building
Tel: (868) 662-2002 Exts. 82050, 82051
Fax: (868) 662-9904
Email: physics@sta.uwi.edu
Website: https://sta.uwi.edu/fst/physics/

HEAD OF DEPARTMENT
Dr. Davinder Pal Sharma
BSc, MSc, PhD (GNDU)
Ext. 82050 / 83105
Email: physics@sta.uwi.edu

SENIOR ADMINISTRATIVE ASSISTANT
Dr. Zuwena Williams-Paul
BA, MSc, PhD (UWI)
Ext. 83846
Email: zuwena.williams-paul@sta.uwi.edu

ADMINISTRATIVE ASSISTANT (Postgraduate Matters)
Mrs Ayana Waldron-Morris
BA, PG Dip (UWI)
Ext. 82176
Email: ayana.waldron@sta.uwi.edu

SECRETARY
Mrs Virginia Briggs
BSc, (UWI), MBA (AIB)
Ext. 83113
Email: virginia.sadd-nagim@sta.uwi.edu

ACADEMIC STAFF
Andrews, Roger
BSc, PhD (Lond.)
Lecturer, Quantum Physics
Ext. 83114
Email: roger.andrews@sta.uwi.edu

Chadee, Xsitaaz T
BSc, MPhil, PhD (UWI)
Lecturer, Renewable Energy and Environmental Physics
Exts. 83116
Email: xsitaaz.chadee@sta.uwi.edu

Clarke, Ricardo
BSc, MPhil, PhD (UWI)
Lecturer, Environmental Physics
Ext. 83121
Email: ricardo.clarke@sta.uwi.edu

Haque, Shirin
BSc, MPhil (Physics), MPhil (Psychology), PhD (UWI)
Senior Lecturer, Astronomy
Ext. 83123
E-mail: shirin.haque@sta.uwi.edu
Joseph-Hutchinson, Andrea
BSc, MPhil, PhD (UWI)
Lecturer, Medical Physics and Quantum Optics
Ext. 83124
Email: andrea.joseph@sta.uwi.edu

Sharma, Davinder Pal
BSc, MSc, PhD (GNDU)
Lecturer, Electronics
Ext. 83105
Email: davinder.sharma@sta.uwi.edu

Zyuzikov, Nikolay (on Special Leave for Semester 1, 2019/2020)
BSc (MEPHI), MSc (QMUL), PhD (MRRC)
Lecturer, Medical Physics
Ext. 85604
Email: nikolay.zyuzikov@sta.uwi.edu

SENIOR ELECTRONICS MAINTENANCE OFFICER
Electronics Workshop
Charles, Michael N
ASET (CIE)
Tel: 662-2002 Ext 82317
Email: noel.charles@sta.uwi.edu

DEVELOPMENT ENGINEER
Electron Microscopy Unit
Hinds, David
BSc
Tel: (868)-663-7846
Email: david.hinds@sta.uwi.edu

ATS STAFF
CHIEF LABORATORY TECHNICIAN
Mr Shazaad Ali Shah
BSc, MPhil(UWI)
Ext. 82651
Email: shazaad.ali-shah@sta.uwi.edu

CHIEF TECHNICIAN MECHANICAL WORKSHOP
Mr Kirk Gowrie
Ext. 83106
Email: kirk.gowrie@sta.uwi.edu

Mr Taarik Ali
BSc
Ext. 82649
Email: taarik.ali@sta.uwi.edu

Mr Leo Amour
Ext. 83115
Email: leo.amour@sta.uwi.edu

Ms Cheryl Bain-King
Ext. 82614
Email: cheryl.king@sta.uwi.edu

Mr Joseph Baksh
Ext. 82176
Email: joseph.baksh@sta.uwi.edu

Ms Rosanna Beharry
BSc (UWI)
Ext. 82656
Email: rosanna.beharry@sta.uwi.edu

Ms Solange Callender
BSc (UWI)
Ext. 83113; 82150
Email: solange.callender@sta.uwi.edu

Ms Mei Gui Cen
BSc (UWI)
Ext. 82317
Email: mei-gui.cen@sta.uwi.edu

Mr Leon Charles
Ext. 82317
Email: leon.charles@sta.uwi.edu

Mr Tyrone Corbin
Dipl. Telecomm. Tech., Major Electronics
Ext. 82317
Email: tyrone.corbin@sta.uwi.edu

Mr Adrian Gayah
BSc (UWI)
Ext. 82615
Email: adrian.gayah@sta.uwi.edu

Ms Deneil Granderson
Ext. 82150
Email: deneil.granderson@sta.uwi.edu

Ms Sadira Khan
BSc (UWI), NEBOSH Cert., NEBOSH Dipl., Cert. PV Generation Tech.)
Ext. 82656
Email: sadira.khan@sta.uwi.edu

Ms Gemma John
Ext. 85604
Email: gemma.john@sta.uwi.edu

Mr Rudolph Marshall
Ext. 83115
Email: rudolph.marshall@sta.uwi.edu

Ms Earla Mc Lean
Ext. 82614
Email: earla.mclean@sta.uwi.edu

Ms Tara Mookram-Cameron
Ext. 82614
Email: tara.mookram-cameron@sta.uwi.edu

Mr Avinash Pooran
BEng
Ext. 82317
Email: avinash.pooran@sta.uwi.edu

17

Return to Table of Contents
Ms Keisha Richmond Hunte
BSc (UWI)
Ext. 82649
Email: keisha.richmond-hunte@sta.uwi.edu

Mr Rory Sarafat
BSc, MSc (UWI)
Ext. 82649
Email: rory.sarafat@sta.uwi.edu

Mr Fadil Sahajad (on leave)
Ext. 83400
Email: fadil.sahajad@sta.uwi.edu
SECTION II – INTRODUCTION

A. PROGRAMME OFFERING IN THE FACULTY OF SCIENCE AND TECHNOLOGY

1. The Faculty of Science and Technology (FST) offers the following undergraduate programmes leading to the award of BSc degrees:

BSc IN THE FOLLOWING SPECIAL OPTIONS:

i. Actuarial Science (Special)
ii. Biology with specialisations in:
 a. Plant Biology
 b. Zoology
 c. Ecology & Environmental Biology
 d. Biotechnology
 e. Marine Biology
 f. Microbiology
iii. Biomedical Technology (Special)
iv. Chemistry (Special)
v. Chemistry and Management (Special)

vi. Computer Science (Special)
vii. Computer Science with Management (Special)
viii. Environmental Science & Sustainable Technology (Special)
ix. Information Technology (Special)
x. Information Technology with Management (Special)
xii. Mathematics & Applied Statistics (Special)
xiii. Statistics (Special)
xiv. Statistics and Economics (Special)

The Faculty also offers a BSc (General) degree with major(s) and minor(s) in various disciplines as shown in Table 1.

<table>
<thead>
<tr>
<th>DISCIPLINE</th>
<th>MAJORS</th>
<th>MINORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td>Biochemistry</td>
<td>• Biochemistry</td>
</tr>
<tr>
<td>Biology</td>
<td>Biology</td>
<td>• Biology</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Chemistry</td>
<td>• Chemistry</td>
</tr>
<tr>
<td></td>
<td>Industrial Chemistry</td>
<td>• Analytical Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Industrial Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chemical Biology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Materials Chemistry</td>
</tr>
<tr>
<td>Computer Science (Multidisciplinary)</td>
<td>Computer Science</td>
<td>• Computer Science</td>
</tr>
<tr>
<td>Environmental Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Technology</td>
<td>Information Technology</td>
<td>• Information Technology</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Mathematics</td>
<td>• Mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Statistics</td>
</tr>
<tr>
<td>Physics</td>
<td>Electronics</td>
<td>• Electronics (Not available to students pursuing the Major in Electronics)</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>• Environmental Physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Materials Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Medical Physics & Bioengineering</td>
</tr>
</tbody>
</table>

NOTE: For detailed information on special options/ majors/ minors, please refer to the relevant Departmental sections of this booklet.

2. The degree of Bachelor of Science is awarded on the basis of a programme of studies selected from courses in the Science disciplines together with certain Foundation courses and in some cases a number of approved courses from other Faculties.

3. The FST offers the following BSc degrees (the terms Major, Minor, and Special Option are defined in the Glossary):
 (a) A BSc (General) degree with:
 i. a single major in a FST discipline.
 ii. a joint major in two disciplines only, one of which may be from a faculty other than the FST.
 iii. a single major in a FST discipline PLUS one or two minors from FST and/or other Faculties.

 (b) BSc Special Option comprising a prescribed set of departmental, inter-departmental FST or out-of-faculty courses.

 (c) All students admitted to the FST to read the BSc Special Options listed hereunder are required to register for courses in the Faculty of Social Sciences and must be familiar with the list of cross faculty pre-requisites and anti-requisites listed in SECTION VIII.
i. BSc Actuarial Science (Special)
ii. BSc Chemistry and Management (Special)
iii. BSc Computer Science with Management (Special)
iv BSc Statistics and Economics (Special)

B. COURSES OFFERED AND THEIR WEIGHTING
4. All university courses require class preparation and review. A student can expect to spend at least 2 to 3 hours in studies outside of the classroom for every hour spent in the classroom. The following courses which may consist of both theoretical and/or practical components are offered by the University:
 (a) FST FACULTY COURSES:
 These are courses offered by the FST (in-faculty courses). These include Level Zero (0) (or Preliminary) courses
 (in Physics, Chemistry, Mathematics, Computer Science and Biology), Level I (or Introductory) and Levels II & III
 (or Advanced) courses. Preliminary courses may be used to satisfy matriculation requirements or pre-requisites
 for Level I, II or III courses.
 Preliminary courses, however, do not contribute towards the credit requirements for the award of the BSc
 degree but contribute towards a semester credit loading (6 credits each).
 (b) SERVICE COURSES:
 These provide students with basic technical and analytical skills.
 (c) OUT-OF-FACULTY COURSES:
 These are courses offered by faculties other than the FST which may contribute towards the requirements for the
 award of a degree. Approval must be granted by the Dean before a student can pursue an out-of-faculty course
 if such course is not part of the candidate’s degree programme. Gathering further information will help you to
 choose a course that will be manageable by reviewing the course description in the faculty booklet of choice.
 This will help to determine what is required for the course.
 (d) FOUNDATION COURSES:
 i. In order to qualify for the award of a BSc degree in the FST, all students must pass a minimum of nine (9)
 credits of Foundation Courses. These courses are Level I courses and are designed to augment the general
 education of students.
 ii. The three Foundation Courses (3 credits each) required to be taken by the FST students are:
 • FOUN 1101 - Caribbean Civilisation
 • FOUN 1105 -Scientific and Technical Writing
 • FOUN 1301 - Law, Governance, Economy and Society
 iii. The Foundation Course, FOUN 1210 (Science, Medicine and Technology in Society) will NOT count for credit
 towards programmes in FST.
 iv. On entry into the FST a student may be required to pass the English Language Proficiency Test (ELPT) before
 s/he can register for FOUN 1105. However, students with the following qualifications can register directly
 for FOUN 1105:
 • Grade I in CSEC English Language, or
 • Grade I or II in CAPE Communication Studies, or
 • Grade A or B in General Paper in the GCE A-Level Examination.

5. Courses normally extend over one (1) semester, but in special cases may extend over two (2) semesters (year-long
 courses).

6. The weight of a course is expressed in terms of credit hours, and the credit-weighting of a course is determined by the
 faculty which administers the courses. In general, a course with one contact hour per week for one semester has a
 weighting of one credit.

C. CO-CURRICULAR CREDITS
7. Courses involving independent, supervised activities which would earn the student co-curricular credits may be
 pursued upon approval by the Campus Academic Board. The co-curricular programme allows you to choose from a
 range of non-academic courses that help you to acquire characteristics to excel in life in the 21st century. These
 courses are practical in nature and help you to develop attributes which are critical for your success. Choose a course
 that reflects your interests and be motivated by it to make the course experience more satisfying.
 i. Students are eligible to register for co-curricular credits in their first semester of studies.
 ii. Each student is eligible to count no more than six (6) credits towards his/her degree for involvement in co-
 curricular activities.
 iii. The programme of co-curricular activities must have the approval of the Faculty and Academic Board before it is
undertaken by the student.

iv. The Deputy Dean (Undergraduate Student Matters) is the Faculty’s Coordinator for the co-curricular programme. Please consult with the Coordinator if you are interested in pursuing co-curricular activities.

v. Co-curricular credits will be awarded on the following basis:
 - students must be involved in the activity for at least one (1) semester
 - explicit learning outcomes must be identified for each activity
 - there must be clearly defined mode(s) of assessment for each activity

vi. The grading of co-curricular activities will be on a pass/fail basis and will not contribute to a student’s GPA.

vii. The six Level I credits earned for involvement in co-curricular activities may be included as part of the overall general credit requirement for the award of the BSc General Degree. However, such credits earned shall NOT be used in the computation of a student’s Weighted Grade Point Average for determining the Class of Honours.

viii. For further details on co-curricular offerings, please consult the Deputy Dean (Undergraduate Student Matters) or visit the website at SECTION VIII - PRE-REQUISITES FOR CROSS FACULTY COURSES.

The following co-curricular courses are available*:

<table>
<thead>
<tr>
<th>LEVEL I</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COCR 1001</td>
<td>Minding SPEC: Exploring Sports, Physical Education and Health & Wellness</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COCR 1012</td>
<td>Workplace Protocol for Students</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COCR 1013</td>
<td>Financial Literacy and Training</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COCR 1030</td>
<td>Technology Literacy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COCR 1033</td>
<td>Mind the Gap: Towards Psychological Health & Wellness</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>COCR 1034</td>
<td>Public Speaking and Voice Training: Towards a More Confident You</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COCR 1036</td>
<td>Ethics and Integrity: Building Moral Competencies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COCR 1045</td>
<td>Foreign Language Theatre in Performance</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>COCR 1039</td>
<td>First Aid, CPR, AED</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>COCR 1037</td>
<td>Defensive Driving (Theory)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>COCR 1047</td>
<td>Defensive Driving (Simulation)</td>
<td>1</td>
</tr>
</tbody>
</table>

Microsoft Office

	COCR 1038	Microsoft Project 2013	3
	COCR 1040	Microsoft Access 2016	2
	COCR 1041	Microsoft Excel 2016	2
	COCR 1042	Microsoft PowerPoint 2016	2
	COCR 1043	Microsoft Word 2016	2
	COCR 1044	Microsoft Outlook 2016	2

*NOTE: All co-curricular course codes begin with COCR. Visit http://sta.uwi.edu/cocurricular/ for course descriptions, availability and registration instructions. New courses are to be introduced so keep checking the website for updates during the academic year.

D. DEAN’S HONOUR ROLL

8. Eligibility for inclusion on the Dean’s Honour Roll

The following guidelines are applicable:

(a) Inclusion on the Dean’s Honour Roll will be on an annual basis. The Summer School will not be considered.

(b) Students must obtain a Semester GPA of 3.60 and above in both semesters I and II.

(c) Full-time students must have passed a minimum of 15 credits in each semester. Part-time students must have passed a minimum of 9 credits in each semester.

Credits gained for the following will NOT be taken into consideration in computing the Dean’s Honour Roll:
 - Co-curricular offerings
 - Internship programmes
 - Audited courses
 - Summer courses
 - Not-for-credit courses

(d) Repeat courses will be included in the computation of the Semester GPA towards the Dean’s Honour Roll.
E. THE STUDENT LIFE AND DEVELOPMENT DEPARTMENT (SLDD)

9. The Department is the first and most important stop for high quality academic support for the diverse populations of students throughout The University including full-time, part-time and evening and mature students, international and regional students, student athletes and students with special needs (disabilities and medical conditions).

10. The Department provides the following services:
 - Disability Support
 - Academic Support
 - International and Regional Student Support
 - Postgraduate and Mature Student Support

 a. Support Services for STUDENTS WITH SPECIAL NEEDS (Temporary and Permanent)
 - Provision of aids and devices such as laptops, USB drives, tape recorders and special software
 - Special accommodation for examinations
 - Classroom accommodations
 - Liaison with faculties and departments, Deans, HODs, Lecturers

 Students with special needs should make contact before or during registration. Every effort will be made to facilitate your on-campus requirements in terms of mobility, accommodation, coursework, examinations, and other areas. No student of The UWI will be discriminated against on the basis of having special needs. Sharing your needs before registration will enable us to serve you better as a part of the Campus Community.

 b. Academic Support Services for ALL STUDENTS
 - Educational Assessment – LADS (dyslexia) – LASSI (Study Skills)
 - Time Management
 - Examination Strategies
 - Workload Management
 - Career Planning
 - Study Skills
 - Peer Tutoring
 - Peer-Pairing

 c. How do I register at SLDD?
 - Visit the SLDD to make an appointment to meet the Manager.
 - Complete the required registration form
 - Students with disabilities and medical conditions must submit a medical report from a qualified medical professional
 - An assessment of the student’s needs will be conducted
 - The required assistance will be provided

 All Students experiencing academic challenges should communicate with Dr Jacqueline Huggins, Manager, Student Life and Development Department (SLDD), Heart Ease Building, Heart Ease Car Park, Wooding Drive, St. Augustine Campus
 Tel: 662-2002 Exts 83866, 83921, 83923, 84254.
 Hours: 8:30 am - 4:30 pm
 Monday to Friday
 Email: sldd.office@sta.uwi.edu

 Registration forms are available at the office or from the website at https://sta.uwi.edu/sidd/

F. THE CAMPUS LIBRARIES

The Campus Libraries support the teaching, learning and research activities of The University of the West Indies (UWI), St. Augustine Campus (STA) community. These libraries include:
 - The Alma Jordan Library
 - The Medical Sciences Library
 - The Norman Girvan Library
 - The School of Education Library
 - The Patience-Theunissen Memorial Library, and
 - The Seismic Research Centre Library.
Resources for Students

Each Library’s website https://libraries.sta.uwi.edu/ is the gateway to discovering the Library’s comprehensive print and electronic collections. Indeed, via the Library’s website, students can access, from on and off campus, hundreds of scholarly databases, with the most specialised and up-to-date information spanning several subject areas relevant to the Faculties of Engineering, Food and Agriculture, Humanities and Education, Law, Medical Sciences, Science and Technology, Social Sciences, the Institute of International Relations and The Arthur Lok Jack Global School of Business. Our wide-ranging collection is available in the following formats:

- electronic - 261 databases, 71,921 e-journals and 62,149 e-books
- print - over 500,000 monographs and 15,000 journal titles, and
- multimedia resources.

Moreover, a sizeable body of Caribbean research may be accessed from maps, newspapers, theses and over 130 special collections in the West Indiana and Special Collections Division. The Institutional Repository (UWISpace) contains amongst other content, abstracts of UWI theses and dissertations, as well as publications by the University Community. A recent initiative aimed at supporting the scholarly output at The UWI resulted in the development of the UWIScholar platform https://uwischolar.sta.uwi.edu, a research information management system designed to aggregate UWI’s research information, build reports, manage researcher profiles and enable research networking and expertise discovery.

Other Library Services:

- Research Support via Research Consultation, Reference Assistance, Interlibrary Loan/Document Delivery and Dissertation/Thesis Checking. Students can arrange for consultation sessions that focus on improving search strategies and citation skills.
- Orientation Tours and Information Literacy Sessions which introduce students to the Libraries’ facilities, resources and services.
- Support Services and Facilities such as audio-visual, computing services, photocopying and printing facilities, as well as areas for quiet study and seminars.

Please refer to the Library’s website or contact your Faculty Liaison Librarian listed below for further information.

Ms Joy Smith
Faculty Liaison Librarian (Food and Agriculture & Science and Technology)
Science and Agriculture Division, Floor 2
The Alma Jordan Library
Tel.: 662 2002, ext. 83596, 83359
Fax: 662-9238
E-mail: joy.smith@sta.uwi.edu
Alma Jordan Librarians: https://libraries.sta.uwi.edu/sj

G. STUDENT EXCHANGE & STUDY ABROAD

The St. Augustine Campus has a range of partnership agreements managed through the International Office, OIAI that facilitates exchanges by UWI students as well as students from our international partners to spend time at each other’s campuses. The Office also enables student mobility with institutions where we do not have such formal partnerships.

The UWI Student Exchange programme will allow you to study at one of our many international partners around the world, including in North America, Europe, South America, Africa, Asia and the Caribbean in addition to other UWI Campuses.

This type of international immersion has many educational and personal benefits. Students who have participated in the past have all spoken about the tremendous experiences and learnings not only in the classroom, but also from the people and places that they were able to interact with. They have become more independent in their thinking, self-sufficient and confident. They have also been able to make new friends, learn new languages and experience the world first-hand as true global citizens. A number of options for student exchanges are available to undergraduate and postgraduate students which are:

1. Exchange Students – one semester to one-year duration.
2. Study tours through the “UWI Discover’s” programme – for one to two weeks.
3. Visiting Students – for postgraduate students doing research on invitation by overseas institution.

Funding is available to assist students with some of these exchange opportunities.
For further information on funding as well as Student Exchange and Student Mobility, please view our website: http://sta.uwi.edu/internationaloffice/ or contact:
H. APPLY FOR SCHOLARSHIPS AND BURSARIES AT UWI ST. AUGUSTINE

There are more than 350 scholarships and bursaries available to both new and continuing students of the St. Augustine Campus each year. Some scholarships are renewable based on performance and range in value from TT$10,000 to TT$13,000 per year. A bursary is held for one academic year and may range in value from TT$5,000 to TT$15,000.

Who Can Apply?
Scholarship & Bursaries applications are open to Full-time Undergraduate Degree students ONLY. Each award is based on different criteria including Academic Merit/Performance, Co/Extra-Curricular activities, and/or Financial Need. Some awards are available to regional students, while others are available to Trinidad & Tobago nationals ONLY.

We encourage all eligible students, particularly those in tight or already difficult financial circumstances, to visit https://sta.uwi.edu/scholarships/ and download the latest Scholarships and Bursaries booklet to see if you qualify for any of the opportunities listed.

When to Apply
Continuing students must apply between January – May each year. New students must apply after completing the Registration process in the month of September. Look out for ads in the press or online for exact deadline dates. Awards are typically made August for returning students and October for new students.

For further information, contact:
Financial Advisory Services, Division of Student Services and Development
E: karen.edwards@sta.uwi.edu OR chandar.supersad@sta.uwi.edu
T: (868)-662-2002 ext. 84185 / 82360
SECTION III - GLOSSARY

<table>
<thead>
<tr>
<th>TERM</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTI-REQUISITE</td>
<td>Two mutually exclusive courses of which credit will be granted for only one.</td>
</tr>
<tr>
<td>CO-REQUISITE</td>
<td>A course which must be taken along with another specified course, in order to ensure the attainment of the complementary and/or independent competencies.</td>
</tr>
<tr>
<td>COURSE</td>
<td>A body of knowledge circumscribed by a syllabus to be imparted to students by sundry teaching methods and usually followed by an examination. A course may be either compulsory or elective.</td>
</tr>
<tr>
<td>CREDIT</td>
<td>A measure of the workload required of students. 1 Credit Hour is equivalent to 1 hour lecture/tutorial/problem class per week OR 2 hours of laboratory session per week for a semester.</td>
</tr>
<tr>
<td>CUMULATIVE GPA</td>
<td>Grade point average obtained by dividing the total grade points earned by the total quality hours for which the student has registered for any period of time excluding courses taken on a Pass/Fail basis, audited courses, courses taken for Preliminary credit, incomplete and in-progress courses.</td>
</tr>
<tr>
<td>DISCIPLINE</td>
<td>A body of knowledge distinguishable from other such bodies on the basis of criteria such as method of enquiry, axioms, area of application.</td>
</tr>
<tr>
<td>ELECTIVE</td>
<td>A course within a programme taken by choice of the student.</td>
</tr>
<tr>
<td>FACULTY COURSES</td>
<td>All courses except Foundation and Co-curricular courses</td>
</tr>
<tr>
<td>IN-FACULTY COURSES</td>
<td>All faculty courses originating in the Science Faculties</td>
</tr>
<tr>
<td>LEVEL</td>
<td>A state in a programme for which courses are designed (at UWI it is denoted by the first digit in a course code). For example BIOL 2062 is a Level II course whereas BIOL 3864 is a Level III course.</td>
</tr>
<tr>
<td>MAJOR</td>
<td>A specified number of credits (normally 30) including prescribed courses from Level II & III from a single discipline (see Departmental course listing).</td>
</tr>
<tr>
<td>MARGINAL FAILURE</td>
<td>45% to 49% in the overall examination.</td>
</tr>
<tr>
<td>MINOR</td>
<td>A specified number of credits (normally 15) including prescribed courses from Levels II & III from a single discipline</td>
</tr>
<tr>
<td>OPTION</td>
<td>A prescribed combination of Levels I, II and III courses, within the Faculty or across Faculties, leading to a degree.</td>
</tr>
<tr>
<td>OUT-OF-FACULTY COURSES</td>
<td>All faculty courses originating in faculties other than the Faculty of Science and Technology</td>
</tr>
<tr>
<td>PART</td>
<td>Portion of a programme defined by the regulations governing the programme.</td>
</tr>
<tr>
<td>PLAGIARISM</td>
<td>The unauthorized and/or unacknowledged use of another person’s intellectual efforts and creations howsoever recorded, without proper and unequivocal attribution of such source(s), using the conventions for attributions or citing used in this University.</td>
</tr>
<tr>
<td>PRE-REQUISITE</td>
<td>A course which must be passed before the course for which it is required may be pursued.</td>
</tr>
</tbody>
</table>
PROGRAMME
A selection of courses (designed to achieve pedagogical goals) the taking of which is governed by certain regulations and the satisfactory completion of which (determined by such regulation) makes a candidate eligible for the award of a degree/diploma/certificate.

PRELIMINARY COURSE
A Level 0 course used to satisfy entry requirements but does not contribute towards the requirements for the award of the degree.

REMEDIAL COURSE
A course that is offered in Summer School only for students who have failed this course during the semester.

SCIENCE FACULTY
The Faculty of Science and Technology.

SEMESTER GPA
GPA computed on the basis of all courses done in a semester, without reference to weighting except in terms of credits. (The terms Grade Point, GPA, Quality Hours, Honours GPA, Cumulative GPA and Quality Points are defined in the UWI Grade Point Average Regulations Booklet).

SUBJECT
An area of study traditionally assigned to the purview of a department.

STUDENTS:

PART-TIME STUDENT
A part-time student will normally be expected to register for 6 to 9 credits of courses per semester. These courses may be scheduled at any time of the day on the timetable.

FULL-TIME STUDENT
A full-time student will normally be expected to register for 12 to 15 credits per semester.

SPECIALY ADMITTED STUDENTS
Students admitted to pursue a limited number of courses.

STUDY ABROAD/ STUDENT
An exchange programme which allows students to spend one or two semesters at universities abroad in order to broaden their experience, understanding and perception of science in a different environment where a wider range of courses is available including independent study projects.

SUPPLEMENTAL ORAL
An oral examination, offered on recommendation of Departments and Faculty, to students who have registered a marginal failure in an advanced course.

WEIGHTED GPA
Weighted grade point average used to determine the class of degree. This GPA is computed on the basis of all courses done in the Advanced Part (Levels 2 & 3) of the Degree programme.
SECTION IV - FACULTY REGULATIONS

All students of the University are subject to University Regulations approved by the Senate of the UWI. Where there is conflict between the regulations of any Faculty and the University Regulations, the University Regulations shall prevail.

H. QUALIFICATIONS FOR ADMISSION INTO THE FACULTY

11. In order to be admitted to the three-year degree programme, candidates must satisfy the University requirements for Matriculation (see the University Regulations for Undergraduate Students) and have passed the CSEC General Proficiency Level examination at Grades I, II or, since 1998, Grade III (or equivalent qualifications) in Mathematics, English Language and three additional subjects listed in SECTION VII.

12. Candidates must also:
 (a) have obtained passes in a minimum of two two-unit subjects at CAPE (or GCE A-Level or equivalent qualification), OR
 (b) have an approved Associate Degree or equivalent certification with a minimum GPA of 2.5 in a relevant programme from a tertiary level institution recognised by UWI, OR
 (c) have any other appropriate qualifications acceptable to the FST.

13. In addition to the above general qualifications for admission, candidates must also satisfy the specific subject requirements for entry into the various FST programmes they wish to pursue. These are listed in TABLE 2:

<table>
<thead>
<tr>
<th>PROGRAMME</th>
<th>CAPE SUBJECT(S) (GCE A-LEVEL OR EQUIVALENT) REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc General with majors in:</td>
<td></td>
</tr>
<tr>
<td>Biochemistry</td>
<td>Chemistry and Biology</td>
</tr>
<tr>
<td>Biology</td>
<td>Two (2) subjects including Biology</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Two (2) subjects including Chemistry</td>
</tr>
<tr>
<td>Industrial Chemistry</td>
<td>Two (2) subjects including Chemistry</td>
</tr>
<tr>
<td>Computer Science</td>
<td>Two (2) subjects including: (i) one (1) Science subject OR (ii) Accounting or Economics</td>
</tr>
<tr>
<td>Electronics</td>
<td>Two (2) subjects including Physics and Mathematics</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>Two (2) subjects including Chemistry or Geography or Environmental Science with CSEC passes in Biology or Chemistry</td>
</tr>
<tr>
<td>Information Technology</td>
<td>Two (2) subjects including: (i) one (1) Science OR (ii) Accounting or Economics</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Two (2) subjects including Pure Mathematics</td>
</tr>
<tr>
<td>Physics</td>
<td>Two (2) subjects including Physics OR Mathematics with CSEC Physics or equivalent</td>
</tr>
<tr>
<td>BSc Special Options:</td>
<td></td>
</tr>
<tr>
<td>BSc Actuarial Science</td>
<td>Two (2) subjects including Pure Mathematics (Minimum Grade II)</td>
</tr>
<tr>
<td>BSc Biology with specialisations</td>
<td>Two (2) subjects including Biology</td>
</tr>
<tr>
<td>BSc Biomedical Technology</td>
<td>Two (2) subjects including Physics OR Mathematics with CSEC Physics or equivalent</td>
</tr>
<tr>
<td>BSc Chemistry</td>
<td>Two (2) subjects including Chemistry</td>
</tr>
<tr>
<td>BSc Chemistry and Management</td>
<td>Two (2) subjects including Chemistry – (Minimum Average Grade III or equivalent)</td>
</tr>
<tr>
<td>BSc Computer Science</td>
<td>Two (2) subjects including: (i) one (1) Science subject OR (ii) Accounting or Economics</td>
</tr>
<tr>
<td>BSc Computer Science with Management</td>
<td>Two (2) subjects including: (i) one (1) Science subject OR (ii) Accounting or Economics</td>
</tr>
<tr>
<td>BSc Environmental Science & Sustainable Technology</td>
<td>Two (2) science subjects – (Minimum Average Grade III or C) including Biology or Chemistry or Geography or Environmental Science and passes in CSEC Biology or Chemistry or Physics</td>
</tr>
<tr>
<td>BSc Information Technology</td>
<td>Two (2) subjects including: (i) one (1) science subject OR (ii) Accounting or Economics</td>
</tr>
<tr>
<td>BSc Information Technology with Management</td>
<td>Two (2) subjects including: (i) one (1) Science OR (ii) Accounting or Economics</td>
</tr>
<tr>
<td>BSc Mathematics</td>
<td>Two (2) subjects including Pure Mathematics</td>
</tr>
</tbody>
</table>
15. Provided that requirements to Statute 47 are fulfilled, students admitted to the FST may be exempted with or without credits from Level I courses if they:
 - are holders of degrees from approved universities; or
 - have partially fulfilled the requirements of such degrees; or
 - are holders of Associate Degrees from approved tertiary level institutions; or
 - have transferred from different BSc degree programmes or from other programmes of study within the University.

Application for EXEMPTIONS must be made upon entry to the Registry (Admissions Section).

16. Where EXEMPTIONS WITHOUT CREDITS are granted, students will be required to pursue alternative courses as approved by the Head of Department. The following is a list of exemptions with/without credits currently offered by the FST:

(a) COSTAATT Associate in Science Degree in BIOLOGY:
 Students entering the Faculty with a GPA of 2.75 and above in the COSTAATT Associate in Science Degree in Biology will be exempted WITH CREDIT from the following:
 - CHEM 1062, BIOL 1262, BIOL 1263, BIOL 1362, BIOL 1364

(b) COSTAATT Associate in Science Degree in CHEMISTRY:
 Students entering the Faculty with a GPA of 2.75 and above in the COSTAATT Associate in Science Degree in Chemistry will be exempted WITH CREDIT from the following:
 - CHEM 1066, CHEM 1067, CHEM 1068 and CHEM 1070

(c) COSTAATT Associate in Science Degree in PHYSICS:
 Students entering the Faculty with a GPA of 2.75 and above in the COSTAATT Associate in Science Degree in Physics will be exempted WITH CREDIT from the following:
 - PHYS 1221, PHYS 1222, PHYS 1223 and PHYS 1224.

(d) Students who have The UWI ROYTEC Associate Degree in Information Systems Management (ADISM) with a minimum GPA of 2.50 will be accepted for entry without exemption/credits into the following programmes:
 - BSc General Major/Minor (Computer Science)
 - BSc Computer Science (Special)
 - BSc Computer Science with Management (Special)
 - BSc General Major (Information Technology)
 - BSc Information Technology (Special)
 - BSc Information Technology with Management (Special)

(e) UWI ROYTEC Associate Degree in Information Systems Management (ADISM).
 Students with a GPA of 2.75 or better admitted into the BSc INFORMATION TECHNOLOGY programme will be exempted with credits from the following courses:
 - COMP 1600, COMP 1601, COMP 1602, COMP 1603, COMP 1604, INFO 1600 and INFO 1601
 and will be permitted to register for Level II courses. However, they must register for MATH 1115.

(f) Students with passes in CAPE Pure Mathematics (Units I and II) or N1 Mathematics (MATH 0100 and MATH 0200) or A’level Mathematics would be granted Exemptions Without Credits from MATH 1115 and MATH 1125. Where Exemptions Without Credits are granted, students will be required to pursue alternative courses as approved by the Head of Department.
K. **REGISTRATION**

17. (a) A student pursuing a degree in the FST may register as a full-time student or a part-time student. A student may apply to change his/her status during the tenure of the degree.

(b) A student who is in full-time employment must pursue the degree as a part-time student.

(c) Full-time students may take up employment for not more than 12-hours per week without losing their full-time status. A student who is employed for more than 12-hours per week shall be registered as a part-time.

A **full-time** student is normally expected to register for 12 to 15 credits per semester at Level I and 12 to 16 credits per semester at Levels II/III.

A **part-time** student is normally expected to register for 6 to 9 credits per semester offered under the day programme.

18. (a) Students must register for courses that they wish to pursue by the dates prescribed by the Campus Registrar.

(b) Changes to registration (add/drop courses) will be permitted only within the prescribed periods at the start of Semesters I and II. (Refer to the Campus Web Site and Notice Boards for actual dates)

(c) A student’s registration for a course is complete only after his/her financial obligations to the University have been fulfilled.

19. (a) A student who has passed a course will not be permitted to re-register for that course except for preliminary courses.

(b) A student may not be allowed to register for a course on the grounds of repeated failure or poor performance in that course.

Medicals

20. (a) Registration for any course constitutes registration for the associated examination. A student will therefore have failed the course if s/he does not attend the examination without having previously been allowed to withdraw from the course or without having tendered evidence of illness at the time of the examination, certified by a medical practitioner recognised by the University. In the latter case, the medical report must reach the Campus Health Service Unit (HSU) no later than seven days after the date of the relevant examination.

(b) Medical Certificate/Report forms are available online at http://sta.uwi.edu/onlineForms.asp

(c) In cases where the medical submitted for a missed coursework examination is approved by the Campus HSU, the candidate shall be granted a substitute coursework examination at a date prescribed by the relevant Department.

(d) In cases where the medical submitted for a missed final examination is approved by the Campus HSU, the grade designation of AM (Absent Medical) will apply. The designation AM carries no penalty.

L. **PROGRESS THROUGH THE PROGRAMME**

21. (a) Students admitted to the three-year programme, may not register for preliminary courses.

(b) In order to satisfy the minimum requirement for entry to the advanced part of the programme (Level II and III), a student must normally record passes in Level I courses equivalent to a minimum of twenty-four (24) credits of Faculty courses.

(c) A student who has obtained passes in Level I Faculty courses equivalent to twelve (12) credits in the first two (2) semesters of full-time study may, on the approval of the Dean, be allowed to register for a limited number of Level II courses in addition to those courses required to complete Level I requirements. However, the total credit loading per semester must not be exceeded.

(d) Undergraduate students in their final year may register for up to ONE postgraduate course with the permission of the Dean.

(e) Full-time students who require NOT MORE THAN TWENTY (20) CREDITS in order to graduate, who have satisfied all Foundation course requirements, and are exempted from laboratory coursework in at least one course, may be allowed to register for twenty (20) credits with the permission of the Dean.
M. STUDY ABROAD/EXCHANGE PROGRAMMES

22. UWI students, while at exchange Universities, will continue as regular full-time students of the University of the West Indies. Such students will pay UWI tuition fees and pursue matching and/or approved courses for credit. Credits earned abroad will be transferred to UWI and applied to regular Faculty degree requirements in accordance with Regulation 47.

23. (a) FST students who wish to participate in an exchange programme at an approved institution and desire to have the credits obtained used toward a UWI degree, must obtain written approval in advance from the Dean and register for equivalent courses offered by FST. Failure to do so may preclude the acceptance of the credits earned at the exchange institution.

(b) Students must normally have a minimum Cumulative GPA of 3.00 and have spent at least two semesters of full-time study at UWI to qualify for the Exchange Programme.

(c) Where the course to be taken is to be substituted for a UWI course, the content of the course must be certified in advance by the relevant Department as being equivalent to the UWI course. Course outlines and syllabuses must be provided by the student in order to facilitate the evaluation process.

(d) Only grades earned at the exchange institution and not the marks shall be used in the computation of the student’s GPA.

For information on the application procedure, see the information provided in SECTION II G - STUDENT EXCHANGE & STUDY ABROAD.

N. EXAMINATIONS

24. In order to pass a course, a student must have satisfied the examiners in the associated examinations and must have attended at least 75% of classes associated with that course.

25. The Academic Board on the recommendation of the Faculty Board concerned, may debar a student from writing the examination associated with a course, based on attendance of less than 75% of lectures /laboratory classes/tutorials. The designation recorded for such a candidate in that course will be DB (debarred).

26. The examination associated with each course shall be conducted mainly by means of written and/or practical papers, normally taken at the end of the semester. However, oral examinations as well as performance in coursework in the form of essays, in-course tests, research papers, projects, or continuous assessment of theoretical and/or practical work may contribute towards the final grade awarded in a course. (Refer to individual course outlines and the departments for the specific modes of assessment and their weightings)

27. (a) A student may be granted two supplemental oral examinations in failed Level II/III courses provided that the student has completed all level I requirements, passed a minimum of 30 levels II/III credits, and has a marginal failing mark of 45 to 49 percent in the course. However, an additional oral examination may be granted to final year students in circumstances when passing a single course is all that is required for graduating.

(b) Students passing such oral examinations will be awarded the minimum pass mark of 50% (Grade C, Quality Point 2.0) and will not have any right of appeal or review of the outcome.

(c) Students offered oral examinations may choose to decline the offer.

28. A student who fails the examination associated with a course may be given permission to repeat the course and the examination on subsequent occasions.

29. In the event that such a student has satisfied the examiners in the practical coursework component of the failed course, the candidate may, on the recommendation of the relevant Department, be exempted from the laboratory coursework

30. A Remedial course in FST offered as part of the Summer School Programme is considered a repeat of the course.

31. A student who writes an examination without being registered, will not be granted credit for this examination.

O. PLAGIARISM DECLARATION

32. A declaration must be made in accordance with the University Regulations on Plagiarism (First Degrees, Diplomas and Certificate) and must be attached to all work submitted by a student to be assessed as part of, or the entire requirement of the course, other than work submitted in an invigilated examination. By signing this declaration, a
student is declaring that the work submitted is original and that it does not contain any plagiarised material. See SECTION 10 for the Plagiarism Declaration and the University’s Regulations regarding Plagiarism.

P. GENERAL REQUIREMENTS FOR THE AWARD OF THE DEGREE

33. In order to be eligible for the award of the BSc degree in FST, students must have:
 i. been in satisfactory attendance for a period equivalent to at least six (6) semesters of full-time study from entry at Level I
 ii. obtained passes in Levels I, II and III and Foundation Courses amounting to the number of credits shown in TABLE 3
 iii. a minimum Weighted Grade Point Average of 2.00
 iv. the minimum 93 credits required for the award of a BSc General Degree, a MINIMUM of 24 Level I credits of which 12 must be FST credits, a minimum of 60 advanced credits and at least a major from FST, or
 v. a minimum of two years of full-time study and 60 advanced credits provided that they possess qualifications from another recognised tertiary level institution.

| TABLE 3: CREDIT REQUIREMENT FOR THE VARIOUS DEGREES |
|-----------------------|------------------|-----------------|------------------|
| DEGREE | LEVEL I CREDITS | LEVEL II - III CREDITS | FOUNDATION COURSES CREDITS | TOTAL |
| BSc (General) with majors/minors | 24 | 60 | 9 | 93* |
| **BSc (Special Options):** | | | | |
| BSc Actuarial Science (Special) | 33 | 60 | 9 | 102 |
| BSc Biology with Specialisations | 24 | 60 | 9 | 93 |
| BSc Biomedical Technology (Special) | 24 | 60 | 9 | 93 |
| BSc Chemistry (Special) | 24 | 60 | 9 | 93 |
| BSc Chemistry and Management (Special) | 24 | 60 | 9 | 93 |
| BSc Computer Science (Special) | 24 | 60 | 9 | 93 |
| BSc Computer Science with Management (Special) | 24 | 60 | 9 | 93 |
| BSc Environmental Science & Sustainable Technology (Special) | 24 | 60 | 9 | 93 |
| BSc Information Technology (Special) | 24 | 60 | 9 | 93 |
| BSc Information Technology with Management (Special) | 24 | 60 | 9 | 93 |
| BSc Mathematics (Special) | 26 | 60 | 9 | 95 |
| BSc Mathematics and Applied Statistics (Special) | 24 | 60 | 9 | 93 |
| BSc Statistics (Special) | 24 | 60 | 9 | 93 |
| BSc Statistics and Economics (Special) | 29 | 60 | 9 | 98 |
| BSc Software Engineering (Mobile Application Technologies) | 30 | 90** | | 120** |

* NB: This is the MINIMUM REQUIREMENT and may vary depending upon the credit requirements for the major/minor you are pursuing

** This is a 4-year degree programme awarded by The UWI in collaboration with the Global Institute of Software Technology (GIST) located in China. It has a 2+2 format, where students spend two years in the Caribbean and two years in China. At the advanced part of the programme, Levels II to IV, students are required to complete a minimum of 90 credits inclusive of six credits of foundation courses.

PLEASE NOTE CAREFULLY THAT THE CREDIT REQUIREMENT FOR THE AWARD OF THE BSc DEGREES VARIES DEPENDING UPON THE PROGRAMME YOU ARE PURSUING

34. Students will be granted credits only once for the same course offered under different majors/minors. In such cases students will be required to pursue alternative courses which must be approved by the Dean.

35. Exemptions from specific parts of the degree programme may be obtained under the provision of Regulations 15 and 16.

Q. DECLARATION OF MAJORS, MINORS AND SPECIAL OPTIONS

36. (a) Students are required to register for a major/special option upon initial entry into the Faculty. However, students may request a change in major/minor option as they progress along their degree. Students desirous of pursuing majors in a Faculty other than FST must apply for and obtain official approval from that Faculty before pursuing such majors.

(b) Students must make a final declaration of their proposed majors/minors/special options by the end of the
registration period of the semester in which they intend to graduate.
(c) Students who have met the requirements for the degree for which they have registered/declared may not register for further courses in pursuit of that degree.

R. TIME LIMITS FOR COMPLETION AND ENFORCED WITHDRAWALS

37. (a) A Semester grade point average (GPA) based on grades earned on all approved courses for which the student is registered in a semester, will be used as the basis for the determination of his/her academic standing.

(b) A student whose GPA in any Semester is less than 2.00 will be placed on Warning.

(c) A Dean’s Hold will be placed on a student on warning. Such a student will have to seek academic advising from the Dean before the Dean’s hold can be removed. This MUST be done within the prescribed registration period at the start of the Semester. A reduced academic load of **nine (9) to twelve (12) credits** will be stipulated.

(d) A STUDENT WHO IS ON WARNING AND WHO FAILS TO OBTAIN A SEMESTER GPA OF AT LEAST 2.00 IN THE SUCCEEDING SEMESTER WILL BE REQUIRED TO WITHDRAW FROM THE FACULTY.

38. For the purposes of Regulation 39 below, any semester in which a student is registered part-time, will be counted as half of a semester of full-time study.

39 (a) Full-time students will normally be required to complete the requirements for the degree in a minimum of six or a maximum of ten semesters of full-time study.

(b) Students who do not complete the programme within the maximum period stated in Regulation 39 (a) above will normally be required to withdraw from the Faculty at the end of the academic year in which the maximum time limit is reached.

40. In the event that a student has exhausted the maximum period stated in Regulation 39(a), but still requires for the completion of the degree programme:
 a) passes in courses totalling no more than eight (8) credits, AND/OR
 b) passes in Foundation courses only,

approval may be sought from the Board for Undergraduate Studies for an extension of the period of study by one or two consecutive semesters.

41. For the purposes of Regulation 39(a) any semester for which a student has obtained Leave of Absence from the Faculty shall not be counted.

42. A student who was required to withdraw for reasons of failure to progress may be re-admitted to the Faculty on the following conditions:
 a) A minimum of two consecutive semesters has elapsed since the date of withdrawal.
 b) The FST is satisfied that the contributing circumstances for the withdrawal have altered substantially.
 c) All grades previously obtained, (except those for courses that have been deemed outdated), may continue to apply for the purpose of determining the student’s GPA.
 d) Courses pursued in the UWI Summer School during the period of withdrawal shall be included in all relevant grade point average calculations if the student re-enters the Faculty as a continuing student.

43. (a) A student who was required to withdraw from the Faculty MUST APPLY for re-entry by the date prescribed by the Campus Registrar. A student will not be admitted before a year has elapsed. Application for re-entry must be done prior to the deadline for applications as follows:
 - A student who is required to withdraw at the end of Semester I of an academic year must reapply by 15th December of the following academic year for readmission in Semester II of that academic year.
 - A student who is required to withdraw at the end of Semester II or Summer Session of an academic year must reapply by 10th July of the following academic year for readmission in Semester I of that academic year.

(b) A student who was required to withdraw and was re-admitted and then required to withdraw for a second time, will not normally be considered for re-admission again until a minimum period of five years has elapsed.

32

Return to Table of Contents
5. **ACADEMIC FORGIVENESS**
 (a) Academic Forgiveness is normally applied to students who withdraw either voluntarily or because the University required them to withdraw.

 (b) The Guiding Principle is that the integrity of the programme the student is expected to complete must be preserved.

 (c) In the case of (a) above, that is Required to Withdraw (RTW) or Voluntary withdrawal, such students must remain out of the UWI system for a minimum of ONE year, unless they are changing Faculties.

 (d) When students who have been granted academic forgiveness are re-admitted to UWI, the Dean of the Faculty will determine which courses, if any, may be used as transfer credits. The maximum number of transfer credits is 30 credits which would normally be Level 1 in accordance with Statute 47.

 (e) The Dean of the Faculty has the discretion to determine which Level 2 or 3 courses may be considered for exemption with credit when a student has previously withdrawn but must seek approval from the Board for Undergraduate Studies.

 (f) When students TRANSFER from one Faculty to another, without withdrawing, the student is considered a continuing student, and transfers with his/her full record.

T. **LEAVE OF ABSENCE AND VOLUNTARY WITHDRAWAL**

44. (a) A student who wishes to be absent from the Faculty for a semester or more may apply for Leave of Absence.

 (b) Leave of Absence will not be granted for more than two consecutive semesters in the first instance. However, students may apply for an extension of Leave of Absence.

 (c) Leave of Absence will not be granted for more than two consecutive years.

 (d) Applications for Leave of Absence should normally be submitted no later than the end of the prescribed change in registration period in the relevant semester.

45. A student who does not register for any course during a semester without having obtained Leave of Absence will be deemed to have withdrawn from the University and will have to re-apply for entry to the University if s/he so desires.

46. A student who voluntarily withdraws from the University and then applies for re-admission within five (5) years may be granted exemption and credit for all courses previously passed unless the Department concerned declares that the material covered in a course has become outdated. All grades previously obtained except those for courses declared outdated shall be used in the determination of the GPA of such a student.

U. **GPA AND CLASS OF DEGREE AWARDED**

47. (a) All students in the FST, irrespective of their date of entry into the FST, are subject to the current GPA regulations.

 (b) A Cumulative Grade Point Average based on all courses completed for which grades have been obtained (excluding Preliminary courses, those taken on a Pass/Fail basis, audited courses and courses designated I or IP), will be calculated and recorded on the student’s transcript.

 (c) A Weighted Grade Point Average based on grades obtained on ALL LEVEL II AND III COURSES registered for, including all courses in the declared major(s)/minor(s)/option whether passed or failed, will be used in the calculation for determination of the class of the degree. (See Regulations 48 and 49 for the relationship between marks, Grade Point Average and Class of Honours).

 (d) First Class Honours, Second Class Honours (Upper and Lower Division), or a Pass degree will be awarded on the basis of the Weighted Grade Point Average (GPA) of all Level II/III courses taken (passed and failed).
V. GRADING SCHEME

48. The Grading Scheme used in the FST is shown in Table 4:

<table>
<thead>
<tr>
<th>GRADE</th>
<th>MARK</th>
<th>GRADE DESCRIPTOR</th>
<th>QUALITY POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>90-100</td>
<td>Exceptional</td>
<td>4.3</td>
</tr>
<tr>
<td>A</td>
<td>80-89</td>
<td>Outstanding</td>
<td>4</td>
</tr>
<tr>
<td>A-</td>
<td>75-79</td>
<td>Excellent</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>70-74</td>
<td>Very Good</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>65-69</td>
<td>Good</td>
<td>3</td>
</tr>
<tr>
<td>B-</td>
<td>60-64</td>
<td>Satisfactory</td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>55-59</td>
<td>Fair</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>50-54</td>
<td>Acceptable</td>
<td>2</td>
</tr>
<tr>
<td>F1</td>
<td>40-49</td>
<td>Unsatisfactory</td>
<td>1.7</td>
</tr>
<tr>
<td>F2</td>
<td>30-39</td>
<td>Weak</td>
<td>1.3</td>
</tr>
<tr>
<td>F3</td>
<td>0-29</td>
<td>Poor</td>
<td>0</td>
</tr>
</tbody>
</table>

W. CLASS OF HONOURS

49. A student’s class of degree will be based on his/her Weighted Grade Point Average (GPA) of all Level II/III courses as follows:

<table>
<thead>
<tr>
<th>Honours</th>
<th>Weighted GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>3.00 – 4.30</td>
</tr>
<tr>
<td>Upper Second</td>
<td>3.00 – 3.59</td>
</tr>
<tr>
<td>Lower Second</td>
<td>2.50 – 2.99</td>
</tr>
<tr>
<td>Pass</td>
<td>2.00 – 2.49</td>
</tr>
</tbody>
</table>

X. AEGROTAT DEGREE

50. A candidate may apply through the Campus Registrar to the Board for Undergraduate Studies for the award of an Aegrotat Degree, Diploma or Certificate where he/she has been absent through illness from part of the assessment in the final year of the degree programme. The number of credits obtained which will entitle the candidate to make such application shall be prescribed in Faculty Regulations (where applicable).

51. (a) All applications must be accompanied by a medical certificate signed by a Campus Medical Officer or by other Medical practitioners approved for this purpose by the University, and shall reach the Campus Registrar not later than thirty days after the end of the relevant semester; and

(b) All applications, together with reports from those who have taught the candidate in the courses concerned and a recommendation from the Board of Examiners of his/her Faculty, shall be referred to the relevant Faculty Board for a recommendation through the Dean to the Board for Undergraduate Studies.

52. An Aegrotat Degree, Diploma or Certificate shall be awarded without distinction or class.

53. Holders of an Aegrotat Degree, Diploma or Certificate shall not be permitted to re-enter for the same Degree, Diploma or Certificate.

54. Holders of an Aegrotat Degree may proceed to a higher degree if accepted by the Board for Graduate Studies and Research.

55. Notwithstanding the provisions at Regulations 50 to 54 the University shall not award an Aegrotat degree posthumously except in cases where the decision to award such degree was made before the candidate’s death, or where the candidate would have met all requirements for the award of the Aegrotat degree before his or her death.

(b) No grade will be awarded in respect of an Aegrotat pass, and a candidate, having been awarded an Aegrotat pass, will not be allowed to re-enter the examination for the course concerned on a subsequent occasion. An Aegrotat pass may not be used to satisfy a Prerequisite for other Level II/III courses.

(c) A candidate, having satisfactorily completed the degree programme, who includes Aegrotat passes in courses counted for the degree programme, will be eligible for the award of an Aegrotat degree, provided that both of the following conditions are satisfied:
i. the courses in which the Aegrotat passes have been granted (and which need to be counted towards the award of the degree) are equivalent to no more than twenty-four (24) credits.

ii. no more than sixteen (16) credits mentioned in c (i) above arise from courses making up the candidate’s major.

(f) The Aegrotat degree will be awarded without Honours.
SECTION V - REGULATIONS GOVERNING THE FST SUMMER SCHOOL PROGRAMME

The FST generally offers remedial courses for students who are repeating laboratory-based and/or non laboratory-based courses during the Summer School. The FST may also offer a limited number of full courses that are non-laboratory based in the Summer School. The maximum number of credits for which a student may register in Summer School is normally twelve (12).

1. ELIGIBILITY FOR ADMISSION TO THE SUMMER SCHOOL PROGRAMME
 The following categories of students are eligible for admission to the Summer School Programme:
 a. Registered students of the University who have to repeat any of the course(s) offered.
 b. Registered students of the University who have not taken the course(s) previously but fall into one of the following categories:
 • Students of the University who have not yet completed the requirements for the degree, diploma or certificate programme for which they are registered.
 • Registered UWI students from other campuses.
 c. Students of the University who have been granted (a) leave of absence for Semester 1 and/or 2 preceding the Summer School Programmes, or (b) permission to Write “Examinations Only”, or (c) who have been asked to withdraw and are desirous of continuing with their programme of study.
 d. Other persons, not students of the University, who are eligible to matriculate at either the normal or lower level or as a mature student.

2. APPLICATIONS
 Please visit the Campus Website http://sta.uwi.edu/admissions/undergrad/summer_programme.asp for further information.

3. FEE PAYMENT
 Students will be required to pay a fee for each course registered for in the Summer School Programme. This fee is subject to change. Please visit the university website for current fees.

4. ATTENDANCE
 MINIMUM ATTENDANCE of 75% of Lectures / Tutorials / laboratory classes/field trips is required.

5. COURSE SELECTION AND REGISTRATION
 Persons desirous of pursuing courses in the Faculty’s summer programme are required to visit the website at https://sta.uwi.edu/admissions/undergrad/summer_programme.asp or consult the Faculty Notice Boards and timetables for a list of courses being offered in the Summer School Programme before registering.

6. LATE REGISTRATION
 a. Students may be permitted to register up to the end of the 2nd week of the start of the Summer School Session on payment of an additional late registration fee of TT$150.
 b. In cases where examination results for Semester II are declared after May 31, students may be permitted to register up to the end of the 2nd week of the start of the Summer School session.
 c. Summer School students may apply for a change of registration by no later than the end of the 2nd week of the start of the Summer School session.

7. EXAMINATIONS & COURSE LOADS
 a. Examinations for courses taught in the Summer School shall be conducted in accordance with the University Examination Regulations.
 b. Summer School students shall write the University Examinations appropriate to the course(s) for which they are registered.
c. Students shall not normally be permitted to register for more than THREE courses (usually 9 credits) in any given Summer School Session. Students are advised to check the timetable before registering.

d. Finalising students may apply, to the Faculty Dean to pursue up to a maximum of 15 credits.

e. A student is deemed as finalising if that student has only a maximum of 15 credits left to complete the degree/certificate/diploma requirement.

f. Students may request permission to carry forward coursework marks for courses pursued in Semester I and/or II to the Summer Programme.

g. All such requests must be submitted, through the Faculty Dean, to the Senior Assistant Registrar, Student Affairs (Admissions) before the student is allowed to register.

NOTE: Registration for a course offered in the Summer School implies registration for the examination of that course.

8. AWARD OF CREDITS
a. Credits for courses successfully completed in the Summer School shall be granted to registered students of the University including those on approved leave of absence.

b. Persons wishing to pursue a course(s) to be considered as ‘Not for Credit” (NFC) must seek approval prior to registering for the course. All such requests must be made, in writing, or on the required form, to the Dean of the Faculty. Students will not subsequently have such credit altered.

c. Summer School students who have not been offered a place at the University have no automatic right of acceptance into any Faculty of the University.

d. Students who do not satisfy normal matriculation may not use the credits gained in the Summer School for both matriculation and degree purposes.

9. APPLICATION FOR WITHDRAWAL
a. Students may withdraw from a course by applying to the Senior Assistant Registrar (Admissions) in writing and copying the Faculty Dean or Summer School Coordinator. The student should clearly state the reasons for the withdrawal and complete the required application form for refund where applicable.

b. Applications for withdrawal from a course must reach the Senior Assistant Registrar (Admissions) no later than two (2) weeks after teaching has begun. Students, who wish to withdraw from a course after the deadline date, must apply to Academic Board, through their respective Faculty Office.

10. REFUND POLICY
a. A refund penalty is charged as follows:
 i. No penalty before May 30th
 ii. 25% of tuition fees up to June 2nd (up to the end the 1st week of teaching)
 iii. 30% of tuition fees up to June 9nd (up to the end of the 2nd week of teaching)

11. PAYMENT OF FEES
a. Part payment of fees is NOT allowed
b. Fees must be paid at any Branch of Republic Bank Ltd. using the bank deposit slip provided

c. Registration in the summer session will carry a non-refundable registration fee

d. Courses not dropped by the deadline date will be counted and the student would be billed accordingly.
e. Late registration fee/late payment penalty includes the registration fee PLUS the Late Registration fee/late payment penalty.
SECTION VI – GENERAL REGULATIONS GOVERNING THE PRE-SCIENCE (N1) PROGRAMME

The FST offers one year of full-time study (including Saturdays) in the following subjects:

- Biology
- Chemistry
- Computer Science
- Mathematics
- Physics

Successful completion of this programme may permit students to apply for a full degree in the Faculty of Science & Technology, the Faculty of Engineering, the Faculty of Medical Sciences, the Faculty of Food & Agriculture or the Faculty of Law.

1. QUALIFICATIONS FOR ADMISSION INTO THE PRE-SCIENCE (N1) PROGRAMME
 A minimum of five (5) CXC (CSEC) General Proficiency subjects at Grades I to II or, since 1998, Grade III or five (5) GCE O-Level subjects which must include Mathematics and English Language, and any of the following: Chemistry, Biology and Physics. Students are normally required to have the subjects at CXC (CSEC) before pursing it at the Pre-Science (N1) Programme.

2. FEE PAYMENT
 Students are required to pay the compulsory fee once per academic year at the start of Semester I. Tuition fees are to be paid per semester.

3. ATTENDANCE
 MINIMUM ATTENDANCE of 75% of Lectures/Tutorials is required. Attendance at laboratory classes/field trips is required.

4. CHANGES IN REGISTRATION
 Students must apply for permission from the Dean, Faculty of Science & Technology to add or drop a course in the Pre-Science (N1) Programme.

 Requests for changes to registration (Add/Drop) should be submitted by the deadline date of the registration period per semester or no later than two (2) weeks after teaching has begun.

5. EXAMINATIONS & COURSE LOADS
 a. Examinations for courses taught in the Pre-Science (N1) Programme shall be conducted in accordance with the University Examination Regulations.

 b. Registration for a Pre-Science (N1) course constitutes registration for the associated examination.

 c. Students shall be permitted to register for a MAXIMUM of three courses or a MINIMUM of one course per semester.

 d. Students must request permission from the Dean to carry forward coursework marks for courses pursued in Semester I and/or II.

6. MEDICALS
 a. A student who has missed an examination as a result of illness must tender evidence of illness certified by a medical practitioner recognised by the University. The medical report must reach the Campus Health Service Unit (HSU) no later than seven days after the date of the relevant examination.

 b. Medical Certificates/Report forms are available online at http://sta.uwi.edu/health

7. WITHDRAWAL FROM THE PRE-SCIENCE (N1) PROGRAMME
 a. Students who are withdrawing from the Pre-Science (N1) Programme are expected to inform the staff in the
Dean’s Office, Faculty of Science & Technology in writing of their intention to do so.

b. For further queries or information please contact the Dean’s Office, Faculty of Science & Technology:

ADMINISTRATIVE ASSISTANT
Ms Afiya Jules
BSc, MSc (UWI)
Ext. 84474
Email: afiya.jules@sta.uwi.edu

CLERICAL ASSISTANT
Mr. Keron Brache
BSc (UWI)
Ext. 84505
Email: keron.brache@sta.uwi.edu

SECTION VII – APPROVED SCIENCE CAPE/GCE A-LEVEL SUBJECTS

- Applied Mathematics
- Biology
- Botany
- Chemistry
- Computer Science
- Environmental Science
- Further Mathematics
- Geography
- Geology
- Information Technology
- Mathematics
- Pure Mathematics
- Physics
- Zoology
SECTION VIII - PRE-REQUISITES FOR CROSS FACULTY COURSES

<table>
<thead>
<tr>
<th>BANNER CODE</th>
<th>TITLE</th>
<th>FSS PREREQUISITES</th>
<th>FST B.SC. ACTUARIAL SCIENCE PREREQUISITES</th>
<th>FST B.SC. CHEMISTRY & MANAGEMENT PREREQUISITES</th>
<th>FST B.SC. COMPUTER SCIENCE WITH MANAGEMENT PREREQUISITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 1002</td>
<td>Introduction to Financial Accounting</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>ACCT 1003</td>
<td>Introduction to Cost and Managerial Accounting</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>ACCT 2017</td>
<td>Management Accounting I</td>
<td>ACCT 1002 and ACCT 1003</td>
<td>This course is NOT offered to these students</td>
<td>ACCT 1002 and ACCT 1003</td>
<td></td>
</tr>
<tr>
<td>ECON 1001</td>
<td>Introduction To Microeconomics</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>ECON 1002</td>
<td>Introduction to Macroeconomics</td>
<td>NONE</td>
<td>NONE</td>
<td>This course is Not offered to these students</td>
<td>NONE</td>
</tr>
<tr>
<td>ECON 1005</td>
<td>Introduction to Statistics</td>
<td>NONE</td>
<td>This course is NOT offered to these students</td>
<td>NONE</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>MGMT 2006</td>
<td>Management Information Systems I</td>
<td>NONE</td>
<td>This course is NOT offered to these students</td>
<td>NONE</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>MGMT 2009</td>
<td>Organisational Behaviour</td>
<td>SOCI 1002 or MGMT 1001</td>
<td>This course is NOT offered to these students</td>
<td>CHEM 1060, OR CHEM 1065, OR CHEM 1070 AND CHEM 1066</td>
<td>MGMT 1001 OR SOCI 1002 OR AGEX 1000 OR OR COMP1400 and COMP1401 OR COMP 1601</td>
</tr>
<tr>
<td>MGMT 2012</td>
<td>Quantitative Methods</td>
<td>ECON 1002 and ECON 1003</td>
<td>This course is NOT offered to these students</td>
<td>ECON 1001 and CHEM 1060, OR CHEM 1065, OR CHEM 1070 and CHEM 1066</td>
<td>ECON 1002 and MATH 1140 OR MATH 1141 and MATH 1152</td>
</tr>
<tr>
<td>MGMT 2021</td>
<td>Business Law I</td>
<td>NONE</td>
<td>This course is NOT offered to these students</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>MGMT 2023</td>
<td>Financial Management I</td>
<td>ACCT 1002 and ECON 1003</td>
<td>ACCT 1002 and CHEM 1140 OR MATH 1141 and MATH 1152</td>
<td>ACCT 1002 and CHEM 1060, OR CHEM 1065, OR CHEM 1070 AND CHEM 1066</td>
<td>ACCT 1002 and MATH 1140 OR MATH 1141 and COMP 1601 OR COMP 1402 and COMP 1406</td>
</tr>
<tr>
<td>MGMT 2032</td>
<td>Managerial Economics</td>
<td>ECON 1001 and ECON 1003</td>
<td>This course is NOT offered to these students</td>
<td>ECON 1001 and CHEM 1060, OR CHEM 1065, OR CHEM 1070 AND CHEM 1066</td>
<td>ECON 1001 and MATH 1140 OR MATH 1141 and COMP 1601 OR COMP 1402 and COMP 1406</td>
</tr>
<tr>
<td>BANNER CODE</td>
<td>TITLE</td>
<td>FSS PREREQUISITES</td>
<td>FST B.SC. ACTUARIAL SCIENCE PREREQUISITES</td>
<td>FST B.SC. CHEMISTRY & MANAGEMENT PREREQUISITES</td>
<td>FST B.SC. COMPUTER SCIENCE WITH MANAGEMENT PREREQUISITES</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>MGMT 3017</td>
<td>Human Resource Management I</td>
<td>MGMT 2008</td>
<td>This course is NOT offered to these students</td>
<td>MGMT 2008</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>MKTG 2001</td>
<td>Principles of Marketing</td>
<td>ACCT 1002 and ECON 1001</td>
</tr>
<tr>
<td>MGMT 3048</td>
<td>Financial Management II</td>
<td>MGMT 2023 and MGMT 2032 OR ECON 2000 OR ECON 2001</td>
<td>MATH 2210</td>
<td>This course is NOT offered to these students</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>MGMT 2026</td>
<td>Production and Operation</td>
<td>MGMT 2012</td>
<td>This course is NOT offered to these students</td>
<td>MGMT 2012</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>MGMT 3060</td>
<td>Operations, Planning and Control</td>
<td>MGMT 3057</td>
<td>This course is NOT offered to these students</td>
<td>MGMT 3057 (OLD) OR MGMT 2026</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>MKTG 3000</td>
<td>Marketing Management</td>
<td>MKTG 2001</td>
<td>This course is NOT offered to these students</td>
<td>MGMT 2003 (OLD) OR MKTG 2001</td>
<td>MKTG 2001</td>
</tr>
<tr>
<td>MKTG 3007</td>
<td>Marketing Planning</td>
<td>MKTG 2001/MGMT 2012 and MGMT 2023</td>
<td>This course is NOT offered to these students</td>
<td>MGMT 2003 (OLD) or MGMT 2001. MGMT 2012 and MGMT 2023</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>SOCI 1002</td>
<td>Introduction to Sociology</td>
<td>NONE</td>
<td>This course is NOT offered to these students</td>
<td>This course is NOT offered to these students</td>
<td>This course is NOT offered to these students</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>ANTI-REQUISITES</td>
<td>COURSE CODE</td>
<td>ANTI-REQUISITES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 2061</td>
<td>BIO 2361 or BIO 2360 or BIO 2365</td>
<td>COMP 3990</td>
<td>INFO 3490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 2161</td>
<td>BIO 2363</td>
<td>ESST 1002</td>
<td>CHEM 1066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 2162</td>
<td>BIO 2364</td>
<td>ESST 1005</td>
<td>COMP 1011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 2262</td>
<td>BIO 2362</td>
<td>INFO 2601</td>
<td>COMP 2604</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3062</td>
<td>BIO 3361</td>
<td>INFO 2603</td>
<td>COMP 2601</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3069</td>
<td>BIO 3069</td>
<td>INFO 3605</td>
<td>INFO 3510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3162</td>
<td>BIO 3061 or BIO 2164</td>
<td>INFO 3607</td>
<td>INFO 3510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3262</td>
<td>BIO 3364</td>
<td>MATH 1160</td>
<td>MATH 1201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3364</td>
<td>BIO 3362</td>
<td>MATH 1170</td>
<td>MATH 1202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 1061</td>
<td>BIO 1362 or BIO 1364 or AGRI 1011 or AGRI 1013</td>
<td>MATH 2100</td>
<td>MATH 2272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 1065</td>
<td>BIO 1262 or BIO 1263</td>
<td>MATH 2120</td>
<td>ECON 2015 or MATH 2273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 1261</td>
<td>BIO 1065 or BIO 1262 or BIO 1263 or AGRI 1012</td>
<td>MATH 2140</td>
<td>ECON 2006 or MATH 2190 or MATH 2274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 1362</td>
<td>AGRI 1013 OR BIO 1061</td>
<td>MATH 2150</td>
<td>ECON 2006/ECON 2025, MATH 2190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 1364</td>
<td>AGRI 1011 OR BIO 1061</td>
<td>MATH 2160</td>
<td>MATH 2271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 2164</td>
<td>BIO 3061</td>
<td>MATH 2190</td>
<td>ECON 2006/ECON 2025 or MATH 2150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 2165</td>
<td>BIO 2162</td>
<td>2140 or MATH 2150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 2262</td>
<td>BIO 3662</td>
<td>MATH 2150</td>
<td>ECON 2006/ECON 2025 or MATH 2273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 2265</td>
<td>BIO 2263 or BIO 2261</td>
<td>MATH 2210</td>
<td>MATH 2211 or MATH 2212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 2360</td>
<td>BIO 2365</td>
<td>MATH 2220</td>
<td>MATH 2115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 2363</td>
<td>HUEC 2000 or BIO 2361</td>
<td>MATH 3240</td>
<td>MATH 3277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 2764</td>
<td>BIO 2761</td>
<td>MATH 3310</td>
<td>ACTS 3001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 2867</td>
<td>BIO 2862</td>
<td>MATH 3320</td>
<td>ACTS 3003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3063</td>
<td>BIO 2063</td>
<td>MATH 3321</td>
<td>ACTS 3004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3162</td>
<td>BIO 3262</td>
<td>MATH 3354</td>
<td>ACTS 3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3164</td>
<td>BIO 3264</td>
<td>MATH 3430</td>
<td>MATH 3272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3264</td>
<td>BIO 2861</td>
<td>MATH 3440</td>
<td>MATH 3273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3366</td>
<td>BIO 3762</td>
<td>MATH 3450</td>
<td>MATH 3278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3462</td>
<td>BIO 2062</td>
<td>MATH 3460</td>
<td>MATH 3465</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3465</td>
<td>BIO 3464</td>
<td>MATH 3470</td>
<td>STAT 3001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3466</td>
<td>BIO 3461</td>
<td>MATH 3515</td>
<td>STAT 3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3468</td>
<td>BIO 3062</td>
<td>PHYS 1110</td>
<td>PHYS 1211 or PHYS 1213 or PHYS 1216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3761</td>
<td>BIO 3765</td>
<td>PHYS 1111</td>
<td>PHYS 1211 or PHYS 1212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3770</td>
<td>BIO 3767</td>
<td>PHYS 2165</td>
<td>CHNG 1003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3771</td>
<td>BIO 3766</td>
<td>PHYS 2294</td>
<td>CHNG 1003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3869</td>
<td>BIO 3069</td>
<td>BMET 2001</td>
<td>PHYS 2160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 3870</td>
<td>BIO 2866</td>
<td>BMET 2002</td>
<td>PHYS 2159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1062</td>
<td>CHEM 1060 or CHEM 1061 or CHEM 0060 or CHEM 0061</td>
<td>BMET 2002</td>
<td>PHYS 2159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1060</td>
<td>CHEM 1065 or CHEM 1066 or CHEM 1067 or CHEM 1068</td>
<td>BMET 2002</td>
<td>PHYS 2159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1061</td>
<td>CHEM 1065 or CHEM 1066 or CHEM 1067 or CHEM 1068</td>
<td>BMET 2002</td>
<td>PHYS 2159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 3563</td>
<td>CHEM 3562</td>
<td>BMET 2002</td>
<td>PHYS 2159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 3564</td>
<td>CHEM 3561</td>
<td>BMET 2002</td>
<td>PHYS 2159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 3579</td>
<td>CHEM 3569</td>
<td>BMET 2002</td>
<td>PHYS 2159</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION X - UNIVERSITY REGULATIONS ON PLAGIARISM

Application of these Regulations
1 These Regulations apply to the presentation of work by a student for evaluation, whether or not for credit, but do not apply to invigilated written examinations.

Definition of plagiarism
2 In these Regulations, “plagiarism” means the unacknowledged and unjustified use of the words, ideas or creations of another, including unjustified unacknowledged quotation and unjustified unattributed borrowing;

“Level 1 plagiarism” means plagiarism which does not meet the definition of Level 2 plagiarism;

“Level 2 plagiarism” means plagiarism undertaken with the intention of passing off as original work by the plagiariser work done by another person or persons.

3 What may otherwise meet the definition of plagiarism may be justified for the purposes of Regulation 2 where the particular unacknowledged use of the words, ideas and creations of another is by the standards of the relevant academic discipline a function of part or all of the object of the work for evaluation whether or not for credit, for example:
 a. The unacknowledged use is required for conformity with presentation standards;
 b. The task set or undertaken is one of translation of the work of another into a different language or format;
 c. The task set or undertaken requires producing a result by teamwork for joint credit regardless of the level of individual contribution;
 d. The task set or undertaken requires extensive adaptation of models within a time period of such brevity as to exclude extensive attribution;
 e. The task set or undertaken requires the use of an artificial language, such as is the case with computer programming, where the use of unoriginal verbal formulae is essential.

4 It is not a justification under Regulations 2 and 3 for the unacknowledged use of the words, ideas and creations of another that the user enjoys the right of use of those words, ideas and creations as a matter of intellectual property.

Other definitions
5 In these Regulations,
 “Chairman” means the Chairman of the relevant Campus Committee on Examinations;
 “Examination Regulations” means the Examination and other forms of Assessment Regulations for First Degrees Associate Degrees Diplomas and Certificates of the University;
 “set of facts” means a fact or combination of facts.

Evidence of plagiarism
6 In order to constitute evidence of plagiarism under these Regulations, there shall be identified as a minimum the passage or passages in the student’s work which are considered to have been plagiarised and the passage or passages from which the passages in the student’s work are considered to have been taken.

Student Statement on Plagiarism
7 When a student submits for examination work under Regulation 1, the student shall sign a statement, in such form as the Campus Registrar may prescribe, that as far as possible the work submitted is free of plagiarism including unattributed quotation or paraphrase of the work of another except where justified under Regulation 3.

8 Quotation or paraphrase is attributed for the purpose of Regulation 7 if the writer has indicated using conventions appropriate to the discipline that the work is not the writer’s own.

9 The University is not prohibited from proceeding with a charge of plagiarism where there is no statement as prescribed under Regulation 7.
Electronic vetting for plagiarism
10 The results of any electronic vetting although capable, where the requirements of Regulation 7 are satisfied, of constituting evidence under these Regulations, are not thereby conclusive of any question as to whether or not plagiarism exists.

Level 1 plagiarism
11 In work submitted for examination where the Examiner is satisfied that Level 1 plagiarism has been committed, he/she shall penalise the student by reducing the mark which would have otherwise been awarded taking into account any relevant Faculty regulations.

Level 2 plagiarism
12 Where an examiner has evidence of Level 2 plagiarism in the material being examined, that examiner shall report it to the Head of Department or the Dean and may at any time provide the Registrar with a copy of that report. In cases where the examiner and the Dean are one and the same, the report shall be referred to the Head of the Department and also to the Campus Registrar.

13 Where any other person who in the course of duty sees material being examined which he or she believes is evidence of Level 2 plagiarism that other person may report it to the Head of Department or the Dean and may at any time report it to the Campus Registrar who shall take such action as may be appropriate.

14 Where a Dean or Head of Department receives a report either under Regulation 12 or 13, the Dean or Head of Department, as the case may be, shall
 a. where in concurrence with the report’s identification of evidence of Level 2 plagiarism, report the matter to the Campus Registrar; or
 b. where not concurring in the identification of evidence of plagiarism, reply to the examiner declining to proceed further on the report; or
 c. where concluding that there is evidence of Level 1 plagiarism, reply to the examiner indicating that conclusion and the Examiner shall proceed as under Regulation 11.

15 Where a report is made to the Campus Registrar under Regulation 14a or 16, the Campus Registrar shall lay a charge and refer the matter to the Campus Committee on Examinations.

16 Where the Campus Registrar receives a report alleging Level 2 plagiarism from the Examiner or any other person except the Dean or Head of Department, the Campus Registrar shall refer the matter to a senior academic to determine whether there is sufficient evidence to ground a charge of plagiarism and where such evidence is found, the Campus Registrar shall proceed as under Regulation 15.

17 Where the matter has been referred to the Campus Committee on Examinations pursuant to Regulation 15, the proceedings under these Regulations prevail, over any other disciplinary proceedings within the University initiated against the student based on the same facts and, without prejudice to Regulation 21, any other such disciplinary proceedings shall be stayed, subject to being reopened.

18 If the Campus Committee on Examinations is satisfied, after holding a hearing, that the student has committed Level 2 plagiarism, it shall in making a determination on the severity of the penalty take into consideration:
 a. the circumstances of the particular case;
 b. the seniority of the student; and
 c. whether this is the first or a repeated incidence of Level 2 plagiarism.

19 Where the Campus Committee is of the view that the appropriate penalty for an offence of Level 2 plagiarism is for the student to be:
 (i) awarded a fail mark;
 (ii) excluded from some or all further examinations of the University for such period as it may determine;
 (iii) be dismissed from the University,
 it shall make such recommendation to the Academic Board.

Clearance on a charge of Level 2 plagiarism
20 A determination of the Campus Committee on Examinations that Level 2 plagiarism has not been found will be reported to the Campus Registrar who shall refer it to the Examiner and notify the student. Where the Committee has not identified Level 2 but has identified Level 1, it shall be reported to the Campus Registrar who shall refer it to the examiner.
Level 2 plagiarism: Appeal to the Senate
21 A student may appeal to the Senate from any decision against him or her on a charge of plagiarism made by Academic Board.

Delegation by Dean or Head of Department
22 The Dean or Head of Department, as the case may be, may generally or in a particular instance delegate that officer’s functions under these Regulations.

Conflict of interest disqualification
23 Any person who has at any time been an examiner of work or been involved in procedures for laying charges in relation to which an issue of plagiarism is being considered under these Regulations shall withdraw from performing any functions under these Regulations other than those of supervisor and examiner.
PLAGIARISM DECLARATION

THE UNIVERSITY OF THE WEST INDIES
The Office of the Board for Undergraduate Studies
INDIVIDUAL PLAGIARISM DECLARATION

STUDENT ID:

COURSE TITLE:

COURSE CODE:

TITLE OF ASSIGNMENT:

This declaration is being made in accordance with the University Regulations on Plagiarism (First Degrees, Diplomas and Certificates) and must be attached to all work, submitted by a student to be assessed in partial or complete fulfilment of the course requirement(s), other than work submitted in an invigilated examination.

STATEMENT

1. I have read the Plagiarism Regulations as set out in the Faculty or Open Campus Student Handbook and on University websites related to the submission of coursework for assessment.

2. I declare that I understand that plagiarism is a serious academic offence for which the University may impose severe penalties.

3. I declare that the submitted work indicated above is my own work, except where duly acknowledged and referenced and does not contain any plagiarized material.

4. I also declare that this work has not been previously submitted for credit either in its entirety or in part within the UWI or elsewhere. Where work was previously submitted, permission has been granted by my Supervisor/Lecturer/Instructor as reflected by the attached Accountability Statement.

5. I understand that I may be required to submit the work in electronic form and accept that the University may subject the work to a computer-based similarity detection service.

NAME

SIGNATURE

DATE

Return to Table of Contents
GROUP PLAGIARISM DECLARATION

COURSE TITLE:

COURSE CODE:

TITLE OF ASSIGNMENT:

When submitting a group assignment for assessment each member of the group will be required to sign the following declaration of ownership which will appear on the coursework submission sheet.

We the undersigned declare that:

1. We have read the Plagiarism Regulations as set out in the Faculty or Open Campus Student Handbook and on University websites related to the submission of coursework for assessment.

2. We declare that we understand that plagiarism is a serious academic offence for which the University may impose severe penalties.

3. The submitted work indicated above is our own work, except where duly acknowledged and referenced.

4. This work has not been previously submitted for credit either in its entirety or in part within the UWI or elsewhere. Where work was previously submitted, permission has been granted by our Supervisor/Lecturer/Instructor as reflected by the attached Accountability Statement.

5. We understand that we may be required to submit the work in electronic form and accept that the University may check the originality of the work using a computer-based similarity detention service.

NAME __

SIGNATURE __

NAME __

SIGNATURE __

NAME __

SIGNATURE __

DATE __
ADDITIONAL ACCOUNTABILITY STATEMENT WHERE WORK HAS BEEN PREVIOUSLY SUBMITTED

1. I/We have set out in an attached statement the details regarding the circumstances under which this paper or parts thereof has been previously submitted.

2. I/We have received written permission from my Supervisor/Lecturer/Instructor regarding the submission of this paper and I have attached a copy of that written permission to this statement.

3. I/We hereby declare that the submission of this paper is in keeping with the permission granted.

NAME __

SIGNATURE __

DATE __
SECTION XI - PRIZES

A number of prizes are offered on an annual basis to students in the Faculty based on outstanding academic performance. The following is a list of such prizes. Note that this list is subject to alteration.

FACULTY PRIZES

These prizes are awarded to all First Class Honours students within the Faculty by the Office of the Dean.

DEAN’S PRIZE
Awarded for the Best Performance in N1 (Preliminary) Biology

DEAN’S PRIZE
Awarded for the Best Performance in N1 (Preliminary) Chemistry

DEAN’S PRIZE
Awarded for the Best Performance in N1 (Preliminary) Computer Science

DEAN’S PRIZE
Awarded for the Best Performance in N1 (Preliminary) Mathematics

DEAN’S PRIZE
Awarded for the Best Performance in N1 (Preliminary) Physics

DEAN’S PRIZE
Awarded for the Best Overall performance in three N1 subjects.

SPECIAL FACULTY PRIZE

DEPARTMENT OF CHEMISTRY

THE WESTERN SCIENTIFIC PRIZE
Awarded for the best Year I performance in Chemistry

THE BERGER PAINTS TRINIDAD LTD. PRIZE
Awarded for the best Year II performance in Chemistry

THE CHROMASPEC LTD. PRIZE
Awarded for the best Year II performance in Chemistry & Management

THE MASSY GAS PRODUCTS TRINIDAD LTD. PRIZE
Awarded for the best Year III performance in Chemistry

THE SOUTHERN SYSTEMS LTD. PRIZE
Awarded for the best graduating student in Chemistry

THE WESTERN SCIENTIFIC PRIZE
Awarded for the best Year III performance in Chemistry & Management

THE MUSTAPHA MARKETING LIMITED PRIZE
Awarded for the best performance in Analytical Chemistry

THE CHERYL BOWLES CHALLENGE TROPHY PRIZE
Awarded for the best Final Year Analytical Chemistry Project
DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY
THE IBM WORLD TRADE CORPORATION PRIZE
Awarded for the best Year I performance in Computer Science

THE HEAD OF DEPARTMENT PRIZE
Awarded for the best Year I performance in Information Technology

THE TUCKER ENERGY SERVICES HOLDINGS LTD. PRIZE
Awarded for the best Year II performance in Computer Science

THE RBC ROYAL BANK OF TRINIDAD & TOBAGO LTD. PRIZE
Awarded for the best Year II performance in Information Technology

THE FUJITSU TRANSACTION SOLUTION LIMITED PRIZE
Awarded for the best Year III performance in Computer Science

THE HEAD OF DEPARTMENT PRIZE
Awarded for the best Year III performance in Information Technology

ATLANTIC CO. OF TRINIDAD AND TOBAGO PRIZE
Awarded to the most outstanding graduate: BSc General (Major in Computer Science)

DR MARGARET BERNARD MEDULLAN AWARD
Awarded to the graduate in Computer Science with the highest GPA

TELEIOS SYSTEMS LTD. PRIZE
Awarded for the Best MSc Research Project in Computer Science

THE TRINIDAD AND TOBAGO NETWORK INFORMATION CENTRE (TTNIC) PRIZE
Awarded to the MSc (Computer Science & Technology) Graduate with the Highest Overall Examination Average

DEPARTMENT OF LIFE SCIENCES
PLANT SCIENCE
THE PROFESSOR E.J. DUNCAN PRIZE
Awarded for the best Research Project in Plant Science

BIOCHEMISTRY
THE BRYDEN PI CARIBBEAN PRIZE
Awarded for the best Year II performance by a student majoring in Biochemistry

THE HEAD OF DEPARTMENT PRIZE FOR BEST LEVEL III PERFORMANCE IN BIOCHEMISTRY
Awarded to the student with the best average performance in the three (3) core and any two (2) elective Level III Biochemistry courses subject to completion of at least 30 Level II/III credits within the academic year

BIOLOGY
THE REPUBLIC BANK LTD. PRIZE
Awarded for the best Year I performance in Biology

THE MASSY GROUP PRIZE FOR BEST LEVEL II PERFORMANCE IN BIOLOGY
Awarded to the student with the best average performance in ten (10) Level II Biology programme courses

THE MASSY GROUP PRIZE FOR BEST LEVEL III PERFORMANCE IN BIOLOGY
Awarded to the student with the best average performance in ten (10) Level III Biology programme courses

ENVIRONMENTAL SCIENCE
THE ASA WRIGHT NATURE CENTRE - JULIAN DUNCAN PRIZE FOR THE BEST LEVEL I PERFORMANCE IN ENVIRONMENTAL SCIENCES
Awarded to the student with the best average performance in the shared Level I courses between the BSc in Environmental Science (ES) and BSc Environmental Science and Sustainable Technology (ESST) programme
THE ASA WRIGHT NATURE CENTRE - THOMAS CARR PRIZE FOR THE BEST LEVEL II PERFORMANCE IN ENVIRONMENTAL SCIENCE
Awarded to the student with the best average performance in the shared Level II courses between the BSc Environmental Science and Sustainable Technology (ESST) and the BSc in Environmental Science (ES) programmes. The award of this prize will also be subject to the completion of at least 30 Level II/III credits within the academic year.

THE ASA WRIGHT NATURE CENTRE – IAN LAMBIE PRIZE FOR THE BEST LEVEL III PERFORMANCE IN ENVIRONMENTAL SCIENCE
Awarded to the BSc Environmental Science (ES) student with the best average performance in the five (5) core Level III courses subject to the completion of at least 30 Level II/III credits within the academic year.

THE PRIZE FOR BEST LEVEL III PERFORMANCE IN ENVIRONMENTAL SCIENCE AND SUSTAINABLE TECHNOLOGY
Awarded to the student with the best average performance in the (six) 6 Core Level III Courses in the BSc Environmental Science and Sustainable Technology programme (ESST) programme subject to the completion of at least 30 Level II/III credits within the academic year.

THE HEAD OF DEPARTMENT PRIZE FOR BEST LEVEL III PERFORMANCE IN BIOCHEMISTRY
Awarded to the student with the best average performance in the three (3) core and any two (2) elective Level III Biochemistry courses subject to completion of at least 30 Level II/III credits within the academic year.

SPECIAL PRIZES:

THE ENVIRONMENTAL MANAGEMENT AUTHORITY (EMA) PRIZE
Awarded for the Best Research Project

THE JULIAN KENNY PRIZE IN NATURAL HISTORY
Awarded to the final year undergraduate student majoring in a Life Science discipline and displaying a strong interest in Natural History

THE ST. AUGUSTINE MEDICAL LAB PRIZE
Awarded for the best performance in Biotechnology Specialization

THE PROFESSOR DAVE CHADEE PRIZE
Awarded for the best performance in the Ecology & Environmental Biology Specialization

THE INSTITUTE OF MARINE AFFAIRS PRIZE
Awarded for the best performance in the Marine Biology Specialization

THE ST. AUGUSTINE MEDICAL LAB PRIZE
Awarded for the best performance in the Microbiology Specialization

THE TRINIDAD AND TOBAGO FIELD NATURALISTS’ CLUB—DR VICTOR QUESNEL PRIZE:
Awarded for the best performance in the Plant Biology Specialization

THE TRINIDAD AND TOBAGO FIELD NATURALISTS’ CLUB—DR ELISHA TIKASINGH PRIZE
Awarded for the best performance in the Zoology Specialization

DEPARTMENT OF MATHEMATICS & STATISTICS
THE POWERGEN PRIZE
Awarded for the best Year I performance in Mathematics

THE GUARDIAN LIFE OF TRINIDAD & TOBAGO PRIZE
Awarded for the best Year II performance in Mathematics

THE TATIL GROUP PRIZE
Awarded for the best Year III performance in Mathematics

THE WINSTON A. RICHARDS PRIZE IN STATISTICS
Awarded for the best Year II and Year III performance in Statistics
HEAD OF DEPARTMENT PRIZE
Awarded for the best Year II performance in Actuarial Science

HEAD OF DEPARTMENT PRIZE
Awarded for the best Year II performance in Actuarial Mathematics Courses

THE HAROLD RAMKISSOON PRIZE
Awarded for the best Year II and Year III performance in Mathematics

THE PROFESSOR SAM BROVERMAN PRIZE FOR MATHEMATICS OF FINANCE
Awarded to the Year II Actuarial Science student with the highest average mark for the courses Mathematics for Finance I and Mathematics for Finance II

SUBBA RAO GUNAKALA PRIZE
Awarded for the Best Academic Performance in the Year I Actuarial Science

BANKERS ASSOCIATION OF TRINIDAD AND TOBAGO (BATT) PRIZE
Awarded for the best Year II performance in Actuarial Science

DEPARTMENT OF PHYSICS
THE RUSSELL BARROW MEMORIAL PRIZE IN ASTRONOMY
Awarded to the student showing the most initiative and effort in Astronomy outside the formal classroom

THE HEAD OF DEPARTMENT PRIZE
Awarded for the best overall Year I performance in ALL Level I Physics CORE courses

THE AZAD W. HARRIPAUL PRIZE
Awarded to the student with the highest marks for the course Bioengineering

THE BERGER PAINTS TRINIDAD LTD. PRIZE
Awarded for the best Year II performance in Physics Level II courses (PHYS 2150, PHYS 2151, PHYS 2152, PHYS 2153, and PHYS 2155)

THE P.C.S. NITROGEN PRIZE
Awarded for the best Year II performance in Materials Science (PHYS 2165)

THE HEAD OF DEPARTMENT PRIZE
Awarded for the best performance in the Physics Major Research Project

THE EDSEL VERNON REID MEMORIAL PRIZE
Awarded for the best performance in Ceramics Science

THE BRUNO MITCHELL PRIZE
Awarded for the best performance in Astrophysics Course

DIAGNOSTIC NUCLEAR MEDICINE LTD. PRIZE
Awarded to the most outstanding student in Introduction to Medical Physics

THE FREDERICK IGNATIUS CAMPAYNE PRIZE
Awarded for best performance in Quantum Mechanics

THE AA LAQUIS PRIZE
Awarded to the student with the highest overall mark in BMET 3000 for the academic year on the condition that the mark is greater than 74 percent
SECTION XII - PROGRAMME OUTLINES

OFFICE OF THE DEAN

COURSE LISTING

SEMESTER 3 (SUMMER)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSTF 2000</td>
<td>History of Science</td>
<td>3</td>
</tr>
<tr>
<td>FSTF 3000</td>
<td>Business of Science</td>
<td>3</td>
</tr>
</tbody>
</table>

PRE-SCIENCE (N1) PROGRAMME

COURSE LISTING

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 0100</td>
<td>N1 Biology I</td>
<td>6</td>
</tr>
<tr>
<td>CHEM 0100</td>
<td>N1 Chemistry I</td>
<td>6</td>
</tr>
<tr>
<td>COMP 0100</td>
<td>N1 Computer Science I</td>
<td>6</td>
</tr>
<tr>
<td>FSTF 1000**</td>
<td>Study Skills for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td>MATH 0100</td>
<td>N1 Mathematics I</td>
<td>6</td>
</tr>
<tr>
<td>PHYS 0100</td>
<td>N1 Physics I</td>
<td>6</td>
</tr>
</tbody>
</table>

** This course is highly recommended for students transitioning from high school to the tertiary education system

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 0200</td>
<td>N1 Biology II</td>
<td>6</td>
</tr>
<tr>
<td>CHEM 0200</td>
<td>N1 Chemistry II</td>
<td>6</td>
</tr>
<tr>
<td>COMP 0200</td>
<td>N1 Computer Science II</td>
<td>6</td>
</tr>
<tr>
<td>MATH 0200</td>
<td>N1 Mathematics II</td>
<td>6</td>
</tr>
<tr>
<td>PHYS 0200</td>
<td>N1 Physics II</td>
<td>6</td>
</tr>
</tbody>
</table>
DEPARTMENT OF CHEMISTRY

List of Courses offered in the Department of Chemistry for the 2019/2020 academic year.

COURSE LISTING

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1062</td>
<td>Basic Chemistry for Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1066</td>
<td>Introduction to Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1070</td>
<td>Introductory Chemistry Laboratory (Yearlong – credits applied in Semester 2)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2170</td>
<td>Fundamentals of Inorganic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2270</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2370</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2470</td>
<td>Introduction to Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2471</td>
<td>Analytical Methods in Chemistry (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2672</td>
<td>Core Chemistry Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2770</td>
<td>Introduction into Research in Chemistry Learning (Elective) *(not offered in 2019/2020)*</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3162</td>
<td>Chemistry of Metal-Catalyzed Transformations (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3268</td>
<td>Chemistry of Natural Products (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3273</td>
<td>Synthesis of Blockbuster Drugs#</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3564</td>
<td>Principles of Polymer Chemistry (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3570</td>
<td>Chemistry of the Environment (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3573</td>
<td>Contemporary Chemistry#</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3575</td>
<td>Chemistry and Industry I (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3577</td>
<td>Green Chemistry (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3670</td>
<td>Research Project for Chemistry Majors</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3671</td>
<td>Research Project for BSc Chemistry (Year-long)</td>
<td></td>
</tr>
<tr>
<td>CHEM 3870</td>
<td>Principles of Chemical Biology (Elective)</td>
<td>3</td>
</tr>
</tbody>
</table>

*This is a core course for the BSc Chemistry degree but can also be used as an Elective for other programmes.

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1067</td>
<td>Introduction to Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1068</td>
<td>Introduction to Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1070</td>
<td>Introductory Chemistry Laboratory (Yearlong)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2472</td>
<td>Analytical Chemistry Laboratory (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2673</td>
<td>Core Chemistry Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3163</td>
<td>Chemistry of Technologically Important Materials (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3170</td>
<td>Fundamentals of Inorganic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3172</td>
<td>Advanced Inorganic Chemistry#</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3270</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3370</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3373</td>
<td>Advanced Topics in Physical Chemistry#</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3470</td>
<td>Analytical Methods in Chemistry II (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3471</td>
<td>Quality Assurance for Laboratories</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3563</td>
<td>Environmental Degradation of Materials (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3576</td>
<td>Chemistry of Medicines (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3578</td>
<td>Energy for a Sustainable Future (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3579</td>
<td>Chemistry and Industry II (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3670</td>
<td>Research Project for Chemistry Majors</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3671</td>
<td>Research Project for BSc Chemistry (Year-long)</td>
<td>6</td>
</tr>
<tr>
<td>CHEM 3871</td>
<td>Methods in Chemical Biology (Elective)</td>
<td>3</td>
</tr>
</tbody>
</table>

*This is a core course for the BSc Chemistry degree but can also be used as an Elective for other programmes.

PLEASE NOTE:

1. N1 Chemistry I (CHEM 0100) and N1 Chemistry II (CHEM 0200) are offered by the Faculty of Science and Technology.
These courses are not counted towards a student’s credit requirements for the BSc degree. However, they can be used as pre-requisites for other courses/programmes.

II. Students who have already passed Chemistry at CAPE (Units 1 and 2), GCE A-Level or N1 Chemistry (CHEM 0100 and CHEM 0200) or equivalent at UWI will be exempted from CHEM 1062 (Basic Chemistry for Life Sciences).

III. For all N1 courses, practical work will be assessed throughout the semester and will contribute to the candidate’s final mark. Students will be debarred from writing the final examination if they have not attended, completed and handed in lab reports for at least 75% of the laboratory experiments.

IV. a. Basic Chemistry for Life Sciences (CHEM 1062) is offered for students who have little exposure to Chemistry and intend to pursue studies in Agriculture, Human Ecology or the Life Sciences.
b. CHEM 1062 cannot be done in conjunction with CHEM 1066, CHEM 1067, CHEM 1068 and CHEM 1070 or CHEM 0100 and CHEM 0200.

V. CHEM 1066 cannot be pursued in conjunction with ESST 1002 as (1) there is a great deal of overlap in the content of the two courses and (2) the content in CHEM 1066 is covered in much greater depth than in ESST 1002.

VI. Students wishing to pursue the Analytical Chemistry Minor OR the Major in Industrial Chemistry will be required to complete an application form available from the Chemistry General Office. Only successful applicants will be able to register for either of these programmes.

VII. Students who have already passed the ‘old’ courses will not receive credit for the new equivalent courses. See list below:

<table>
<thead>
<tr>
<th>NEW</th>
<th>'OLD'</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2170 (Fundamentals of Inorganic Chemistry)</td>
<td>CHEM 2160 (Main Group Chemistry)</td>
</tr>
<tr>
<td>CHEM 2270 (Organic Chemistry I)</td>
<td>CHEM 2260 (Basic Organic Chemistry)</td>
</tr>
<tr>
<td>CHEM 2470 (Introduction to Analytical Chemistry)</td>
<td>CHEM 2460 (Principles of Chemical Analysis)</td>
</tr>
<tr>
<td>CHEM 3170 (Fundamentals of Inorganic Chemistry II)</td>
<td>CHEM 3167 (Advanced Inorganic Chemistry)</td>
</tr>
<tr>
<td>CHEM 3270 (Organic Chemistry II)</td>
<td>CHEM 3267 (Basic Organic Chemistry II)</td>
</tr>
<tr>
<td>CHEM 3370 (Physical Chemistry II)</td>
<td>CHEM 2360 (Basic Physical Chemistry)</td>
</tr>
<tr>
<td>CHEM 3563 (Environmental Degradation of Materials)</td>
<td>CHEM3562 (Corrosion Science)</td>
</tr>
<tr>
<td>CHEM3564 (Principles of Polymer Chemistry)</td>
<td>CHEM3561 (Introduction to Polymer Chemistry)</td>
</tr>
<tr>
<td>CHEM 3570 (Chemistry of the Environment)</td>
<td>CHEM3560 (Environmental Chemistry)</td>
</tr>
<tr>
<td>CHEM 3579 (Chemistry and Industry II)</td>
<td>CHEM3569 (Industrial Chemistry)</td>
</tr>
</tbody>
</table>
MAJORS, MINORS, and SPECIAL OPTIONS

The following programmes are offered by the Department of Chemistry:

MAJORS:
- Chemistry
- Industrial Chemistry

MINORS:
- Chemistry
- Analytical Chemistry
- Industrial Chemistry
- Chemical Biology
- Materials Chemistry

SPECIAL OPTIONS:
- BSc Chemistry
- BSc Chemistry and Management

The table below shows the courses that students should take if they wish to follow the under-mentioned programmes:

<table>
<thead>
<tr>
<th>If you wish to take this minor....</th>
<th>Then in Level II, Semester 1, you should take...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry</td>
<td>CHEM 2370, CHEM 2470 and CHEM 2672</td>
</tr>
<tr>
<td>Chemical Biology</td>
<td>CHEM 2270, CHEM 2370, CHEM 2470 and CHEM 2672</td>
</tr>
<tr>
<td>Industrial Chemistry</td>
<td>CHEM 2370, CHEM 2470, CHEM 2672 and ONE of CHEM 2170 or CHEM 2270</td>
</tr>
<tr>
<td>Materials Chemistry</td>
<td>CHEM 2170, CHEM 2270, CHEM 2370 and CHEM 2672</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If you wish to take this major....</th>
<th>Then in Level II, Semester 1, you should take...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Chemistry</td>
<td>CHEM 2170, CHEM 2270, CHEM 2370, CHEM 2470 and CHEM 2672</td>
</tr>
<tr>
<td>Chemistry alone, with no Chemistry minors</td>
<td>CHEM 2370, CHEM 2672 and any one of CHEM 2170, CHEM 2270 or CHEM 2470. Which of the three you choose will depend on what, if any, Level III Chemistry courses you would like to take.</td>
</tr>
</tbody>
</table>
Major in Chemistry
(30 Credits)

The major will require the following courses amounting to 30 credits over Level II and Level III as follows:

COURSE LISTING

LEVEL I

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1066</td>
<td>Introduction to Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1070</td>
<td>Introductory Chemistry Laboratory (Yearlong – credits applied in Semester 2)</td>
<td></td>
</tr>
</tbody>
</table>

LEVEL I

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1067</td>
<td>Introduction to Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1068</td>
<td>Introduction to Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM1070</td>
<td>Introductory Chemistry Laboratory (Yearlong)</td>
<td>3</td>
</tr>
</tbody>
</table>

CORE COURSES

LEVEL II

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2370</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2470</td>
<td>Introduction to Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2672</td>
<td>Core Chemistry Laboratory I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2673</td>
<td>Core Chemistry Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3370</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2170</td>
<td>Fundamentals of Inorganic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2270</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3170</td>
<td>Fundamentals of Inorganic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3270</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

SEMESTER 1 OR 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3670</td>
<td>Research Project for Chemistry Majors</td>
<td>3</td>
</tr>
</tbody>
</table>

NOTE CAREFULLY: Those students who began the new Chemistry Major in 2013/2014 and have already passed CHEM 2670 and CHEM 2671, the former Advanced Chemistry Laboratory courses at 1.5 credits each, will need to do one Chemistry Elective in order to satisfy the 30 advanced credits for the Chemistry Major.
Major in Industrial Chemistry
(30 CREDITS)

Please note THAT THE MAJOR IN INDUSTRIAL CHEMISTRY CAN ONLY BE PURSUED IN CONJUNCTION WITH THE MAJOR IN CHEMISTRY

STUDENTS WOULD NEED TO COMPLETE AN APPLICATION FORM IN SEMESTER 1 LEVEL II AVAILABLE FROM THE CHEMISTRY GENERAL OFFICE.

COURSE LISTING

LEVEL II/III
SEMESTER 1
Course Code Course Title Credits
CHEM 3564 Principles of Polymer Chemistry 3
CHEM 3575 Chemistry and Industry I 3
CHEM 3577 Green Chemistry 3

LEVEL II/III
SEMESTER 2
Course Code Course Title Credits
CHEM 3163 Chemistry of Technologically Important Materials 3
CHEM 3563 Environmental Degradation of Materials 3
CHEM 3579 Chemistry and Industry II 3

PLUS
LEVEL III
INDUSTRIAL INTERNSHIP
Course Code Course Title Credits
CHEM 3671 Research Project for BSc Chemistry 6

PLUS
TWO (2) LEVEL II/III ELECTIVES from Chemistry or approved courses from outside of Chemistry (Total of 6 credits).

The Department recommends that students read CHEM 3578 (Energy for a Sustainable Future) as one of the approved courses which will complement the Major in Industrial Chemistry. PLEASE NOTE also, that if students intend on pursuing any of the two Advanced FST courses offered in Summer: Business of Science or History of Science as an approved elective, the Business of Science would be the preferred course to complement the Industrial Chemistry Major.

Research Project: Those reading for the Major in Industrial Chemistry are required to do a Research Project (Industrial Internship) and should complete an application form, available in the Chemistry General Office. This application should be made at least at the end of the academic year preceding the one in which you intend to pursue the Research Project which will allow time for the Department to make suitable preparations. It is recommended that Industrial Majors register for their research project in their final year.

NB: Students pursuing joint majors in Industrial Chemistry and Chemistry must read only one research project - CHEM 3671 and one (1) approved chemistry elective to complete the Major in Chemistry. It is recommended that CHEM 3573 (Contemporary Chemistry) – be used as the replacement course for CHEM3670.
Minor in Chemistry
(15 CREDITS)

COURSE LISTING

LEVEL II/III

SEMESTER 1

Course Code	Course Title	Credits
CHEM 2370 | Physical Chemistry I | 3
CHEM 2470 | Introduction to Analytical Chemistry | 3
CHEM 2672 | Core Chemistry Laboratory I | 3

SEMESTER 1

Course Code	Course Title	Credits
CHEM 2170 | Fundamentals of Inorganic Chemistry I | 3
CHEM 2270 | Organic Chemistry I | 3

Minor in Analytical Chemistry
(15 CREDITS)

Students pursuing the Minor or Major or BSc in Chemistry can register for this Analytical Chemistry Minor and will complete 15 credits of courses as outlined below.

Students wishing to pursue the new Analytical Chemistry Minor will be required to complete an application form available from the Chemistry General Office.

NOTE that the scheduling of the core courses for the Minor in Analytical Chemistry has been changed from the Academic Year 2019/2020: CHEM3471 should be pursued in Level II, CHEM2471 is now offered in Semester 1 for Level III students and CHEM3470 has moved to Semester 2.

COURSE LISTING

LEVEL II/III

SEMESTER 1 OR 2

Course Code	Course Title	Credits
Elective *** | | 3

CORE COURSES

LEVEL II

SEMESTER 2

Course Code	Course Title	Credits
CHEM 2472 | Advanced Analytical Laboratory | 3
CHEM 3471 | Quality Assurance for Laboratories | 3

LEVEL III

SEMESTER 1

Course Code	Course Title	Credits
CHEM 2471 | Analytical Methods in Chemistry | 3

LEVEL III

SEMESTER 2

Course Code	Course Title	Credits
CHEM 3470 | Analytical Methods in Chemistry II | 3

*** One (1) elective must be chosen from the following: CHEM 3570, CHEM 3564, CHEM 3563, CHEM 3575, CHEM 3579, CHEM 3870, CHEM 3871 and AGBU 2003.

Note: For those students pursuing the Minor in Analytical Chemistry and the Minor in Chemical Biology, please note that CHEM 2471 (Analytical Methods in Chemistry) is a course that is common to both Minors. In such an instance students are advised to choose one other course from the list of electives for either Minors.
Minor in Industrial Chemistry
(15 CREDITS)

PLEASE NOTE THAT THE MINOR IN INDUSTRIAL CHEMISTRY CAN ONLY BE PURSUED IN CONJUNCTION WITH THE MAJOR OR MINOR IN CHEMISTRY.

COURSE LISTING

LEVEL II/III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3564</td>
<td>Principles of Polymer Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3575</td>
<td>Chemistry and Industry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3577</td>
<td>Green Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3563</td>
<td>Environmental Degradation of Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3579</td>
<td>Chemistry and Industry II</td>
<td>3</td>
</tr>
</tbody>
</table>

Please refer to the equivalent courses below. If any two equivalent pairs of courses are done, credit will only be given for one.

- CHEM 3563 (Environmental Degradation of Materials) and CHEM 3562 (Corrosion Science)
- CHEM 3564 (Principles of Polymer Chemistry) and CHEM 3561 (Introduction to Polymer Chemistry)
- CHEM 3579 (Chemistry and Industry II) and CHEM 3569 (Industrial Chemistry)

Minor in Chemical Biology
(15 CREDITS)

PLEASE NOTE THAT A MINOR IN CHEMICAL BIOLOGY CAN ONLY BE PURSUED IN CONJUNCTION WITH THE MAJOR OR MINOR IN CHEMISTRY.

COURSE LISTING

LEVEL II/III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3564</td>
<td>Principles of Polymer Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3870</td>
<td>Principles of Chemical Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2471</td>
<td>Analytical Methods in Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3871</td>
<td>Methods of Chemical Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS

ONE (1) elective must be chosen from the following: CHEM 3162, CHEM 3273, CHEM 3570, CHEM 3373, CHEM 3573, CHEM 3577, BIOL 2061, BIOL 2163, BIOL 3263, BIOL 3363, BIOC 3162.

Note: For those students pursuing the Minor in Analytical Chemistry and the Minor in Chemical Biology, please note that CHEM 2471 (Analytical Methods in Chemistry) is a course that is common to both Minors. In such an instance students are advised to choose one other course from the list of electives for either Minor.
Minor in Materials Chemistry
(15 CREDITS)

PLEASE NOTE THAT A MINOR IN MATERIALS CHEMISTRY CAN ONLY BE PURSUED IN CONJUNCTION WITH THE MAJOR OR MINOR IN CHEMISTRY.

COURSE LISTING
LEVEL II/III
SEMESTER 1
Course Code	Course Title	Credits
CHEM 3162 | Chemistry of Metal Catalysed Transformations | 3
CHEM 3564 | Principles of Polymer Chemistry | 3
PHYS 2165 | Materials Science ++ | 3

SEMESTER 2
Course Code	Course Title	Credits
CHEM3163 | Chemistry of Technologically Important Materials | 3

PLUS
ONE (1) Approved Chemistry Elective: Either CHEM 3578 (Energy for a Sustainable Future) or CHEM 3563 (Environmental Degradation of Materials).

Note: ++ Level I Chemistry courses have been added as prerequisites for PHYS 2165.
BSc CHEMISTRY (SPECIAL)
(93 CREDITS)

LEVEL I REQUIREMENTS:
- In addition to the Level I Chemistry courses (12 credits), students pursuing the BSc in Chemistry will require passes in MATH 1115 and MATH 1125 or equivalent. Students with passes in CAPE Pure Mathematics (Units I and II) or N1 Mathematics (MATH 0100 and MATH 0200) or GCE A’level Mathematics may apply for EXEMPTIONS WITHOUT CREDITS from MATH 1115 and MATH 1125. Where EXEMPTIONS WITHOUT CREDITS are granted, students must pursue alternative courses as approved by the Head of Department. Application Forms to request the exemptions are available at the Student Administration Building.

- Note carefully: Students reading MATH 1115 and MATH 1125 (3 credits each) will be required to complete any other two (2) Level I Faculty courses (at least 3 credits each) in order to fulfil the minimum Level I requirements of 24 credits. Students with CAPE Pure Mathematics (Units I and II) or equivalent who have been granted EXEMPTIONS WITHOUT CREDITS for MATH 1115 and MATH 1125 will be required to complete any other four (4) Faculty courses (at least 3 credits each) to fulfil the minimum Level I requirement of 24 credits.

LEVEL II AND LEVEL III REQUIREMENTS:
- At Level II students registered for the BSc Chemistry will complete the courses required for a major in Chemistry and at Level III will pursue eighteen (18) credits of required advanced core courses in Chemistry and a further twelve credits of approved electives thus completing a total of sixty (60) credits of advanced courses. The full programme is outlined below.

- You are required to do a Yearlong Research Project and should complete an application form, available in the Chemistry General Office. This application should be made at least at the end of the academic year preceding the one in which you intend to pursue the Research Project which will allow time for the Department to assign a supervisor.

COURSE LISTING

LEVEL I

SEMESTER 1 (12 credits)
Course Code	Course Title	Credits
CHEM 1066 | Introduction to Chemistry I | 3
CHEM 1070 | Introductory Chemistry Laboratory Year-long – credits applied in Semester 2) |

SEMESTERS 1
Course Code	Course Title	Credits
MATH 1115 | Fundamental Mathematics for the General Sciences I | 3
PLUS

ONE (1) other Level I, 3-credit course chosen from allowed Faculty courses.

LEVEL I

SEMESTER 2 (12 credits)
Course Code	Course Title	Credits
CHEM 1067 | Introduction to Chemistry II | 3
CHEM 1068 | Introduction to Chemistry III | 3
CHEM 1070 | Introductory Chemistry Laboratory (Yearlong) | 3

SEMESTER 2
Course Code	Course Title	Credits
MATH 1125 | Fundamental Mathematics for General Science II | 3
PLUS

ONE (1) other Level I, 3-credit course chosen from allowed Faculty courses.

NB: MATH 1115 and MATH 1125 must be taken by students who do not have a pass in Pure Mathematics at CAPE Units I & II or GCE A’Level or equivalent.
LEVEL II

SEMESTER 1 (15 CREDITS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2170</td>
<td>Fundamentals of Inorganic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2270</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2370</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2470</td>
<td>Introduction to Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2672</td>
<td>Core Chemistry Laboratory I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II/III

SEMESTER 2 (15 CREDITS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2673</td>
<td>Core Chemistry Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3170</td>
<td>Fundamentals of Inorganic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3270</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3370</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>
PLUS
ONE (1) Chemistry Elective

LEVEL III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3273</td>
<td>Synthesis of Blockbuster Drugs</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3573</td>
<td>Contemporary Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3671</td>
<td>Research Project for BSc Chemistry (Yearlong – credits applied in Semester 2)</td>
<td>6</td>
</tr>
</tbody>
</table>
PLUS
TWO (2) Electives* - 3 credits each

LEVEL III

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3373</td>
<td>Advanced Topics in Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3172</td>
<td>Advanced Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3671</td>
<td>Research Project for BSc Chemistry (Yearlong)</td>
<td>6</td>
</tr>
</tbody>
</table>
PLUS
TWO (2) Electives* - 3 credits each

NOTE: *At least two (2) of the four (4) Electives must be from Chemistry. For those courses outside the Faculty of Science and Technology, students must seek approval from the Head of Department.

FOUNDATION COURSES (9 CREDITS)

SEMESTERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific and Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>
BSc CHEMISTRY AND MANAGEMENT (SPECIAL)
(Please see SECTION VIII, which outlines the specific prerequisites for the Management courses pursued by Chemistry and Management students.)

COURSE LISTING

(A) **LEVEL I**

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 1002</td>
<td>Introduction to Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1066</td>
<td>Introduction to Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1070</td>
<td>Introductory Chemistry Laboratory (Yearlong – credits applied in Semester 2)</td>
<td>3</td>
</tr>
<tr>
<td>ECON 1001</td>
<td>Introduction to Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 1005</td>
<td>Introduction to Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 1003</td>
<td>Introduction to Cost and Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1067</td>
<td>Introduction to Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1068</td>
<td>Introduction to Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1070</td>
<td>Introductory Chemistry Laboratory (Yearlong)</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL LEVEL I CREDITS: 24

(B) **CHEMISTRY ADVANCED COURSES (30 Credits)**

level II

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2370</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2470</td>
<td>Introduction to Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2672</td>
<td>Core Chemistry Laboratory I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2673</td>
<td>Core Chemistry Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3370</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>

Level III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2170</td>
<td>Fundamentals of Inorganic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2270</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3170</td>
<td>Fundamentals of Inorganic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3270</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>

Level III

SEMESTER 1 or 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3670</td>
<td>Research Project for Chemistry Majors</td>
<td>3</td>
</tr>
</tbody>
</table>

Research Project: Those reading for the BSc Chemistry and Management (Special) degree are required to do a Research Project and should complete an [application form](#) available in the Chemistry General Office. This application should be made at least at the end of the academic year preceding the one in which you intend to pursue the Research Project which will allow time for the Department to assign a supervisor.

(C) **MANAGEMENT ADVANCED COURSES**
LEVEL II/III

Semester 1
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 2012</td>
<td>Quantitative Methods</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 2021</td>
<td>Business Law I ***</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 2023</td>
<td>Financial Management</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 2008</td>
<td>Organisational Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 2032</td>
<td>Managerial Economics</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 2001</td>
<td>Principles of Marketing</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

Semester 1
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 2026</td>
<td>Production and Operations Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 3060</td>
<td>Operations Planning and Control</td>
<td>3</td>
</tr>
</tbody>
</table>

*** MGMT 2021 – Business Law can be done in Level II or III – this is dependent on a student’s course loading.

(D) IN ADDITION

Six (6) credits of Level II/III Management courses selected from the following:

Management Electives:

SEMESTER 1
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 2006</td>
<td>Management Information Systems I</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 3017</td>
<td>Human Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 3000</td>
<td>Marketing Management</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKTG 3007</td>
<td>Marketing Planning</td>
<td>3</td>
</tr>
</tbody>
</table>

Alternatively, students may select six (6) credits of Management courses from any Level II/III Management courses offered in the Summer.

TOTAL LEVEL II/III CREDITS: 60

(E) NINE (9) CREDITS OF FOUNDATION COURSES:

SEMESTERS 1 & 2
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilisation</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific and Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL DEGREE CREDITS REQUIREMENTS: 93
DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY

For further Information please visit the department’s website: http://sta.uwi.edu/fst/dcit/

Please note:

i. COMPUTING COURSES OUTSIDE THE FST
 Students majoring in Computer Science and those registered in the following programmes:
 - BSc Computer Science (Special)
 - BSc Computer Science and/with Management
 - BSc General (Major in Computer Science)
 - BSc Information Technology (Special)
 - BSc Information Technology and/with Management
 - BSc General (Major in Information Technology), and
 - BSc General (Minor in Information Technology)
 must seek the approval of the Department to read Computing, Information Technology/Systems courses outside of the FST.

COURSE LISTING
List of courses offered in the Department of Computing and Information Technology for the 2019/2020 academic year.

KEY
** Students pursuing a degree in Computer Science or Information Technology are not allowed to register for COMP 1011 for credits.

Computer Sciences Courses

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1011</td>
<td>Introduction to Information Technology**</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 1600</td>
<td>Introduction to Computing Concepts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 2601</td>
<td>Computer Architecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 2602</td>
<td>Computer Networks</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 2605</td>
<td>Enterprise Database Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 2611</td>
<td>Data Structures</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 3602</td>
<td>Theory of Computing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 3603</td>
<td>Human-Computer Interaction</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 3605</td>
<td>Introduction to Data Analytics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 3606</td>
<td>Wireless and Mobile Programming</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 3607</td>
<td>Object-Oriented Programming II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 3609</td>
<td>Game Programming</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 3613</td>
<td>Software Engineering II</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1011</td>
<td>Introduction to Information Technology**</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 1603</td>
<td>Computer Programming III</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 1604</td>
<td>Mathematics for Computing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 2603</td>
<td>Object-Oriented Programming I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 2604</td>
<td>Operating Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 2606</td>
<td>Software Engineering I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 3601</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
COMP 3608 Intelligent Systems 3
COMP 3610 Big Data Analytics 3

Information Technology Courses

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 1600</td>
<td>Introduction to Information Technology Concepts</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2601</td>
<td>Networking Technologies Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2603</td>
<td>Platform Technologies I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2605</td>
<td>Professional Ethics and Law</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3600</td>
<td>Business Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3601</td>
<td>Platform Technologies II</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3605</td>
<td>Fundamentals of LAN Technologies</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 1601</td>
<td>Introduction to WWW Programming</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2600</td>
<td>Information Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2602</td>
<td>Web Programming and Technologies I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2604</td>
<td>Information Systems Security</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3602</td>
<td>Web Programming and Technologies II</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3604</td>
<td>Project</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3606</td>
<td>Cloud Computing</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3608</td>
<td>E-Commerce</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3611</td>
<td>Database Administration for Professionals</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 3 (SUMMER)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
</tr>
</tbody>
</table>

COURSE EQUIVALENCIES: There is substantial overlap in the courses listed hereunder. However, students pursuing Computer Science courses WOULD NOT BE GIVEN credits for the equivalent Information Technology courses and vice versa.

Transfer students (returning students) who pursued the equivalent Computer Science course would be exempted WITHOUT credits from the relevant Information Technology course as listed hereunder.

COMP COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>INFO COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3990</td>
<td>4</td>
<td>INFO 3490</td>
</tr>
<tr>
<td>INFO 2601</td>
<td>3</td>
<td>COMP 2604</td>
</tr>
<tr>
<td>INFO 2603</td>
<td>3</td>
<td>COMP 2601</td>
</tr>
<tr>
<td>INFO 3605</td>
<td>3</td>
<td>INFO 3510</td>
</tr>
<tr>
<td>INFO 3607</td>
<td>3</td>
<td>INFO 3510</td>
</tr>
</tbody>
</table>

ii. INTERNSHIP PROGRAMME FOR UNDERGRADUATE STUDENTS IN COMPUTER SCIENCE/INFORMATION TECHNOLOGY

The department offers an optional internship programme for students pursuing a degree in Computer Science or Information Technology. Students participate in the programme by registering for INFO 3609, a 3-credit or INFO 3610, a 6-credit Internship course. More details are available from the Department.

The internship programme will be helpful in:
- Providing practical training to students during their degree programme;
- Providing experience in the working environment, and
- Preparing for future jobs.

iii TRANSFER OF COURSEWORK MARKS

The Department does NOT carry forward coursework marks for the courses offered. (COMP or INFO).
BSc COMPUTER SCIENCE (SPECIAL)

(93 CREDITS)

COURSE LISTING

LEVEL I

CORE COURSES (24 CREDITS)

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1600</td>
<td>Introduction to Computing Concepts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 1600</td>
<td>Introduction to Information Technology Concepts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 1115*</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

*MATH 1115 should be taken by students who do not have a pass in Pure Mathematics at CAPE Units I & II or GCE A’Level or equivalent. Students with passes in CAPE Pure Mathematics (Units I and II) or N1 Mathematics (MATH 0100 and MATH 0200) or GCE A’level Mathematics may apply for **EXEMPTIONS WITHOUT CREDITS** from MATH 1115 or MATH 1125. Where **EXEMPTIONS WITHOUT CREDITS** are granted, students must pursue alternative courses as approved by the Head of Department.

LEVEL I

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1603</td>
<td>Computer Programming III</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1604</td>
<td>Mathematics for Computing</td>
<td>3</td>
</tr>
<tr>
<td>INFO 1601</td>
<td>Introduction to WWW Programming</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II/III (60 CREDITS)

Comprising of CORE courses (45 credits) and ELECTIVE courses (15 credits) from the list provided below subject to prerequisites being met.

CORE COURSES (45 CREDITS)

LEVEL II

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2601</td>
<td>Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2602</td>
<td>Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2605</td>
<td>Enterprise Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2611</td>
<td>Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2250</td>
<td>Industrial Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2603</td>
<td>Object-Oriented Programming I</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2604</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2606</td>
<td>Software Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2602</td>
<td>Web Programming and Technologies I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2604</td>
<td>Information Systems Security</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3602</td>
<td>Theory of Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3603</td>
<td>Human-Computer Interaction</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3613</td>
<td>Software Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>LEVEL III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3601</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3604</td>
<td>Project</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVE COURSES (Any 15 credits from the list below):

<table>
<thead>
<tr>
<th>LEVEL II/III SEMESTER 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3605</td>
<td>Introduction to Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3606</td>
<td>Wireless and Mobile Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3607</td>
<td>Object-Oriented Programming I</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3612</td>
<td>Special Topics in Computer Science (will not be offered in 2018/2019)</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2605</td>
<td>Professional Ethics and Law</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3600</td>
<td>Business Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3605</td>
<td>Fundamentals of LAN Technologies</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3608</td>
<td>Intelligent Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3609</td>
<td>Game Programming</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3610</td>
<td>Big Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3611</td>
<td>Modelling and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3612</td>
<td>Special Topics in Computer Science (will not be offered in 2018/2019)</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3606</td>
<td>Cloud Computing</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3607</td>
<td>Fundamentals of WAN Technologies</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3608</td>
<td>E-Commerce</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
</tr>
<tr>
<td>INFO 3611</td>
<td>Database Administration for Professionals</td>
<td>3</td>
</tr>
</tbody>
</table>

FOUNDATION COURSES (9 CREDITS)

<table>
<thead>
<tr>
<th>SEMESTERS 1 & 2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific and Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>
BSc COMPUTER SCIENCE WITH MANAGEMENT (SPECIAL)
(93 CREDITS)

COURSE LISTING

LEVEL I
CORE COURSES (24 CREDITS)

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACCT 1002</td>
<td>Introduction to Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMP 1600</td>
<td>Introduction to Computing Concepts</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 1001</td>
<td>Introduction to Microeconomics</td>
<td>3</td>
</tr>
</tbody>
</table>

| LEVEL I
<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACCT 1003</td>
<td>Introduction to Cost and Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMP 1603</td>
<td>Computer Programming III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 1002</td>
<td>Introduction to Macroeconomics</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II/III (60 CREDITS)
Comprising of CORE courses (33 credits); ELECTIVE courses (12 credits) from the list provided below subject to prerequisites being met and ADDITIONAL ELECTIVES (15 credits) from any Advanced Computer Science, Economics, Information Technology, Mathematics or Management courses.

CORE COURSES

LEVEL II
SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2601</td>
<td>Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2602</td>
<td>Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2605</td>
<td>Enterprise Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2611</td>
<td>Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 2021</td>
<td>Business Law</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II
SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2603</td>
<td>Object-Oriented Programming I</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2604</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 2008</td>
<td>Organisational Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 2032</td>
<td>Managerial Economics</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 2001</td>
<td>Principles of Marketing</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS
Any 3 credits from the following:

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACCT 2017</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MGMT 2012</td>
<td>Quantitative Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MGMT 2023</td>
<td>Financial Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MKTG 3000</td>
<td>Marketing Management</td>
<td>3</td>
</tr>
</tbody>
</table>
ELECTIVE COURSES (Any 12 credits from the list below):

LEVEL II/III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3602</td>
<td>Theory of Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3603</td>
<td>Human-Computer Interaction</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3605</td>
<td>Introduction to Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3606</td>
<td>Wireless and Mobile Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3607</td>
<td>Object-Oriented Programming II</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3612</td>
<td>Special Topics in Computer Science (will not be offered in 2018/2019)</td>
<td></td>
</tr>
<tr>
<td>COMP 3613</td>
<td>Software Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2605</td>
<td>Professional Ethics and Law</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3600</td>
<td>Business Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3605</td>
<td>Fundamentals of LAN Technologies</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
</tr>
<tr>
<td>MATH 2250</td>
<td>Industrial Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2606</td>
<td>Software Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3601</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3608</td>
<td>Intelligent Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3609</td>
<td>Game Programming</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3610</td>
<td>Big Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3611</td>
<td>Modelling and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3612</td>
<td>Special Topics in Computer Science (will not be offered in 2018/2019)</td>
<td></td>
</tr>
<tr>
<td>INFO 2602</td>
<td>Web Programming and Technologies I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2604</td>
<td>Information Systems Security</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3604</td>
<td>Project</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3606</td>
<td>Cloud Computing</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3607</td>
<td>Fundamentals of WAN Technologies</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3608</td>
<td>E-Commerce</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
</tr>
<tr>
<td>INFO 3611</td>
<td>Database Administration for Professionals</td>
<td>3</td>
</tr>
</tbody>
</table>

ADDITIONAL ELECTIVES (15 credits)

Any Level II/III credits chosen from Computer Science, Economics, Information Technology, Mathematics, or Management courses.

FOUNDATION COURSES (9 CREDITS)

SEMESTERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific and Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>
Major in Computer Science
(30 ADVANCED CREDITS)

COURSE LISTING

CORE COURSES

LEVEL I (12 credits)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1600</td>
<td>Introduction to Computing Concepts</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL I

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1603</td>
<td>Computer Programming III</td>
<td>3</td>
</tr>
</tbody>
</table>

CORE COURSES (18 CREDITS)

LEVEL II/III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2601</td>
<td>Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2602</td>
<td>Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2605</td>
<td>Enterprise Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2611</td>
<td>Data Structures</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2603</td>
<td>Object-Oriented Programming I</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2604</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVES (Any 12 credits from the list below):

LEVEL II/III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3602</td>
<td>Theory of Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3603</td>
<td>Human-Computer Interaction</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3605</td>
<td>Introduction to Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3606</td>
<td>Wireless and Mobile Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3607</td>
<td>Object-Oriented Programming II</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3613</td>
<td>Software Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2605</td>
<td>Professional Ethics and Law</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3600</td>
<td>Business Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3605</td>
<td>Fundamentals of LAN Technologies</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
</tr>
<tr>
<td>MATH 2250</td>
<td>Industrial Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2606</td>
<td>Software Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3601</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3609</td>
<td>Game Programming</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3610</td>
<td>Big Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3611</td>
<td>Modelling and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2602</td>
<td>Web Programming and Technologies I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2604</td>
<td>Information Systems Security</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3604</td>
<td>Project</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3606</td>
<td>Cloud Computing</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3607</td>
<td>Fundamentals of WAN Technologies</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3608</td>
<td>E-Commerce</td>
<td>3</td>
</tr>
</tbody>
</table>
Minor in Computer Science

15 ADVANCED CREDITS

COURSE LISTING

CORE COURSES

LEVEL I (12 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1600</td>
<td>Introduction to Computing Concepts</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1603</td>
<td>Computer Programming III</td>
<td>3</td>
</tr>
</tbody>
</table>

CORE COURSES (Any 9 credits from the list below):

LEVEL II

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2601</td>
<td>Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2611</td>
<td>Data Structures</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2603</td>
<td>Object-Oriented Programming I</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2604</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVE COURSES (Any 6 credits from the list below):

LEVEL II/III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2602</td>
<td>Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2605</td>
<td>Enterprise Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3602</td>
<td>Theory of Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3603</td>
<td>Human-Computer Interaction</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3605</td>
<td>Introduction to Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3606</td>
<td>Wireless and Mobile Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3607</td>
<td>Object-Oriented Programming II</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3612</td>
<td>Special Topics in Computer Science (will not be offered in 2018/2019)</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3613</td>
<td>Software Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2605</td>
<td>Professional Ethics and Law</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3600</td>
<td>Business Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3605</td>
<td>Fundamentals of LAN Technologies</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
</tr>
<tr>
<td>MATH 2250</td>
<td>Industrial Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2606</td>
<td>Software Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3601</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3608</td>
<td>Intelligent Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3609</td>
<td>Game Programming</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3610</td>
<td>Big Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3611</td>
<td>Modelling and Simulation</td>
<td>3</td>
</tr>
</tbody>
</table>
BSc INFORMATION TECHNOLOGY (SPECIAL)
(93 CREDITS)

COURSE LISTING

LEVEL I

CORE COURSES (24 CREDITS)

SEMMESTER 1

CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1600</td>
<td>Introduction to Computing Concepts</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 1600</td>
<td>Introduction to Information Technology Concepts</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1115*</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
</tbody>
</table>

* MATH 1115 should be taken by students who do not have a pass in Pure Mathematics at CAPE Units I & II or GCE A’Level or equivalent. Students with passes in CAPE Pure Mathematics (Units I and II) or N1 Mathematics (MATH 0100 and MATH 0200) or GCE A’level Mathematics may apply for EXEMPTIONS WITHOUT CREDITS from MATH 1115 or MATH 1125. Where EXEMPTIONS WITHOUT CREDITS are granted, students will be required to pursue alternative courses as approved by the Head of Department.

LEVEL I

SEMMESTER 2

CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1603</td>
<td>Computer Programming III</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1604</td>
<td>Mathematics for Computing</td>
<td>3</td>
</tr>
<tr>
<td>INFO 1601</td>
<td>Introduction to WWW Programming</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II/III (60 CREDITS)

Comprising of CORE courses (45 credits) and ELECTIVE courses (15 credits) from the list provided below subject to prerequisites being met.

CORE COURSES

LEVEL II

SEMMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2605</td>
<td>Enterprise Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2601</td>
<td>Networking Technologies Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2603</td>
<td>Platform Technologies I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2605</td>
<td>Professional Ethics and Law</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2250</td>
<td>Industrial Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II

SEMMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2603</td>
<td>Object-Oriented Programming I</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2606</td>
<td>Software Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2600</td>
<td>Information Systems Development</td>
<td>3</td>
</tr>
</tbody>
</table>
INFO 2602 Web Programming and Technologies I 3
INFO 2604 Information Systems Security 3

LEVEL III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3603</td>
<td>Human-Computer Interaction</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3600</td>
<td>Business Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3601</td>
<td>Platform Technologies II</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 3602</td>
<td>Web Programming and Technologies II</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3604</td>
<td>Project</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVE COURSES (Any 15 credits from the list below):

LEVEL II/III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3605</td>
<td>Introduction to Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3607</td>
<td>Object-Oriented Programming II</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3612</td>
<td>Special Topics in Computer Science (will not be offered in 2018/2019)</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3605</td>
<td>Fundamentals of LAN Technologies</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
</tr>
</tbody>
</table>

LEVEL II/III

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3609</td>
<td>Game Programming</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3610</td>
<td>Big Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3606</td>
<td>Cloud Computing</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3607</td>
<td>Fundamentals of WAN Technologies</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3608</td>
<td>E-Commerce</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
</tr>
</tbody>
</table>

FOUNDATION COURSES (9 CREDITS)

SEMESTERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific and Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>
BSc INFORMATION TECHNOLOGY WITH MANAGEMENT (SPECIAL)
(93 CREDITS)

COURSE LISTING

LEVEL I

CORE COURSES (24 CREDITS)

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>+ CORE COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ACCT 1002</td>
<td>Introduction to Financial Accounting</td>
</tr>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
</tr>
<tr>
<td>ECON 1001</td>
<td>Introduction to Microeconomics</td>
</tr>
<tr>
<td>INFO 1600</td>
<td>Introduction to Information Technology Concepts</td>
</tr>
</tbody>
</table>

LEVEL I

SEMESTER 2

CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 1003</td>
<td>Introduction to Cost and Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td>ECON 1002</td>
<td>Introduction to Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>INFO 1601</td>
<td>Introduction to WWW Programming</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II/III (60 CREDITS)

Comprising of CORE courses (33 credits); ELECTIVE courses (12 credits) from the list provided below subject to prerequisites being met and ADDITIONAL ELECTIVES (15 credits) from any Advanced Computer Science, Economics, Information Technology, Mathematics or Management courses.

CORE COURSES

LEVEL II

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2605</td>
<td>Enterprise Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2601</td>
<td>Networking Technologies Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2603</td>
<td>Platform Technologies I</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 2021</td>
<td>Business Law</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2600</td>
<td>Information Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2602</td>
<td>Web Programming and Technologies I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2604</td>
<td>Information Systems Security</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 2008</td>
<td>Organisational Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 2032</td>
<td>Managerial Economics</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 2001</td>
<td>Principles of Marketing</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS Any 3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2017</td>
<td>Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 2012</td>
<td>Quantitative Methods</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 2023</td>
<td>Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 3000</td>
<td>Marketing Management</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVE COURSES (Any 12 credits from the list below):

LEVEL II/III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3605</td>
<td>Introduction to Data Analytics</td>
<td>3</td>
</tr>
</tbody>
</table>
COMP 3607 Object-Oriented Programming II 3
INFO 2605 Professional Ethics and Law 3
INFO 3605 Fundamentals of LAN Technologies 3
INFO 3606 Cloud Computing 3
INFO 3609 Internship I 3
INFO 3610 Internship II 6
MATH 2250 Industrial Statistics 3

LEVEL II/III

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2603</td>
<td>Object-Oriented Programming I</td>
<td>3</td>
</tr>
<tr>
<td>COMP 2606</td>
<td>Software Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3609</td>
<td>Game Programming</td>
<td>3</td>
</tr>
<tr>
<td>COMP 3610</td>
<td>Big Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3607</td>
<td>Fundamentals of WAN Technologies</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3608</td>
<td>E-Commerce</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
</tr>
</tbody>
</table>

ADDITIONAL ELECTIVES (15 credits)
Any Level II/III credits chosen from Computer Science, Economics, Information Technology, Mathematics, or Management courses.

FOUNDATION COURSES (9 CREDITS)

SEMMETERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific and Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

Major in Information Technology
(30 ADVANCED CREDITS)

COURSE LISTING

LEVEL I

SEMESTER 1

CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 1600</td>
<td>Introduction to Information Technology Concepts</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL I

SEMESTER 2

CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td>INFO 1601</td>
<td>Introduction to WWW Programming</td>
<td>3</td>
</tr>
</tbody>
</table>
LEVEL II/III (30 CREDITS)

Comprising of CORE courses (18 credits) and ELECTIVE courses (12 credits) from the list provided below subject to prerequisites being met.

CORE COURSES
LEVEL II
SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2605</td>
<td>Enterprise Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2601</td>
<td>Networking Technologies Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2603</td>
<td>Platform Technologies I</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2600</td>
<td>Information Systems Development</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2602</td>
<td>Web Programming and Technologies I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2604</td>
<td>Information Systems Security</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVE COURSES (Any 12 credits from the list below):
LEVEL II/III
SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3605</td>
<td>Introduction to Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>INFO 2605</td>
<td>Professional Ethics and Law</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3605</td>
<td>Fundamentals of LAN Technologies</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
</tr>
<tr>
<td>MATH 2250</td>
<td>Industrial Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3610</td>
<td>Big Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3606</td>
<td>Cloud Computing</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3607</td>
<td>Fundamentals of WAN Technologies</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3608</td>
<td>E-Commerce</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
</tr>
</tbody>
</table>

Minor in Information Technology
(15 ADVANCED CREDITS)

COURSE LISTING
LEVEL I
SEMESTER 1

CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td>INFO 1600</td>
<td>Introduction to Information Technology Concepts</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td>INFO 1601</td>
<td>Introduction to WWW Programming</td>
<td>3</td>
</tr>
</tbody>
</table>
LEVEL II/III (15 CREDITS)

Comprising of CORE courses (9 credits) and ELECTIVE courses (6 credits) from the list provided below subject to pre-requisites being met.

CORE COURSES (Any 9 credits from the list below):

LEVEL II

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2605</td>
<td>Enterprise Database Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 2601</td>
<td>Networking Technologies Fundamentals</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 2603</td>
<td>Platform Technologies I</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 2600</td>
<td>Information Systems Development</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

ELECTIVE COURSES (Any 6 credits from the list below):

LEVEL II/III

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3605</td>
<td>Introduction to Data Analytics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 2605</td>
<td>Professional Ethics and Law</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 3605</td>
<td>Fundamentals of LAN Technologies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MATH 2250</td>
<td>Industrial Statistics</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3610</td>
<td>Big Data Analytics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 2602</td>
<td>Web Programming and Technologies I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 2604</td>
<td>Information Systems Security</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 3606</td>
<td>Cloud Computing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 3607</td>
<td>Fundamentals of WAN Technologies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 3608</td>
<td>E-Commerce</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 3609</td>
<td>Internship</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INFO 3610</td>
<td>Internship II</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific and Technical Writing</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

TRANSITION PLAN FOR COMPUTER SCIENCE PROGRAMMES

There is a transition plan that applies to students who registered in one of the Computer Science degree programmes prior to the 2016/2017 academic year. It can be obtained at the following link: https://sta.uwi.edu/fst/dcic/content/transition-plan-computer-science-programmes-2019-2020

TRANSITION PLAN FOR INFORMATION TECHNOLOGY PROGRAMMES

There is a transition plan that applies to students who registered in one of the Information Technology degree programmes prior to the 2016/2017 academic year. It can be obtained at the following link: https://sta.uwi.edu/fst/dcic/transition-plan-information-technology-programmes-2019-2020
BSc SOFTWARE ENGINEERING (Mobile Application Technologies)
(120 ADVANCED CREDITS)

The BSc Software Engineering (Mobile Application Technologies) programme is a 120 credit, 4-year degree awarded by The University of the West Indies (The UWI) in collaboration with the Global Institute of Software Technology (GIST) located in Suzhou, China. It has a 2+2 format, where students will spend two years in the Caribbean and two years in China in order to finish their degree.

During this programme, students will be required to complete 30 credits each year. In addition, during the first two years of study, students will be required to complete six credits of foundation courses (two courses).

COURSE LISTING

LEVEL I (30 CREDITS)

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1126</td>
<td>Introduction to Computing I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 1127</td>
<td>Introduction to Computing II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 1161</td>
<td>Object Oriented Programming</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 1210</td>
<td>Mathematics for Computing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 1220</td>
<td>Computing and Society</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 1006</td>
<td>Research Methods for Software Engineers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 1003</td>
<td>Current and Future Trends in Computing for Software Engineers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 1005</td>
<td>Mobile Web Programming</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 1007</td>
<td>Software Engineering Essentials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 1008</td>
<td>Technical Writing for Software Engineers</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

LEVELS II-IV (Minimum of 90 CREDITS)

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2140</td>
<td>Software Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 2171</td>
<td>Object Oriented Design and Implementation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 2190</td>
<td>Net-Centric Computing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 2201</td>
<td>Discrete Mathematics for Computer Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 2211</td>
<td>Analysis of Algorithms</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 3161</td>
<td>Introduction to Database Management Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 3911</td>
<td>Internship in Computing I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP 3912</td>
<td>Internship in Computing II</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SWEN 2165</td>
<td>Requirements Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 3001</td>
<td>Android Application Development I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 3002</td>
<td>Android Application Development II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 3003</td>
<td>Web and Mobile Application Development I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 3004</td>
<td>Web and Mobile Application Development II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 3005</td>
<td>Application Development for IOS Devices</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 3120</td>
<td>Software Architecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 3130</td>
<td>Software Project Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 3145</td>
<td>Software Modeling</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 3165</td>
<td>Software Testing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 3185</td>
<td>Formal Method and Software Reliability</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 3920</td>
<td>Capstone Project (Software Engineering)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SWEN 4001</td>
<td>Advanced Database Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SWEN 4002</td>
<td>IT Certification I</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
DEPARTMENT OF LIFE SCIENCES

COURSE LISTING

List of courses offered in the Department of Life Sciences for the 2019/2020 academic year.

KEY
- **** Not counted towards a student’s credit requirements for the award of the BSc Degree
- *** Students must consult with course coordinator prior to registering for BIOL 3069

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 2061</td>
<td>Bioenergetics</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 2069</td>
<td>Practical Skills in Biochemistry I</td>
<td>1.5</td>
</tr>
<tr>
<td>BIOC 2161</td>
<td>Primary Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3062</td>
<td>Cellular and Molecular Defence Systems</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3069</td>
<td>Biochemistry Research Project</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3162</td>
<td>Experimental Biochemistry and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1262</td>
<td>Living Organisms I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1263</td>
<td>Living Organisms II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2061</td>
<td>Cell and Developmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2163</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2165</td>
<td>Genetics II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2262</td>
<td>Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2360</td>
<td>Biochemistry II A</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3063</td>
<td>Marine Ecology and Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3069</td>
<td>Research Project***</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 3070</td>
<td>Caribbean Island Ecology and Biogeography</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3263</td>
<td>Introduction to Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3363</td>
<td>Medical Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3369</td>
<td>Laboratory Skills in Biotechnology (Year-long - credits applied in Semester 2)</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3468</td>
<td>Biodiversity and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3469</td>
<td>Research and Practical Skills in Environmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3769</td>
<td>Plant Genetic Improvement</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3770</td>
<td>Plant Pathogens</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3771</td>
<td>Environmental Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3773</td>
<td>Plant Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3774</td>
<td>Research and Practical Skills in Plant Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3867</td>
<td>Biology of Animal Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3868</td>
<td>The Ecology of Humans</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3869</td>
<td>Zoology Project</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3960</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3961</td>
<td>Principles of Medical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3970</td>
<td>Aquaculture</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1001</td>
<td>Biology for Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1002</td>
<td>Chemistry for Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1004</td>
<td>Science Communication</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2001</td>
<td>Principles of Environmental Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2002</td>
<td>Environmental Technology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2003</td>
<td>Data Management for Environmental Science</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3001</td>
<td>Environmental Fate and Transport</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3002</td>
<td>Environmental Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3003</td>
<td>Environmental Monitoring and Assessment</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3103</td>
<td>Environmental Health</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3104</td>
<td>Climate Change and Abatement Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 2162</td>
<td>Circulatory and Secretory Systems</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 2169</td>
<td>Practical Skills in Biochemistry II</td>
<td>1.5</td>
</tr>
<tr>
<td>BIOC 2262</td>
<td>Gene Expression</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>BIOC 3069</td>
<td>Biochemistry Research Project</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3262</td>
<td>Medical Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3364</td>
<td>Biochemical Basis of Disease</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3500</td>
<td>Molecular Virology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1362</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1364</td>
<td>Genetics I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2164</td>
<td>Principles of Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2265</td>
<td>Fundamentals of Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2464</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2764</td>
<td>Physiology of Plants</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2867</td>
<td>Physiology of Animals</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3069</td>
<td>Research Project***</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 3162</td>
<td>Principles of Microbial Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3366</td>
<td>Plant Biotechnology and Genetic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3369</td>
<td>Laboratory Skills in Biotechnology (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3409</td>
<td>Caribbean Coral Reefs</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3462</td>
<td>The Ecology of Freshwaters</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3465</td>
<td>Tropical Forest Ecology and Use</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3466</td>
<td>Coastal Ecosystems & Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3768</td>
<td>Plant Diversity & Systematics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3772</td>
<td>Plant Development</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3774</td>
<td>Research and Practical Skills in Plant Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3866</td>
<td>Parasite Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3869</td>
<td>Zoology Project</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3870</td>
<td>Insect Biology (not offered in 2019/2020)</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3971</td>
<td>Fisheries Management</td>
<td>3</td>
</tr>
<tr>
<td>ESST1000</td>
<td>Physics for Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1005</td>
<td>Information Technology Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1006</td>
<td>Human Impact on the Environment</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2004</td>
<td>Physics for Environmental Sciences II</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2005</td>
<td>Pollution Management and Abatement Technologies</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2006</td>
<td>Pollution Biology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3000</td>
<td>Environmental Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3004</td>
<td>Capstone Project</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3006</td>
<td>Fundamentals of Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3007</td>
<td>Environmental Management Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3102</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
</tbody>
</table>
MAJORS & MINORS
The following programmes are offered by the Department of Life Sciences

<table>
<thead>
<tr>
<th>MAJORS</th>
<th>SPECIAL OPTIONS</th>
<th>MINORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td>BSc Biology with Specialisations</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Biology</td>
<td>BSc Environmental Science and Sustainable Technology</td>
<td>Biology</td>
</tr>
<tr>
<td>Environmental Science</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Students pursuing joint Majors in Biochemistry and Biology MUST NOT READ BIOL 2360 - Biochemistry IIA and BIOL 2164 - Principles of Molecular Biology. Such students must choose an additional 6 credits from the listed Biology electives to complete the Biology Major.

Students reading the BSc Biology with Specialisations must select two specialisations from a total of the 6 listed below:
- Biotechnology
- Ecology and Environmental Biology
- Marine Biology
- Microbiology
- Plant Biology
- Zoology

NOTE: Students will be debarred from writing the final examination if they have not attended, completed and handed in laboratory reports for at least 75% of laboratory or field exercises.

Major in Biochemistry
(30 ADVANCED CREDITS)

COURSE LISTING
PREREQUISITE COURSES
(Students must complete at least 24 Level I credits)

LEVEL I

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1262</td>
<td>Living Organisms I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1263</td>
<td>Living Organisms II</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1066</td>
<td>Introduction to Chemistry I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PLUS three (3) additional Level I credits from any faculty/department.*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEVEL I

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1362</td>
<td>Biochemistry I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1364</td>
<td>Genetics I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1067</td>
<td>Introduction to Chemistry II</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PLUS three (3) additional Level I credits from any faculty/department*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: *It is recommended that students reading the Major in Biochemistry should read CHEM1070 Introduction to Chemistry Laboratory (Yearlong) and CHEM1068 Introduction to Chemistry III.

SEMESTERS 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1115</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTERS 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1125</td>
<td>Fundamental Mathematics for General Science II</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: *MATH 1115 OR MATH 1125 should be taken by students who do not have a pass in Pure Mathematics at CAPE Units I & II or GCE A’Level or equivalent.
Students with passes in CAPE Pure Mathematics (Units I and II) or N1 Mathematics (MATH 0100 and MATH 0200) or GCE A’level Mathematics may apply for **EXEMPTIONS WITHOUT CREDITS** from MATH 1115 or MATH 1125. Where **EXEMPTIONS WITHOUT CREDITS** are granted, students must pursue alternative courses as approved by the Head of Department.

CORE COURSES (24 CREDITS)

LEVEL II/III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 2061</td>
<td>Bioenergetics</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 2069</td>
<td>Practical Skills in Biochemistry I</td>
<td>1.5</td>
</tr>
<tr>
<td>BIOC 2161</td>
<td>Primary Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3062</td>
<td>Cellular and Molecular Defence Systems</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3162</td>
<td>Experimental Biochemistry and Molecular Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 2162</td>
<td>Circulatory and Secretory Systems</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 2169</td>
<td>Practical Skills in Biochemistry II</td>
<td>1.5</td>
</tr>
<tr>
<td>BIOC 2262</td>
<td>Gene Expression</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3364</td>
<td>Biochemical Basis of Disease</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS two (2) electives from the following courses:

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 3069</td>
<td>Biochemistry Research Project</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2470</td>
<td>Introduction to Analytical Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 3069</td>
<td>Biochemistry Research Project</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3262</td>
<td>Medical Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3500</td>
<td>Molecular Virology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3162</td>
<td>Principles of Microbial Biotechnology</td>
<td>3</td>
</tr>
</tbody>
</table>

Major in Biology

(30 ADVANCED CREDITS)

COURSE LISTING

PREREQUISITE COURSES

Students must complete at least 24 Level I credits which must include:

LEVEL I

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1262</td>
<td>Living Organisms I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1263</td>
<td>Living Organisms II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1062**</td>
<td>Basic Chemistry for Life Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1362</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1364</td>
<td>Genetics I</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTERS 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1115*</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
</tbody>
</table>

Return to Table of Contents
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1125*</td>
<td>Fundamental Mathematics for General Science II</td>
<td>3</td>
</tr>
</tbody>
</table>

Note:
MATH 1115 OR MATH 1125 should be taken by students who do not have a pass in Pure Mathematics at CAPE Units I & II or GCE A Level or equivalent.

Students with passes in CAPE Pure Mathematics (Units I and II) or N1 Mathematics (MATH 0100 and MATH 0200) or GCE A Level Mathematics may apply for **EXEMPTIONS WITHOUT CREDITS** from MATH 1115 or MATH 1125. Where **EXEMPTIONS WITHOUT CREDITS** are granted, students must pursue alternative courses as approved by the Head of Department.

CORE COURSES (30 credits)

Students pursuing the **Major** in Biology are required to **complete all 30 credits of core courses, typically over the 2nd and 3rd years of the degree programme**

LEVEL II SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2061</td>
<td>Cell and Developmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2163</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2165</td>
<td>Genetics II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2262</td>
<td>Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2360</td>
<td>Biochemistry II A*</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2164</td>
<td>Principles of Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2265</td>
<td>Fundamentals of Microbiology+</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2464</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2764</td>
<td>Physiology of Plants</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2867</td>
<td>Physiology of Animals</td>
<td>3</td>
</tr>
</tbody>
</table>

* Students pursuing **joint Majors in Biochemistry and Biology** should not read BIOL 2164 and BIOL 2360. Such students must choose 6 additional credits from the Biology electives for the Major in Biology.

+ Students pursuing **joint Majors in Biochemistry and Biology** should read BIOL 2265 Fundamentals of Microbiology during Year III.

BIOLOGY ELECTIVES:

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3063</td>
<td>Marine Ecology and Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3069</td>
<td>Research Project***</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 3070</td>
<td>Caribbean Island Ecology and Biogeography</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3363</td>
<td>Medical Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3468</td>
<td>Biodiversity and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3469</td>
<td>Research and Practical Skills in Environmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3769</td>
<td>Plant Genetic Improvement</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3770</td>
<td>Plant Pathogens</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3771</td>
<td>Environmental Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3773</td>
<td>Plant Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3774</td>
<td>Research and Practical Skills in Plant Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3867</td>
<td>Biology of Animal Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3868</td>
<td>The Ecology of Humans</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3970</td>
<td>Aquaculture</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3069</td>
<td>Research Project***</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 3409</td>
<td>Caribbean Coral Reefs</td>
<td>3</td>
</tr>
</tbody>
</table>
BIOL 3462 The Ecology of Freshwaters 3
BIOL 3465 Tropical Forest Ecology and use 3
BIOL 3466 Coastal Ecosystems & Resource Management 3
BIOL 3768 Plant Diversity & Systematics 3
BIOL 3772 Plant Development 3
BIOL 3774 Research and Practical Skills in Plant Biology 3
BIOL 3866 Parasite Biology 3
BIOL 3870 Insect Biology (not offered in 2019/2020) 3
BIOL 3971 Fisheries Management 3

Major in Environmental Science
(30 ADVANCED CREDITS)

COURSE LISTING

PREREQUISITE COURSES

Students pursuing joint Majors in Biology and Environmental Science should not read ESST 1001.

CHEM 1066 cannot be pursued in conjunction with ESST 1002 as
- there is a great deal of overlap in the content of both courses and
- the content of CHEM 1066 is covered in much greater depth than in ESST 1002.

(Students must complete at least 24 level I credits)

LEVEL I

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESST 1001</td>
<td>Biology for Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1002</td>
<td>Chemistry for Environmental Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL I

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESST 1000</td>
<td>Physics for Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ESST 1006</td>
<td>Human Impact on the Environment</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTERS 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1115*</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1125*</td>
<td>Fundamental Mathematics for General Science II</td>
<td>3</td>
</tr>
</tbody>
</table>

Note:

*MATH 1115 OR MATH 1125 should be taken by students who do not have a pass in Pure Mathematics at CAPE Units I & II or GCE A’Level or equivalent.

Students with passes in CAPE Pure Mathematics (Units I and II) or N1 Mathematics (MATH 0100 and MATH 0200) or GCE A’level Mathematics may apply for EXEMPTIONS WITHOUT CREDITS from MATH 1115 or MATH 1125. Where EXEMPTIONS WITHOUT CREDITS are granted, students must pursue alternative courses as approved by the Head of Department.

CORE COURSES (30 CREDITS)

LEVEL II/III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2163</td>
<td>Biostatistics*</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2001</td>
<td>Principles of Environmental Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3001</td>
<td>Environmental Fate and Transport</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3002</td>
<td>Environmental Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3003</td>
<td>Environmental Monitoring and Assessment</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3103</td>
<td>Environmental Health</td>
<td>3</td>
</tr>
</tbody>
</table>
SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2464**</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2004</td>
<td>Physics for Environmental Science II</td>
<td>3</td>
</tr>
<tr>
<td>ESST 2006</td>
<td>Pollution Biology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3000**</td>
<td>Environmental Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3102</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
</tbody>
</table>

*Students pursuing joint Majors in Biology and Environmental Science should choose a course from the Biology electives to replace BIOL 2163 since BIOL 2163 will be credited towards the Major in Environmental Science.

- **Students pursuing joint Majors in Biology and Environmental Science should read BIOL 2464 and ESST 3000 since BIOL 2464 is common to both majors.
- Students who are NOT reading the joint Majors in Biology and Environmental Science should read BIOL 2464 instead of ESST 3000.
- However if you are reading the major in Environmental Science alone ESST 3000 could be used to make up the additional 30 advanced credits.
BSc BIOLOGY WITH SPECIALISATIONS
(60 ADVANCED CREDITS)
Students reading the BSc Degree in Biology are required to do two (2) specialisations each comprising of five 3-credit courses

COURSE LISTING
PREREQUISITE COURSES
(Students must complete at least 24 Level I credits)

LEVEL I
SEMESTER 1
Course Code	Course Title	Credits
BIOL 1262 | Living Organisms I | 3
BIOL 1263 | Living Organisms II | 3
CHEM 1062** | Basic Chemistry for Life Sciences | 3
**.For students without a pass in CAPE Units I & II or GCE A’ Level Chemistry or equivalent)

LEVEL I
SEMESTER 2
Course Code	Course Title	Credits
BIOL 1362 | Biochemistry I | 3
BIOL 1364 | Genetics I | 3

SEMESTERS 1
Course Code	Course Title	Credits
MATH 1115 | Fundamental Mathematics for the General Sciences I | 3

SEMESTER 2
Course Code	Course Title	Credits
MATH 1125 | Fundamental Mathematics for General Science II | 3
Note:*MATH 1115 or MATH 1125 should be taken by students who do not have a pass in Pure Mathematics at CAPE Units I & II or GCE A’Level or equivalent.

Students with passes in CAPE Pure Mathematics (Units I and II) or N1 Mathematics (MATH 0100 and MATH 0200) or GCE A’level Mathematics may apply for EXEMPTIONS WITHOUT CREDITS from MATH 1115 or MATH 1125. Where EXEMPTIONS WITHOUT CREDITS are granted, students must pursue alternative courses as approved by the Head of Department.

LEVEL II (30 Advanced Credits)
SEMESTER 1
Course Code	Course Title	Credits
BIOL 2061 | Cell and Developmental Biology | 3
BIOL 2163 | Biostatistics | 3
BIOL 2165 | Genetics II | 3
BIOL 2262 | Evolutionary Biology | 3
BIOL 2360 | Biochemistry II A | 3

SEMESTER 2
Course Code	Course Title	Credits
BIOL 2164 | Principles of Molecular Biology | 3
BIOL 2265 | Fundamentals of Microbiology | 3
BIOL 2464 | Fundamentals of Ecology | 3
BIOL 2764 | Physiology of Plants | 3
BIOL 2867 | Physiology of Animals | 3
SPECIALISATIONS

Students reading the BSc Biology with Specialisations must select two (2) specialisations.

In order to minimize timetable clashes, it is recommended that students pair the Specialisations as follows:

1. Biotechnology and Microbiology
2. Ecology and Environmental Biology and Marine Biology
3. Plant Biology and either Biotechnology, Ecology and Environmental Biology, or Zoology

SPECIALISATION – BIOTECHNOLOGY

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3263</td>
<td>Introduction to Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3363</td>
<td>Medical Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3369</td>
<td>Laboratory Skills in Biotechnology (Year-long – credits applied to Semester II)</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3162</td>
<td>Principles of Microbial Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3366</td>
<td>Plant Biotechnology and Genetic Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

SPECIALISATION - ECOLOGY & ENVIRONMENTAL BIOLOGY

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3070</td>
<td>Caribbean Island Ecology and Biogeography</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3468</td>
<td>Biodiversity and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3469</td>
<td>Research and Practical Skills in Environmental Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3462</td>
<td>The Ecology of Freshwaters</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3465</td>
<td>Tropical Forest Ecology and Use</td>
<td>3</td>
</tr>
</tbody>
</table>

SPECIALISATION – MARINE BIOLOGY

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3063</td>
<td>Marine Ecology and Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3970</td>
<td>Aquaculture</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3409</td>
<td>Caribbean Coral Reefs</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3466</td>
<td>Costal Ecosystem Management</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3971</td>
<td>Fisheries Management</td>
<td>3</td>
</tr>
</tbody>
</table>

SPECIALISATION – MICROBIOLOGY

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3960</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3961</td>
<td>Principles of Medical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3770</td>
<td>Plant Pathogens</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRI 3020</td>
<td>Food Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3500</td>
<td>Molecular Virology</td>
<td>3</td>
</tr>
</tbody>
</table>
SPECIALISATION - PLANT BIOLOGY

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3771</td>
<td>Environmental Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3773</td>
<td>Plant Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3774</td>
<td>Research and Practical Skills in Plant Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3768</td>
<td>Plant Diversity and Systematics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3772</td>
<td>Plant Development</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3774</td>
<td>Research and Practical Skills in Plant Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

SPECIALISATION - ZOOLOGY

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3867</td>
<td>Biology of Animal Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3868</td>
<td>The Ecology of Humans</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3869</td>
<td>Zoology Project</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3866</td>
<td>Parasite Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3869</td>
<td>Zoology Project</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 3870</td>
<td>Insect Biology (not offered in 2019/2020)</td>
<td>3</td>
</tr>
</tbody>
</table>
BSc ENVIRONMENTAL SCIENCE AND SUSTAINABLE TECHNOLOGY (ESST) (SPECIAL)
(93 CREDITS)

LEVEL I REQUIREMENTS:
- Students pursuing the BSc ESST will require passes in MATH 1115 and MATH 1125 or equivalent. Students with passes in CAPE Pure Mathematics (Units I and II) or N1 Mathematics (MATH 0100 and MATH 0200) or GCE A’level Mathematics may apply for EXEMPTIONS WITHOUT CREDITS from MATH 1115 and MATH 1125. Where EXEMPTIONS WITHOUT CREDITS are granted, students will be required to pursue alternative courses as approved by the Head of Department. Application Forms to request the exemptions are available at the Student Administration Building.

LEVEL I
CORE COURSES (24 credits)

SEMESTER 1

Course Code	Course Title	Credits
ESST 1001 | Biology for Environmental Sciences | 3
ESST 1002 | Chemistry for Environmental Sciences | 3
ESST 1004 | Science Communication | 3
MATH 1115 | Fundamental Mathematics for the General Sciences I | 3

SEMESTER 2

Course Code	Course Title	Credits
ESST 1000 | Physics for Environmental Sciences | 3
ESST 1005 | Information Technology Fundamentals | 3
ESST 1006 | Human Impact on the Environment | 3
MATH 1125 | Fundamental Mathematics for the General Sciences II | 3

LEVEL II/III
CORE COURSES (45 credits)

LEVEL II
SEMESTER 1

Course Code	Course Title	Credits
ESST 2001 | Principles of Environmental Chemistry | 3
ESST 2002 | Environmental Technology | 3
ESST 2003 | Data Management for Environmental Science | 3
BIOL 2163 | Biostatistics | 3

SEMESTER 2

Course Code	Course Title	Credits
BIOL 2265 | Fundamentals of Microbiology | 3
BIOL 2464 | Fundamentals of Ecology | 3
ESST 2004 | Physics for Environmental Science II | 3
ESST 2005 | Pollution Management and Abatement Technologies | 3

LEVEL III
SEMESTER 1

Course Code	Course Title	Credits
ESST 3001 | Environmental Fate and Transport | 3
ESST 3002 | Environmental Modeling | 3
ESST 3003 | Environmental Monitoring and Assessment | 3

SEMESTER 2

Course Code	Course Title	Credits
ESST 3004 | Capstone Project | 3
ESST 3006 | Fundamentals of Geographic Information Systems | 3
ESST 3007 | Environmental Management Information Systems | 3
PHYS 3158 | Fundamentals of Renewable Energy | 3

Return to Table of Contents
PLUS five additional courses (15 credits) taken from the following courses:

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3468</td>
<td>Biodiversity and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2470</td>
<td>introduction to Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3103</td>
<td>Environmental Health</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3104</td>
<td>Climate Change and Abatement Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESST 2006</td>
<td>Pollution Biology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3000</td>
<td>Environmental Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>ESST 3102</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
</tbody>
</table>
MINORS

NOTE:
(i) Core courses must be credited towards the chosen major and cannot be credited towards the minor.
(ii) Students reading the major in Biology with the minor in Biochemistry must NOT read BIOL 2360 Biochemistry IIA. Such students must choose an additional 3 credits from the Biology electives to complete the Biology Major.

Minor in Biochemistry
(15 Credits)

COURSE LISTING
CORE COURSES (9 credits)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 2061</td>
<td>Bioenergetics</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 2069</td>
<td>Practical Skills in Biochemistry I</td>
<td>1.5</td>
</tr>
<tr>
<td>BIOC 2161</td>
<td>Primary Metabolism</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 2169</td>
<td>Practical Skills in Biochemistry II</td>
<td>1.5</td>
</tr>
</tbody>
</table>

PLUS Two (2) additional courses taken from the following:

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 3062</td>
<td>Cellular and Molecular Defence Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 2162</td>
<td>Circulatory and Secretory Systems</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 2262</td>
<td>Gene Expression</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3262</td>
<td>Medical Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 3364</td>
<td>Biochemical Basis of Disease</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor in Biology
(15 ADVANCED CREDITS)

COURSE LISTING
LEVEL I (PREREQUISITES)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1262</td>
<td>Living Organisms I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1263</td>
<td>Living Organisms II</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1362</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1364</td>
<td>Genetics I</td>
<td>3</td>
</tr>
</tbody>
</table>

AND 15 credits of Level II/III courses as follows:

CORE COURSES (6 CREDITS)

SEMESTER I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2262</td>
<td>Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2061</td>
<td>Cell and Developmental Biology</td>
<td>3</td>
</tr>
</tbody>
</table>
PLUS Three (3) additional courses (9 credits) taken from the following:

LEVEL II

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIOL 2163</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 2165</td>
<td>Genetics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 2360</td>
<td>Biochemistry IIA*</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIOL 2164</td>
<td>Principles of Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 2265</td>
<td>Fundamentals of Microbiology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 2464</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 2764</td>
<td>Physiology of Plants</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 2867</td>
<td>Physiology of Animals</td>
<td>3</td>
</tr>
</tbody>
</table>

*Students pursuing a Major in Biochemistry should **NOT** select BIOL 2360 Biochemistry IIA as an elective for the minor in Biology*

LEVEL III

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIOL 3063</td>
<td>Marine Ecology and Oceanography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3263</td>
<td>Introduction to Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3363</td>
<td>Medical Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3769</td>
<td>Plant Genetic Improvement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3770</td>
<td>Plant Pathogens</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3771</td>
<td>Environmental Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3773</td>
<td>Plant Anatomy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3867</td>
<td>Biology of Animal Behaviour</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3868</td>
<td>The Ecology of Humans</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3960</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3961</td>
<td>Principles of Medical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3970</td>
<td>Aquaculture</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIOL 3162</td>
<td>Principles of Microbial Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3366</td>
<td>Plant Biotechnology and Genetic Engineer</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3409</td>
<td>Caribbean Coral Reefs</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3462</td>
<td>The Ecology of Freshwater</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3465</td>
<td>Tropical Forest Ecology and Use</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3466</td>
<td>Coastal Ecosystems & Resource Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3468</td>
<td>Biodiversity and Conservation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3768</td>
<td>Plant Diversity & Systematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3772</td>
<td>Plant Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3866</td>
<td>Parasite Biology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3870</td>
<td>Insect Biology (not offered in 2019/2020)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 3971</td>
<td>Fisheries Management</td>
<td>3</td>
</tr>
</tbody>
</table>
DEPARTMENT OF MATHEMATICS & STATISTICS

NOTE: Students reading courses in Mathematics in the Faculty of Science and Technology MUST consult with the Head, Department of Mathematics & Statistics, before registering for any course in any other faculty that involves Mathematics or Statistics.

Students **WILL NOT BE AWARDED CREDITS** for any out-of-faculty course that overlaps with Mathematics or Statistics, this includes but is **NOT LIMITED TO** the following out-of-Faculty courses:

- ECON 1004 - Mathematics for Economics II
- ECON 1005 - Introduction to Statistics
- MGMT 2012 - Quantitative Methods
- MGMT 2032 - Managerial Economics

FOR MINORS, STUDENTS SHOULD CONSULT THE HEAD OF DEPARTMENT.

COURSE LISTING

List of courses offered in the Department of Mathematics & Statistics for the 2019/2020 academic year.

KEY: ** Not counted towards a student’s credit requirements for the award of the BSc Degree.

Note: Where course codes were not available at the time of publication, please check your faculty / department office/the online Banner database for the relevant information.

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTS 3001</td>
<td>Life Contingencies II</td>
<td>3</td>
</tr>
<tr>
<td>ACTS 3003</td>
<td>Loss Models I</td>
<td>3</td>
</tr>
<tr>
<td>ACTS 3004</td>
<td>Asset and Liability Management I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1115</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1142</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1152</td>
<td>Set and Number Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1192</td>
<td>Mathematical Software I (Excel)</td>
<td>1</td>
</tr>
<tr>
<td>MATH 1194</td>
<td>Mathematical Software III (MATLAB)</td>
<td>1</td>
</tr>
<tr>
<td>MATH 2211</td>
<td>Mathematics of Finance I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2270</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2273</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2274</td>
<td>Probability Theory I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2276</td>
<td>Discrete Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2400</td>
<td>Elementary Number Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3273</td>
<td>Linear Algebra II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3277</td>
<td>Introduction to Real Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3278</td>
<td>Probability Theory II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3402</td>
<td>Introduction to Partial Differential Equations</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTS 3000</td>
<td>Actuarial Science Project</td>
<td>3</td>
</tr>
<tr>
<td>ACTS 3011</td>
<td>Life Contingencies III</td>
<td>3</td>
</tr>
<tr>
<td>ACTS 3014</td>
<td>Asset and Liability Management II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1125</td>
<td>Fundamental Mathematics for the General Sciences II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1141</td>
<td>Introductory Linear Algebra & Analytical Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1151</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1194</td>
<td>Mathematical Software III (MATLAB)</td>
<td>1</td>
</tr>
<tr>
<td>MATH 2115</td>
<td>Life Contingencies I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2212</td>
<td>Mathematics of Finance II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2217</td>
<td>Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2272</td>
<td>Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2275</td>
<td>Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2410</td>
<td>Combinatorics I</td>
<td>3</td>
</tr>
</tbody>
</table>
MAJORS, MINORS and SPECIAL OPTIONS

The following programmes are offered by the Department of Mathematics and Statistics:

<table>
<thead>
<tr>
<th>MAJOR:</th>
<th>SPECIAL OPTIONS:</th>
<th>MINORS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>BSc Actuarial Science</td>
<td>Mathematics</td>
</tr>
<tr>
<td></td>
<td>BSc Mathematics</td>
<td>Statistics</td>
</tr>
<tr>
<td></td>
<td>BSc Mathematics and Applied Statistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSc Statistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSc Statistics and Economics</td>
<td></td>
</tr>
</tbody>
</table>

Major in Mathematics

(30 Advanced Credits)

COURSE LISTING

LEVEL I (13 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1142</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1152</td>
<td>Sets and Number Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1194</td>
<td>Mathematical Software III (MATLAB)</td>
<td>1</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1141</td>
<td>Intro. to Linear Algebra and Analytic Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1151</td>
<td>Calculus II</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II (24 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2270</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2273</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2274</td>
<td>Probability Theory I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2276</td>
<td>Discrete Mathematics</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2271</td>
<td>Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2272</td>
<td>Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2275</td>
<td>Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III (6 CREDITS)

Any two LEVEL III MATH courses
BSc ACTUARIAL SCIENCE (SPECIAL)
(102 CREDITS)

NOTE: The order in which courses are taken, especially at Levels II and III, may be varied with the approval of the Faculty Adviser or Head of Department.

COURSE LISTING
LEVEL I (33 CREDITS)

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EITHER</td>
<td>COMP 1400</td>
<td>Programming I</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 1001</td>
<td>Introduction to Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1142</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1152</td>
<td>Sets and Number Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1192</td>
<td>Mathematical Software I (Excel)</td>
<td>1</td>
</tr>
</tbody>
</table>

LEVEL I

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACCT 1002</td>
<td>Introduction to Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>EITHER</td>
<td>COMP 1404</td>
<td>Programming II</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 1002</td>
<td>Introduction to Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1141</td>
<td>Intro. to Linear Algebra & Analytical Geometry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1151</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1194</td>
<td>Mathematical Software III (Matlab)</td>
<td>1</td>
</tr>
</tbody>
</table>

LEVEL II/III (60 CREDITS)

LEVEL II

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MATH 2211</td>
<td>Mathematics of Finance I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 2270</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 2273</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 2274</td>
<td>Probability Theory I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MGMT 2023</td>
<td>Financial Management I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MATH 2115</td>
<td>Life Contingencies I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 2212</td>
<td>Mathematics of Finance II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 2272</td>
<td>Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 2275</td>
<td>Statistics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 2277</td>
<td>Introduction to Real Analysis I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACTS 3001</td>
<td>Life Contingencies II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ACTS 3003</td>
<td>Loss Models I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ACTS 3004</td>
<td>Asset & Liability Management I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 3278</td>
<td>Probability Theory II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MGMT 3048</td>
<td>Financial Management II</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS: Spanish (SPAN) or other approved Foreign Language from CLL 2
LEVEL III
SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTS 3000</td>
<td>Actuarial Science Project</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3000</td>
<td>Regression with Time Series</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Level III MATH, STAT or ACTS elective</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>Two (2) Level II/III elective from any discipline</td>
<td>6</td>
</tr>
<tr>
<td>PLUS:</td>
<td>Spanish (SPAN) or other approved Foreign Language from CLL (Level 1B or above)</td>
<td>2</td>
</tr>
</tbody>
</table>

FOUNDATION COURSES (9 CREDITS)
SEMESTERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific & Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>
BSc MATHEMATICS (SPECIAL)

(95 Credits)

COURSE LISTING

LEVEL I (26 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1400</td>
<td>Programming I</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1142</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1152</td>
<td>Sets and Number Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1192</td>
<td>Mathematical Software I (Excel)</td>
<td>1</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Elective course</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL I SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1404</td>
<td>Programming II</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1602</td>
<td>Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1141</td>
<td>Introductory Linear Algebra & Analytical Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1151</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1194</td>
<td>Mathematical Software III (MATLAB)</td>
<td>1</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Elective course</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II (60 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2270</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2273</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2274</td>
<td>Probability Theory I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2276</td>
<td>Discrete Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) level II/III Mathematics elective course</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2271</td>
<td>Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2272</td>
<td>Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2275</td>
<td>Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) level II/III Mathematics elective course</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III (60 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3272</td>
<td>Abstract Algebra II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3274</td>
<td>Set Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3275</td>
<td>Introduction to Complex Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) level II/III course drawn from Mathematics, Statistics or Actuarial Science</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Level II/III elective course drawn from any discipline</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3273</td>
<td>Linear Algebra II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3277</td>
<td>Introduction to Real Analysis II</td>
<td>3</td>
</tr>
</tbody>
</table>
PLUS: Two (2) level II/III courses drawn from Mathematics, Statistics or Actuarial Science 6
PLUS: One (1) level II/III elective course drawn from any discipline 3

FOUNDATION COURSES (9 CREDITS)

<table>
<thead>
<tr>
<th>SEMESTERS 1 & 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FOUN 1105</td>
<td>Scientific & Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>
BSc MATHEMATICS AND APPLIED STATISTICS (SPECIAL)
(93 CREDITS)
(NOT OFFERED IN 2019/2020)

NOTE: The order in which courses are taken, especially at Levels II and III, may be varied with the approval of the Faculty Adviser or Head of Department.

COURSE LISTING

LEVEL I (24 Credits)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EITHER COMP 1400</td>
<td>Programming I</td>
<td>3</td>
</tr>
<tr>
<td>OR COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1142</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1152</td>
<td>Sets & Numbers Systems</td>
<td>3</td>
</tr>
<tr>
<td>PLUS: One (1) Elective in Ancillary discipline</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1141</td>
<td>Intro. to Linear Algebra & Analytical Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1151</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1194</td>
<td>Introduction to Mathematical Software III (MATLAB)</td>
<td>1</td>
</tr>
<tr>
<td>PLUS: One (1) Elective in Ancillary discipline</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PLUS: One (1) CLL Approved Foreign Language</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

LEVEL II/III (60 CREDITS)

LEVEL II

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EITHER COMP 2700</td>
<td>Database Management Systems</td>
<td>4</td>
</tr>
<tr>
<td>OR COMP 2605</td>
<td>Enterprise Database System</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2270</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2273</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2274</td>
<td>Probability Theory I</td>
<td>3</td>
</tr>
<tr>
<td>PLUS: One (1) Level II/III Elective in Ancillary discipline</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2271</td>
<td>Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2272</td>
<td>Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2275</td>
<td>Introduction to Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>PLUS: One (1) Level II/III Elective in Ancillary discipline</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

LEVEL III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3278</td>
<td>Probability II</td>
<td>3</td>
</tr>
<tr>
<td>EITHER STAT 3010</td>
<td>Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>OR STAT 3000</td>
<td>Regression with Time Series Analysis</td>
<td>3</td>
</tr>
<tr>
<td>OR ECON 3049</td>
<td>Econometrics I</td>
<td>3</td>
</tr>
<tr>
<td>PLUS: One (1) Level II/III Elective from Mathematics</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
PLUS: One (1) Level II/III Elective in Ancillary discipline 3
PLUS: One (1) Level II/III Elective from any discipline 3

LEVEL III

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3465</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3001</td>
<td>Experimental Design and Sampling Theory</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3012</td>
<td>Applied Multivariate Statistics</td>
<td>3</td>
</tr>
<tr>
<td>PLUS: One (1) Level III Mathematics Course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PLUS: One (1) Level II/III Elective from Ancillary discipline</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

FOUNDATION COURSES (9 CREDITS)

SEMESTERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific & Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

LIST OF APPROVED ANCILLARY SUBJECTS

• Sociology
• Psychology
• Gender Studies
• Economics
• Finance
• Management Studies
• Education
• Biology
• Computer Science

Other Discipline approved by head of Department or Course Coordinator.

LIST OF APPROVED LANGUAGES

• Chinese
• French
• Japanese
• Spanish

Or other foreign languages approved by Head of Department or Degree Coordinator.
BSc STATISTICS (SPECIAL)

(93 CREDITS)

(NOT OFFERED IN 2019/2020)

NOTE: The order in which the courses are taken, especially at Levels II and III, may be varied with the approval of the Degree Coordinator or Head of Department.

COURSE LISTING

LEVEL I (24 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1400</td>
<td>Programming I</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1142</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1152</td>
<td>Sets & Numbers Systems</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Elective in Ancillary discipline</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1141</td>
<td>Intro. to Linear Algebra & Analytical Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1151</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1194</td>
<td>Mathematical Software III (MATLAB)</td>
<td>1</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Elective in Ancillary discipline</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>Spanish (SPAN) or other approved Foreign Language from CLL</td>
<td>2</td>
</tr>
</tbody>
</table>

LEVEL II/III (60 CREDITS)

LEVEL II

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 2700</td>
<td>Database Management Systems I</td>
<td>4</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 2605</td>
<td>Enterprise Database System</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2270</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2273</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2274</td>
<td>Probability Theory I</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Level II/III Elective in Ancillary discipline</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2275</td>
<td>Introduction to Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Level II/III Elective in Ancillary discipline</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3278</td>
<td>Probability Theory II</td>
<td>3</td>
</tr>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 3010</td>
<td>Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 3000</td>
<td>Regression with Time Series Analysis</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 3049</td>
<td>Econometrics I</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Level II/III from Ancillary discipline</td>
<td>3</td>
</tr>
</tbody>
</table>

Return to Table of Contents
PLUS: One (1) Level II/III course chosen from any discipline
PLUS: One (1) Level II/III course chosen from any discipline

LEVEL III

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3465</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3001</td>
<td>Experimental Design and Sampling Theory</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3012</td>
<td>Applied Multivariate Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Level II/III Elective from Ancillary discipline</td>
<td>3</td>
</tr>
<tr>
<td>PLUS:</td>
<td>One (1) Level II/III Elective from any discipline</td>
<td>3</td>
</tr>
</tbody>
</table>

FOUNDATION COURSES (9 CREDITS)

SEMESTERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific & Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>
BSc STATISTICS AND ECONOMICS (SPECIAL)
(98 Credits)

COURSE LISTING

LEVEL I (29 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1400</td>
<td>Programming I</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td>ECON 1001</td>
<td>Introduction to Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1142</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1152</td>
<td>Sets & Numbers Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1192</td>
<td>Mathematical Software I (Excel)</td>
<td>1</td>
</tr>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCI 1002</td>
<td>Introduction to Sociology</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 1001</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEVEL II (60 CREDITS)

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2002</td>
<td>Intermediate Macroeconomics I</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2000</td>
<td>Intermediate Microeconomics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2270</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2273</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2274</td>
<td>Probability Theory I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2001</td>
<td>Intermediate Microeconomics II</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2003</td>
<td>Intermediate Macroeconomics II</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2005</td>
<td>Social and Economic Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2275</td>
<td>Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 2700</td>
<td>Database Management Systems I</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 2605</td>
<td>Enterprise Database System</td>
<td>3</td>
</tr>
<tr>
<td>ECON 3049</td>
<td>Econometrics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3278</td>
<td>Probability Theory II</td>
<td>3</td>
</tr>
<tr>
<td>PLUS: One (1) level III Economics (ECON) course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PLUS: One (1) Level II/III course drawn from Economics, Statistics, Mathematics, Actuarial Science, Finance or other courses approved by the degree Coordinator</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
LEVEL III
SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 3050</td>
<td>Econometrics II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3465</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3001</td>
<td>Experimental Design and Sampling Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS: One (1) Level III Economics (ECON) course

PLUS: One (1) Level II/III course drawn from Economics, Statistics, Mathematics, Actuarial Science, Finance or other courses approved by the degree coordinator

FOUNDATION COURSES (9 CREDITS)

SEMESTERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific & Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>
Minor in Mathematics
(15 CREDITS)

COURSE LISTING
LEVEL II
SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2270</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2273</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
</tbody>
</table>

AT LEAST ONE FROM:
LEVEL II
SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2272</td>
<td>Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2277</td>
<td>Introduction to Real Analysis I</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS: Six (6) credits of Level II/Level III Mathematics Courses

Minor in Statistics
(15 CREDITS)

COURSE LISTING
LEVEL II/III
SEMESTER 1: ONE OF:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 3049</td>
<td>Econometrics I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3000</td>
<td>Regression with Time Series Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3010</td>
<td>Regression Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2275</td>
<td>Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3465</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3001</td>
<td>Experimental Design and Sampling Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

PLUS EITHER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 3012</td>
<td>Applied Multivariate Statistics</td>
<td>3</td>
</tr>
<tr>
<td>OR MATH 3278</td>
<td>Probability Theory II</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td>Any other approved Level III course in Statistics (STAT)</td>
<td>3</td>
</tr>
<tr>
<td>OR ECON 3050</td>
<td>Econometrics II</td>
<td>3</td>
</tr>
</tbody>
</table>

If MATH 2275 is taken for the Major in Mathematics, then it cannot be used for the Minor in Statistics and must be replaced by another Level II or Level III course in Statistics.

Similarly, if MATH 2275 is taken for the Minor in Statistics then it cannot be used for the Major in Mathematics and must be replaced by another Level II or Level III course in Mathematics.
DEPARTMENT OF PHYSICS

List of courses offered in the Department of Physics for the 2019/2020 academic year.

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMET 1004</td>
<td>Introductory Human Anatomy & Physiology I</td>
<td>3</td>
</tr>
<tr>
<td>BMET 2001</td>
<td>Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td>BMET 2002</td>
<td>Introduction to Medical Physics</td>
<td>3</td>
</tr>
<tr>
<td>BMET 3000</td>
<td>Biomedical Technology Project (Year-long)</td>
<td>6</td>
</tr>
<tr>
<td>BMET 3001</td>
<td>Laboratory Management and Practice</td>
<td>3</td>
</tr>
<tr>
<td>BMET 3002</td>
<td>Light & Optics in Medicine</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1001</td>
<td>Introduction to Astronomy</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1221</td>
<td>Introduction to Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1222</td>
<td>Introduction to Optics, Oscillations & Waves</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2150</td>
<td>Mathematics for Physicists</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2152</td>
<td>Vibrations, Waves and Optics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2155</td>
<td>Physics Major Laboratory Level II (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2156</td>
<td>Meteorology and Climatology</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2165</td>
<td>Materials Science I (not offered in 2019/2020)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2401</td>
<td>Optoelectronics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3150</td>
<td>Electromagnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3153</td>
<td>Physics Major Research Project</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3155</td>
<td>Physics Major Laboratory Level III (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3156</td>
<td>Principles of Physical Oceanography and Geohydrology (not offered in 2019/2020)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3159</td>
<td>Environmental Physics Laboratory (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3160</td>
<td>Medical Physics & Bioengineering Laboratory (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3163</td>
<td>Electronics Laboratory (Year Long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3164</td>
<td>Ceramics Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3166</td>
<td>Materials Science Laboratory (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3201</td>
<td>Advance Electronics and Control Theory</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3202</td>
<td>Practical Electronics I (Year-long)</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMET 1005</td>
<td>Introductory Human Anatomy & Physiology II</td>
<td>3</td>
</tr>
<tr>
<td>BMET 3003</td>
<td>Biomedical Technology Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>BMET 3004</td>
<td>Metrology & Regulatory Standards</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1223</td>
<td>Introduction to Electricity & Magnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1224</td>
<td>Introduction to Thermodynamics & Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2151</td>
<td>Classical and Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2153</td>
<td>Astrophysics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2157</td>
<td>Solid Earth Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2166</td>
<td>Technological Materials</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2402</td>
<td>Digital Circuits and Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3151</td>
<td>Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3152</td>
<td>Advanced Thermodynamics and Solid State Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3153</td>
<td>Physics Major Research Project</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3157</td>
<td>Earth Science (not offered in 2019/2020)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3158</td>
<td>Fundamentals of Renewable Energy</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3165</td>
<td>Materials Science II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3167</td>
<td>Radiation Biophysics and Medicine</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3168</td>
<td>Medical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3203</td>
<td>Microprocessor and Modern Digital Design</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3204</td>
<td>Practical Electronics II</td>
<td>3</td>
</tr>
</tbody>
</table>

SUMMER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1002</td>
<td>Introduction to Astrobiology</td>
<td>3</td>
</tr>
</tbody>
</table>

2. BMET students with CAPE Pure Mathematics passes in both Units I and II are to request exemptions without credits for MATH 1115 and MATH 1125 and will be required to pursue alternative courses as approved by the Head of Department.
3. Students repeating a course may carry over the practical coursework mark for a maximum of two (2) years. However the theory coursework must be repeated. Please consult with the Head of Department.
4. Laboratory courses (year long): Students are required to register for each year long laboratory course in Semester 1 of the Academic year. However, since these are year long courses credits will be assigned only in Semester 2.

MAJORS, MINORS, and SPECIAL OPTION

The following programmes are offered by the Department of Physics:

<table>
<thead>
<tr>
<th>MAJORS:</th>
<th>MINORS:</th>
<th>SPECIAL OPTION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics</td>
<td>Electronics</td>
<td>BSc Biomedical Technology</td>
</tr>
<tr>
<td>Physics</td>
<td>Environmental Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medical Physics & Bioengineering</td>
<td></td>
</tr>
</tbody>
</table>

Major in Electronics

(30 CREDITS)

COURSE LISTING

PREREQUISITES*

<table>
<thead>
<tr>
<th>LEVEL I</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COMP 1601</td>
<td>Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 1142</td>
<td>Calculus I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL I</th>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MATH 1141</td>
<td>Introductory Linear Algebra & Analytical Geometry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 1223</td>
<td>Introduction to Electricity & Magnetism</td>
<td>3</td>
</tr>
</tbody>
</table>

* Students must pass 12 more level I credits in order to proceed to Level II

CORE COURSES (27 CREDITS)

<table>
<thead>
<tr>
<th>LEVEL II</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PHYS 2150</td>
<td>Mathematics for Physicists</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 2401</td>
<td>Optoelectronics</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL III</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ECNG 2001</td>
<td>Communication Systems I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 2402</td>
<td>Digital Circuits and Logic Design</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL III</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ECNG 3001</td>
<td>Communication Systems II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 3201</td>
<td>Advance Electronics and Control Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 3202</td>
<td>Practical Electronics I (Year-long)</td>
<td>3</td>
</tr>
</tbody>
</table>
SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 3203</td>
<td>Microprocessor and Modern Digital Design</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3204</td>
<td>Practical Electronics II</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVES (Choose one(1) three credit course)

LEVEL III

SEMESTER I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 3002</td>
<td>Data Communication Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 3003</td>
<td>Telecommunication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ECNG 3019</td>
<td>Advanced Control Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>ECNG 3025</td>
<td>Discrete Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3168</td>
<td>Medical Instrumentation</td>
<td>3</td>
</tr>
</tbody>
</table>

NOTE: Students seeking admission into the Master of Applied Science in Electrical and Computer Engineering (M.A.Sc.), with a major in Communication Systems are advised to choose electives ECNG 3002 and ECNG 3003 as these two courses are prerequisites.

Students seeking admission into M.A.Sc. programme with a major in Control Systems are advised to choose elective ECNG 3019 as this course is prerequisite.

Students pursuing the Major in Physics and the Major in Electronics must complete PHYS 2150 to meet the stipulated requirements for matriculation for both Majors. Since the course cannot be credited twice, students must do an additional advanced course to satisfy the credit requirements.

Major in Physics

(30 CREDITS)

COURSE LISTING

PREREQUISITES

LEVEL I

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1221</td>
<td>Introduction to Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1222</td>
<td>Introduction to Optics, Oscillations and Waves</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1223</td>
<td>Introduction to Electricity & Magnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1224</td>
<td>Introduction to Thermodynamics and Modern Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

* Students must pass 12 level I credits in order to proceed to Level II

CORE COURSES (30 CREDITS)

LEVEL II/III

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2150</td>
<td>Mathematics for Physicists</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2152</td>
<td>Vibrations, Waves and Optics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2155</td>
<td>Major Laboratory Level II (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3150</td>
<td>Electromagnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3153</td>
<td>Physics Major Research Project (Offered in both semesters)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3155</td>
<td>Major Laboratory Level III (Year-long)</td>
<td>3</td>
</tr>
</tbody>
</table>

Return to Table of Contents
Minor in Electronics
(15 CREDITS)

COURSE LISTING

<table>
<thead>
<tr>
<th>LEVEL II/III</th>
<th>SEMESTER 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>PHYS 2401</td>
<td>Optoelectronics</td>
</tr>
<tr>
<td>PHYS 3201</td>
<td>Advance Electronics and Control Theory</td>
</tr>
<tr>
<td>PHYS 3202</td>
<td>Practical Electronics I (Year-long)</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2402</td>
<td>Digital Circuits and Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3203</td>
<td>Microprocessor and Modern Digital Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor in Environmental Physics
(15 CREDITS)

COURSE LISTING

CORE COURSE (3 CREDITS)

<table>
<thead>
<tr>
<th>LEVEL II/III</th>
<th>SEMESTER 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>PHYS 3159</td>
<td>Environmental Physics Laboratory (Year-long)</td>
</tr>
</tbody>
</table>

PLUS any other four (4) courses from the five (5) listed below:

SEMESTER 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2156</td>
<td>Meteorology and Climatology</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3156</td>
<td>Principles of Physical Oceanography and Geohydrology (not offered in 2019/2020)</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2157</td>
<td>Solid Earth Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3157</td>
<td>Earth Science (not offered in 2019/2020)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3158</td>
<td>Fundamentals of Renewable Energy</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor in Materials Science
(15 CREDITS)

COURSE LISTING

<table>
<thead>
<tr>
<th>LEVEL II/III</th>
<th>SEMESTER 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>PHYS 2165</td>
<td>Materials Science I (not offered in 2019/2020)</td>
</tr>
<tr>
<td>PHYS 3164</td>
<td>Ceramics Science</td>
</tr>
<tr>
<td>PHYS 3166</td>
<td>Materials Science Laboratory (Year-long)</td>
</tr>
</tbody>
</table>
Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2166</td>
<td>Technological Materials</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3165</td>
<td>Materials Science II</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor in Medical Physics & Bioengineering
(15 CREDITS)

Course Listing

Level II/III

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMET 2001</td>
<td>Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td>BMET 2002</td>
<td>Introduction to Medical Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3160</td>
<td>Medical Physics & Bioengineering Laboratory (Year-long)</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 3167</td>
<td>Radiation Biophysics and Medicine</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3168</td>
<td>Medical Instrumentation</td>
<td>3</td>
</tr>
</tbody>
</table>
BSc BIOMEDICAL TECHNOLOGY (SPECIAL)
(93 CREDITS)

LEVEL I REQUIREMENTS:
- Students pursuing the BSc Biomedical Technology will require passes in MATH 1115 and MATH 1125 or equivalent. Students with passes in CAPE Pure Mathematics (Units I and II) or N1 Mathematics (MATH 0100 and MATH 0200) or GCE A’level Mathematics may apply for **EXEMPTIONS WITHOUT CREDITS** from MATH 1115 and MATH 1125. Where **EXEMPTIONS WITHOUT CREDITS** are granted, students will be required to pursue alternative courses as approved by the Head of Department. Application Forms to request the exemptions are available at the Student Administration Building.

LEVEL I (ALL ARE CORE COURSES)

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BMET 1004</td>
<td>Introductory Human Anatomy & Physiology I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1115</td>
<td>Fundamental Mathematics for the General Sciences I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 1221</td>
<td>Introduction to Mechanics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 1222</td>
<td>Introduction to Optics, Oscillations and Waves</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL I

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BMET 1005</td>
<td>Introductory Human Anatomy & Physiology II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1125</td>
<td>Fundamental Mathematics for the General Sciences II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 1223</td>
<td>Introduction to Electricity and Magnetism</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 1224</td>
<td>Introduction to Thermodynamics & Modern Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL II / III

<table>
<thead>
<tr>
<th>CORE COURSES (60 credits)</th>
<th>SEMESTER 1</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BIOL 2163</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMET 2001</td>
<td>Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMET 2002</td>
<td>Introduction to Medical Physics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMET 3000</td>
<td>Biomedical Technology Project (Year-long)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMET 3001</td>
<td>Laboratory Management and Practice</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMET 3002</td>
<td>Light and Optics in Medicine</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 2150</td>
<td>Mathematics for Physicists</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 2401</td>
<td>Optoelectronics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 3201</td>
<td>Advance Electronics and Control Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 3160</td>
<td>Medical Physics & Bioengineering Laboratory (Year-long)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 3163</td>
<td>Electronics Laboratory (Year-long)</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMET 3003</td>
<td>Biomedical Technology Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>BMET 3004</td>
<td>Metrology and Regulatory Standards</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2402</td>
<td>Digital Circuits and Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3167</td>
<td>Radiation Biophysics and Medicine</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3168</td>
<td>Medical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3203</td>
<td>Microprocessor and Modern Digital Design</td>
<td>3</td>
</tr>
</tbody>
</table>

*** ELECTIVE COURSES (CHOOSE any 6 credits)***

Students may pursue any 6 credits at Level II/III from the Department of Physics or any other Department provided that they have the necessary pre-requisites and with the Head of Department’s approval.

Students interested in pursuing MSc in Biomedical Physics may, if they wish to, select their electives from the following courses:

- PHYS 2152 Vibrations, Waves and Optics
- PHYS 3150 Electromagnetism
- PHYS 3152 Thermodynamics & Solid State Physics

Return to Table of Contents
FOUNDATION COURSES (9 CREDITS)

SEMESTERS 1 & 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1101</td>
<td>Caribbean Civilization</td>
<td>3</td>
</tr>
<tr>
<td>FOUN 1301</td>
<td>Law, Governance, Economy and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUN 1105</td>
<td>Scientific & Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>
LANGUAGE COURSES

The Centre for Language Learning (CLL) offers courses in 10 foreign languages: Arabic, Chinese, French, German, Hindi, Italian, Japanese, Portuguese, Spanish and Yoruba.

Its aim is to empower students to use the target language in order to understand information, to express themselves orally and in writing, to communicate with native and non-native speakers of the language and engage with the culture of the language.

Students can register at the CLL and attend classes in any language, upon payment of a small registration fee. Students can also pursue credit courses in Chinese, French, Japanese and Spanish. Registration is online using BANNER. **Students must complete a paper-based registration at the CLL before their online registration.** The normal per credit fee applies.

CHINESE (Mandarin)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIN 1003</td>
<td>Level 1A Chinese (Mandarin) I</td>
<td>2</td>
</tr>
<tr>
<td>CHIN 1004</td>
<td>Level 1B Chinese (Mandarin) II</td>
<td>2</td>
</tr>
</tbody>
</table>

French

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREN 1001</td>
<td>Level 1A French I & II</td>
<td>2</td>
</tr>
<tr>
<td>FREN 1002</td>
<td>Level 1B French I & II</td>
<td>2</td>
</tr>
</tbody>
</table>

Japanese

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAPA 1003</td>
<td>Level 1A Japanese I</td>
<td>2</td>
</tr>
<tr>
<td>JAPA 1004</td>
<td>Level 1B Japanese II</td>
<td>2</td>
</tr>
</tbody>
</table>

Spanish

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 1101</td>
<td>Level 1A Spanish I & II</td>
<td>2</td>
</tr>
<tr>
<td>SPAN 1102</td>
<td>Level 1B Spanish I & II</td>
<td>2</td>
</tr>
</tbody>
</table>
SECTION XIII: COURSE DESCRIPTIONS

ALPHABETICAL LISTING BY COURSE CODES

ACCOUNTING: ACCT

LEVEL: I
SEMESTERS: 1
COURSE CODE: ACCT 1002
COURSE TITLE: INTRODUCTION TO FINANCIAL ACCOUNTING
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: An introductory course designed for students of accounting and those in other areas of study. It aims at producing a practical and a theoretical understanding of the principles and concepts involved in the preparation of financial statements. Students are exposed to conceptual analytical approach with the aim of improving their critical thinking and communicative skills.
ASSESSMENT:
Coursework 25%
Final Examination 75%

LEVEL: I
SEMESTERS: 2
COURSE CODE: ACCT 1003
COURSE TITLE: INTRODUCTION TO COST & MANAGERIAL ACCOUNTING
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This is an introductory course for students of accounting as well as other areas of study. It aims to acquaint them with the uses of accounting information and techniques useful to the manager in planning, decision-making and controlling organisational activities.
ASSESSMENT:
Coursework 25%
Examination 75%

LEVEL: II
SEMESTER: 1
COURSE CODE: ACCT 2017
COURSE TITLE: MANAGEMENT ACCOUNTING 1
NUMBER OF CREDITS: 3
PREREQUISITES: ACCT 1002 AND ACCT 1003
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: The course explains how managerial accounting information is used by managers in manufacturing, retail, service and not-for-profit organisations to anticipate the future and monitor the activities of the business.
ASSESSMENT:
Coursework 25%
Final Examination 75%
ACTUARIAL: ACTS

LEVEL: III
SEMESTER: 2
COURSE CODE: ACTS 3000
COURSE TITLE: ACTUARIAL SCIENCE PROJECT
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2212 AND ACTS 3001 OR (MATH 2210 AND (MATH 3310))

COURSE DESCRIPTION: This course requires the student to develop an actuarial solution to a problem of an appropriate scope. The project may be application oriented where the student builds a business solution similar to what is required to solve actuarial problems. The project should require the student to draw on the skills developed across several Actuarial Science courses.

ASSESSMENT:
- Project report 80%
- Presentation 20%

LEVEL: III
SEMESTER: 1
COURSE CODE: ACTS 3001
COURSE TITLE: LIFE CONTINGENCIES II
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2270 AND MATH 2115 OR (MATH 2210 AND MATH 2220)

COURSE DESCRIPTION: This course is the second part of the Life Contingencies course. The contents of this course will introduce students to application of multiple life functions and multiple decrement models in the actuarial context. Students will learn steps involved in modeling life insurance portfolios to determine the probability of survival and death in a multiple decrement basis. In addition, students will gain practical application of the course content through a software based assignment required for the valuation of the reserves for an individual life insurance policyholder. A software used in the actuarial field will be incorporated in the course so that students develop practical skills.

ASSESSMENT:
- Coursework 50%
- Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: ACTS 3003
COURSE TITLE: LOSS MODELS I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2270, MATH 2274 AND MATH 2275

COURSE DESCRIPTION: The contents of this course will introduce students to the construction and evaluation of actuarial models. Students will learn the steps involved in the modeling process and how to carry out these steps in solving business problems. That is, analyze data from an application in a business context, determine a suitable model including parameter values and provide measures of confidence for decisions based on the model. In addition, the student will be introduced to a variety of tools for the calibration and evaluation of the survival, severity, frequency and aggregate models, and use statistical methods to estimate parameters of such models given sample data.

ASSESSMENT:
- Coursework 50%
- Final Examination 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: ACTS 3004
COURSE TITLE: ASSET AND LIABILITY MANAGEMENT I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2275 AND EITHER (MATH 2212 OR MGMT 3048)
COURSE DESCRIPTION: This course covers topics in modern corporate portfolio theory. Topics include cost of capital, economic capital, sources of capital, bond pricing, derivatives pricing, interest rate models, and efficient markets. The course builds on the material in Financial Mathematics II, introducing further tools and techniques of asset/liability management, general product design, as well as issues of pricing, valuation and asset management and investments in financial security programmes.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: ACTS 3011
COURSE TITLE: LIFE CONTINGENCIES III
NUMBER OF CREDITS: 3
PREREQUISITES: ACTS 3001
COURSE DESCRIPTION: This course consists of three major topics: pension mathematics, interest rate risk and traditional and universal life insurance. Students will learn how to apply the course content to solve business problems in the insurance and pensions industries. Assessment will be based on assignments, coursework examinations and a final examination.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: ACTS 3013
COURSE TITLE: LOSS MODELS II
NUMBER OF CREDITS: 3
PREREQUISITES: ACTS 3003
COURSE DESCRIPTION: This course consists of three major topics: parametric models, credibility theory and simulation. Students will learn how to apply the course content to solve business problems in the insurance and pensions industries. Assessment will be based on assignments, coursework examinations and a final examination.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: ACTS 3014
COURSE TITLE: ASSET AND LIABILITY MANAGEMENT II
NUMBER OF CREDITS: 3
PREREQUISITES: ACTS 3004
COURSE DESCRIPTION: This course consists of four major topics: risk management techniques, option pricing, simulation and interest rate models. Students will learn how to apply the course content to solve business problems in the financial services industry. Assessment will be based on assignments, coursework examinations and a final examination.
ASSESSMENT:
Coursework 50%
Final Examination 50%
AGRICULTURE: AGRI

LEVEL: III
SEMESTER: 11
COURSE CODE: AGRI 3020
COURSE TITLE: FOOD MICROBIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: AGRI 1012; BIOL 2265
DEPARTMENT RESPONSIBLE: FOOD PRODUCTION

COURSE DESCRIPTION: In this course, the history and development of food microbiology, characteristics of predominant microorganisms in food and their significance, extrinsic and intrinsic factors influencing microbial growth in foods, harmful aspects of microorganisms, beneficial applications of microorganisms in fermentation, methods of food preservation and predictive food microbiology. The course also addresses various food safety management systems such as by ISO 22000 and Hazard Analysis and Critical Control Point (HACCP). Teaching methods involve lectures, video presentation, and laboratory practical.

ASSESSMENT:
Coursework 40%
Final Examination 60%

BIOCHEMISTRY: BIOC

LEVEL: II
SEMESTER: 1
COURSE CODE: BIOC 2061
COURSE TITLE: BIOENERGETICS
NUMBER OF CREDITS: 3
ANTI-REQUISITES: BIOL 2361 Biomolecules and Energy Metabolism OR BIOL 2360 Biochemistry IIA
PREREQUISITES: BIOL 1362, CHEM 1066 AND CHEM 1067

COURSE DESCRIPTION: pH and buffers; Bioenergetics, Membrane structure; Introduction to membrane transport; TCA cycle; Oxidative phosphorylation; Plant and fungal respiratory chains; Transporters of the mitochondrial inner membrane; Photosynthetic light reactions of plants and bacteria; Calvin cycle; C3, C4 and CAM metabolism; GS-GOGAT and photorespiration; Mitochondria-plastid interactions in higher plants; Chlororespiration; Mitochondrial dysfunction

ASSESSMENT:
Coursework 50%
Final Exam 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: BIOC 2069
COURSE TITLE: PRACTICAL SKILLS IN BIOCHEMISTRY I
NUMBER OF CREDITS: 1.5
ANTI-REQUISITES: BIOL 3069 Research Project
PREREQUISITES: BIOL 1362, CHEM 1066 AND CHEM 1067

COURSE DESCRIPTION: This course is composed primarily of laboratory exercises which assist students to understand concepts taught in the classroom as well as introduce techniques necessary to function efficiently in a biochemistry lab. Topics covered include: Instrumentation and safety in the biochemistry laboratory; pH and buffers; proteins and amino acids; the Hill Reaction; measurement of arginase activity; assay of tissue glycogen.

ASSESSMENT:
Coursework 100%
LEVEL: II
SEMESTER: 1
COURSE CODE: BIOC 2161
COURSE TITLE: PRIMARY METABOLISM
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2363 Metabolism
ANTI-REQUISITES: BIOL 1362, CHEM 1066 AND CHEM 1067
COURSE DESCRIPTION: Regulation mechanisms of enzymes in biological systems; Enzyme mechanisms; Carbohydrate metabolism; Nitrogen metabolism; Amino Acids; Lipid metabolism Integrated Metabolism; Regulation of Metabolism
ASSESSMENT:
Coursework 50%
Final Exam 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: BIOC 2162
COURSE TITLE: CIRCULATORY AND SECRETORY SYSTEMS
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 2364 Advanced General Biochemistry
PREREQUISITES: BIOL 1362, CHEM 1066 AND CHEM 1067
COURSE DESCRIPTION: Protein stability and folding; Protein trafficking (mitochondria, chloroplast, nucleus and E.R.); Intracellular vesicular traffic; Cytoskeleton; Hormones; Plant hormones; Biochemical effectors of the mammalian respiratory and circulatory systems
ASSESSMENT:
Coursework 50%
Final Exam 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: BIOC 2169
COURSE TITLE: PRACTICAL SKILLS IN BIOCHEMISTRY II
NUMBER OF CREDITS: 1.5
PREREQUISITES: BIOL 1362, CHEM 1066 AND CHEM 1067
COURSE DESCRIPTION: This course is composed primarily of laboratory exercises which assist students to understand concepts taught in the classroom as well as introduce techniques necessary to function efficiently in a biochemistry lab. As this course builds upon those techniques studied in Practical skills in Biochemistry I students must first have taken that course. Topics covered include are DNA and RNA isolation from animal tissues and a project where the students isolate and characterize invertase from yeast.
ASSESSMENT:
Coursework 100%

LEVEL: II
SEMESTER: 2
COURSE CODE: BIOC 2262
COURSE TITLE: GENE EXPRESSION
NUMBER OF CREDITS: 3
ANTI-REQUISITES: BIOL 2362 Further Metabolism & Gene Expression
PREREQUISITES: BIOL 1362, CHEM 1066 AND CHEM 1067
COURSE DESCRIPTION: Chemistry of nucleic acids, gene expression events and regulation, DNA surveillance and repair mechanisms; nucleotide biosynthesis, gene expression and developmental biology.
ASSESSMENT:
Coursework 50%
Final Exam 50%
LEVEL: III
SEMESTER: 1
COURSE CODE: BIOC 3062
COURSE TITLE: CELLULAR AND MOLECULAR DEFENCE SYSTEMS
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL2164 PRINCIPLES OF MOLECULAR BIOLOGY
PREREQUISITES: BIOC 2161 AND BIOC 2262
COURSE DESCRIPTION: The course covers immunology: natural and acquired immunity both humoral and cellular; antibody structure and function; T cells-their function and diversity; complement activation, control and biological effects. HLA-nomenclature, typing and its uses, autoimmunity; animal detoxification-absorption and distribution of xenobiotics, toxic effects and metabolism. The course will be delivered using a number of pedagogical tools and will be myelearning supported.

ASSESSMENT:
Coursework: 50%
Final Examination: 50%

LEVEL: III
SEMESTERS: 1, 2 AND 3
COURSE CODE: BIOC 3069
COURSE TITLE: BIOCHEMISTRY RESEARCH PROJECT
NUMBER OF CREDITS: 3
PREREQUISITES: STUDENTS SHOULD MEET CRITERIA I AND II:
I. BIOC 2061, BIOC 2069, BIOC 2161, BIOC 2162, BIOC 2169 AND BIOC 2262
II. HAVE A GPA OF ≥ 3 OR PERMISSION OF THE HEAD OF DEPARTMENT
COURSE DESCRIPTION: An approved investigation of a problem in biochemistry and a written report thereon. Students must consult with the course coordinator before registering for this course

ASSESSMENT:
In-course assessment 30%
 Literature Review 10%
 Oral Presentation 20%
Project Report 70%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOC 3162
COURSE TITLE: EXPERIMENTAL BIOCHEMISTRY AND MOLECULAR BIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITES: BIOL 2164 PRINCIPLES OF MOLECULAR BIOLOGY, BIOC 3061 MOLECULAR BIOLOGY
PREREQUISITES: BIOC 2262, BIOC 2069 AND BIOC 2169
COURSE DESCRIPTION: This course covers key advanced techniques in Biochemistry and Molecular Biology including mammalian cell culture, immunological techniques, analysis of lipids and carbohydrates, analysis of DNA, RNA and proteins, recombinant DNA technology and genetic engineering, protein expression, ethics of synthetic biology and computational methods in biochemistry and molecular biology. Course materials will include class handouts e.g. illustrations and diagrams and the course will be fully myeLearning-supported. The course is primarily a theoretical course but computer-assisted approaches to experimental design and data analysis will be practiced by students.

ASSESSMENT:
Coursework: 50%
Final Examination: 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: BIOC 3262
COURSE TITLE: MEDICAL BIOCHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOC 2161

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOC 3364
COURSE TITLE: BIOCHEMICAL BASIS OF DISEASE
NUMBER OF CREDITS: 3
PREREQUISITES: BIOC 2161 AND BIOC 2262
COURSE DESCRIPTION: The course covers applied aspects of cancer metabolism, gene expression, diabetes and obesity, signal transduction/apoptosis, sensory systems and neurochemistry. The course will be delivered using a number of pedagogical tools and will be myeLearning supported.

ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: BIOC 3500
COURSE TITLE: MOLECULAR VIROLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: STUDENTS SHOULD MEET CRITERIA I OR II:
I. BIOC 2262, BIOC 3062 AND BIOC 3162
II. BIOL 2164, BIOL 2265, AND BIOL 2165
COURSE DESCRIPTION: Changing climates and environmental conditions, increased human traffic, altered human behavior and intensified agricultural practices are only a few factors that have led to the emergence of multiple viruses that occupy expanded ecologic niches, producing diseases in parts of the world where they had never before existed. Importantly, most emerging viral diseases in humans in the 21st century have been zoonotic and plant viruses continue to disrupt food supply. This course will detail the main mechanisms engaged by most viruses for successful reproduction within a host cell and for survival and spread within a host population. The molecular basis of alternative reproductive cycles and the genetic plasticity of viral genomes and the role in virus evolution are important aspects that will be covered. The course will address both sides of the dynamic interplay between pathogen and host including pathogenesis, oncogenic involvement, detection and control of viruses using vaccines and new antiviral strategies and finally, the potential and real applications of manipulating viruses for use in bioengineering and gene therapy. The course directly contributes to the thematic understanding of immunology and biochemical/molecular methods taught in Semester I as pre-requisite courses. The course will be fully myeLearning-supported and a combination of pedagogical approaches will be used; assessments will be based on in-course exams, group assignments and individual student reports.
ASSESSMENT:
Coursework 50%
Final Examination 50%

BIOLOGY: BIOL

LEVEL: 0 (PRELIMINARY)
SEMESTER: 1
COURSE CODE: BIOL 0100
COURSE TITLE: N1 BIOLOGY I
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC OR EQUIVALENT PASS IN BIOLOGY
COURSE DESCRIPTION: An introduction to Cell and Plant Biology including the ultra-structure of plant and animal cells; comparison between prokaryotic and eukaryotic cells; structure and function of micro- and macro-molecules; enzymes; respiration and photosynthesis. Introduction of the Plant Kingdom, plant anatomy, morphology and physiology to include water relations, ion uptake, mineral nutrition; regulation of growth and development by hormonal and environmental factors.
ASSESSMENT:
Coursework 50%
Theory 20%
Practical 30%
Final Examination 50%

LEVEL: 0 (PRELIMINARY)
SEMESTER: 2
COURSE CODE: BIOL 0200
COURSE TITLE: N1 BIOLOGY II
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC OR EQUIVALENT PASS IN BIOLOGY
COURSE DESCRIPTION: Introduction to the Animal Kingdom; relationships between structure and function of the mammalian body including the gross anatomy and tissue structure of the various organ systems. Basic principles of Mendelian and Molecular genetics including the physical and chemical basis of inheritance; DNA replication, recombinant DNA and DNA fingerprinting. Introduction to Ecology including ecosystems, energy flow and trophic levels, nutrient cycling and environmental issues.
ASSESSMENT:
Coursework 50%
Theory 20%
Practical 30%
Final Examination 50%
LEVEL: I
SEMESTER: 1
COURSE CODE: BIOL 1262
COURSE TITLE: LIVING ORGANISMS I
NUMBER OF CREDITS: 3
PREREQUISITES: (CAPE BIOLOGY UNITS I AND II) OR (BIOL 0100 & BIOL 0200) OR GCE A-LEVEL BIOLOGY
COURSE DESCRIPTION: An introduction to the major groups of prokaryotes, autotrophic protists and plants, their evolutionary associations, and adaptive radiation. Explores ideas about the origin of the prokaryotes and the evolution and diversity of photosynthetic organisms. It is a prerequisite for advanced biology courses in the Department of Life Sciences.
ASSESSMENT:
Coursework 50%
Theory 30%
Practical 20%
Final Examination 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: BIOL 1263
COURSE TITLE: LIVING ORGANISMS II
NUMBER OF CREDITS: 3
PREREQUISITES: (CAPE BIOLOGY UNITS I AND II) OR (BIOL 0100 & BIOL 0200) OR GCE A-LEVEL BIOLOGY
COURSE DESCRIPTION: An introduction to the diversity of animals and fungi. Students are introduced to animals, their evolutionary associations, and adaptive radiation; and fungi as decomposers, symbionts, and pathogens. It is a prerequisite for advanced biology courses in the Department of Life Sciences.
ASSESSMENT:
Coursework 50%
Theory 30%
Practical 20%
Final Examination 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: BIOL 1362
COURSE TITLE: BIOCHEMISTRY I
NUMBER OF CREDITS: 3
ANTI-REQUISITE: AGRI 1013 INTRODUCTION TO BIOCHEMISTRY
PREREQUISITES: (CAPE BIOLOGY UNITS I AND II) OR (BIOL 0100 & BIOL 0200) OR GCE A-LEVEL BIOLOGY
COURSE DESCRIPTION: This course provides an introductory treatment of concepts in Biochemistry. In many regards, students will be learning a vast new language as well as new insight into the molecular logic of life - how the structure/form of molecules is related to their diverse functions.
ASSESSMENT:
Coursework 50%
Final Examination 60%

LEVEL: I
SEMESTER: 2
COURSE CODE: BIOL 1364
COURSE TITLE: GENETICS I
NUMBER OF CREDITS: 3
ANTI-REQUISITE: AGRI 1011 INTRODUCTION TO GENERAL GENETICS
PREREQUISITES: (CAPE BIOLOGY UNITS I AND II) OR (BIOL 0100 & BIOL 0200) OR GCE A-LEVEL BIOLOGY
COURSE DESCRIPTION: This course aims to present an introduction to the basic principles of genetics and will equip students with the necessary foundation for advanced level courses in biology and biochemistry.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: BIOL 2061
COURSE TITLE: CELL & DEVELOPMENTAL BIOLOGY
NUMBER OF CREDITS: 3

PREREQUISITES: BIOL 1263, BIOL 1362 AND BIOL 1364

COURSE DESCRIPTION: The course covers the basic principles of developmental biology with a review of the structure and function of cellular organelles and the role of the cytoskeleton in cell shape and motility. The principles of development, including an understanding of developmental terminology will be examined and its application to organisinal, cellular and molecular levels demonstrated for a complete understanding of developmental processes. Students will be introduced to important experiments that have led to an understanding of the basic principles of development. The application of stem cells in research and associated ethical considerations will form the basis of class discussions and online debates.

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: BIOL 2163
COURSE TITLE: BIOSTATISTICS
NUMBER OF CREDITS: 3

PREREQUISITES: STUDENTS SHOULD MEET ANY ONE OF THE FOLLOWING CRITERIA FROM I – V AND 9 LEVEL I CREDITS FROM VI:

I. MATH 1115 OR MATH 1125
II. CAPE UNITS I & II PURE MATHEMATICS OR
III. CAPE UNITS I & II APPLIED MATHEMATICS OR
IV. CAMBRIDGE GCE A’LEVEL MATHEMATICS OR
V. (A/O’ LEVEL ADDITIONAL MATHEMATICS) OR EQUIVALENT AND
VI. 9 CREDITS FROM THE FOLLOWING: BIOL 1262, BIOL 1263, BIOL 1364, BIOL 1362, ESST 1000, ESST 1001, ESST 1002, ESST 1004, ESST 1005, ESST 1006, BMET 1004, BMET 1005, PHYS 1221, PHYS 1222, PHYS 1223 AND PHY 1224

COURSE DESCRIPTION: This course introduces statistical concepts and analytical methods that can be applied to data in the biological, life sciences and environmental sciences. It will teach the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. This course emphasises applications and will help students to statistically evaluate data from biological experiments. Assessment is designed to make students work continuously with the course materials, exploring and critically analysing research and real world data. Assessment will be continuous through assigned problem sheets allowing continuous feedback and guidance on problem solving techniques.

ASSESSMENT:
Coursework 50%
Final Exam 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: BIOL 2164
COURSE TITLE: PRINCIPLES OF MOLECULAR BIOLOGY
NUMBER OF CREDITS: 3

ANTI-REQUISITE: BIOL 3061 MOLECULAR BIOLOGY
PREREQUISITES: BIOL 1362 AND BIOL 1364

COURSE DESCRIPTION: This course provides an introduction to recombinant DNA technology, R-DNA cloning, and applications of R-DNA technology. It examines the importance of restriction endonucleases in gene cloning, methods of construction of vectors and their applications in developing gene libraries. The methods of screening and enrichment of libraries are also examined. The principles of the Polymerase Chain Reaction (PCR) and its applications including paternity testing and fingerprinting, are also discussed. The principles of sequencing and the expansion of next-generation sequencing techniques are examined. Approaches to locating genes, including map-based gene isolation, and methods of gene silencing including RNAi and co-suppression are discussed using detailed examples. All techniques are further examined under general and holistic approaches to studying the genome, through forward and reverse genetics approaches, functional genomics, transcriptomics, proteomics and metabolomics. The theoretical principles discussed during the lectures are reinforced by practical exercises and assessment involving quizzes, in-lab assessments and discussions.

ASSESSMENT:
Coursework 50%
Final Exam 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: BIOL 2165
COURSE TITLE: GENETICS II
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 2162 ADVANCED GENETICS
PREREQUISITES: BIOL 1364 AND
6 CREDITS FROM THE FOLLOWING: BIOL 1262, BIOL 1263, BIOL 1362

COURSE DESCRIPTION: The major topics of the course are cytogenetics (including epigenetics and developmental genetics), prokaryotic/ viral genetics, and molecular genetics (including genomics). Cytogenetics explores chromosomal macromutations (chromosomal deletions, duplications, inversions and translocations) and their associated cytogenetic effects on plants and animals. Epigenetics and developmental genetics is a new area of study that explains the environmental influence on chromatin dynamics, DNA methylation, development and ultimately on inheritance. An introductory treatment of developmental genetics is also given to understand master control genes (homeotic genes) that regulate a cascade of genes that control development. Prokaryotic/ viral genetics provides insights into prokaryotic/ viral reproduction, recombination; genetic complementation, mapping; and genetic regulation. Molecular genetics provides the fundamental basis for the understanding of Molecular Biology and as such deals with DNA replication, transcription, translation and controls. Genomics provides an insight into where genetics is evolving (including an introduction to applications).

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: BIOL 2262
COURSE TITLE: EVOLUTIONARY BIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3662 EVOLUTION AND BIOSYSTEMATICS
PREREQUISITES: BIOL 1364 AND
6 CREDITS FROM THE FOLLOWING: BIOL 1262, BIOL 1263, BIOL 1362

COURSE DESCRIPTION: After a historical introduction, about one-quarter of the course is devoted to population genetics and the workings of natural selection as the basis for understanding evolutionary mechanisms and patterns. This leads to treatment of the nature of species, the roles of fossils in understanding past evolutionary patterns, special forms of evolution and phylogenetic analysis.

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: BIOL 2265
COURSE TITLE: FUNDAMENTALS OF MICROBIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITES: BIOL 2263 GENERAL MICROBIOLOGY
PREREQUISITES: STUDENTS SHOULD MEET CRITERIA I OR II
I: BIOL 1262, BIOL 1263 AND BIOL 1364 OR
II: ESST 1001

COURSE DESCRIPTION: An overview of the biology, taxonomy and phylogeny of bacteria, fungi and viruses. Topics covered include bacterial carbon and energy metabolism, as well as genetic recombination, growth and nutrition. The course covers the principles of classical and molecular-based methods used in the identification and enumeration of microorganisms.

ASSESSMENT:
Coursework 50%
Final Exam 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: BIOL 2360
COURSE TITLE: BIOCHEMISTRY IIA
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2361 BIOMOLECULES & ENERGY METABOLISM; BIOL 2365 COMPARATIVE BIOCHEMISTRY; BIOC 2061 BIOENERGETICS
PREREQUISITES: STUDENTS SHOULD MEET CRITERIA I AND III. BIOL 1362 AND CHEM 1062 OR CAPE UNIT I & II CHEMISTRY OR CHEM 0100 & CHEM 0200 AND
II. BIOL 1262 OR BIOL 1263
COURSE DESCRIPTION: This course builds on the material covered in BIOL1362 Biochemistry I. The course is intended for those students who are majoring in biology or perusing the BSc Biology programme and who ARE NOT reading a major or minor in biochemistry. The course covers core areas of biochemistry including bioenergetics; membranes and membrane transport; enzyme action and regulation; carbohydrate, nitrogen and lipid metabolism; and the integration of metabolism via hormonal control.
ASSESSMENT:
Coursework 50%
Final Exam 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: BIOL 2464
COURSE TITLE: FUNDAMENTALS OF ECOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 1462 GENERAL ECOLOGY AND BIOMETRY
PREREQUISITES: STUDENTS SHOULD MEET CRITERIA I OR II
I: BIOL 1262 AND 6 CREDITS FROM BIOL 1263, BIOL 1362 AND BIOL 1364 OR
II: ESST 1001 AND 6 CREDITS FROM ESST 1000, ESST 1002 AND ESST 1006
COURSE DESCRIPTION: An introduction to the science of ecology and its domain. Geographic range, habitat, and niche; influences of the abiotic and biotic environment. Estimating the abundance and pattern of populations. Population structure and demography; growth models, life tables and resource allocation patterns. Species interactions; competition, predation, commensalism and mutualism. The ecological community; concepts, classification, and attributes, ecological succession. Primary and secondary production, trophic levels, and ecological efficiencies. Nutrient cycles and energy flow.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: BIOL 2764
COURSE TITLE: PHYSIOLOGY OF PLANTS
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 1262, BIOL 1362 AND BIOL 1364
COURSE DESCRIPTION: This course deals with how plants gather the resources they need to grow and survive. The first part provides the essential concepts of plant physiology with comprehensive coverage of water relations, mineral uptake, and photosynthesis. The second part explores how these resources are translated into plant growth and provides an introduction to how plants respond to environmental signals at the whole plant level. Each topic is covered by lectures and supported by online material and by recommended reading. The Practicals complement the lecture topics and provide an opportunity to gain valuable practical skills in the life sciences.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: II
SEMESTER: 2
COURSE CODE: BIOL 2867
COURSE TITLE: PHYSIOLOGY OF ANIMALS
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 2862 ANIMAL PHYSIOLOGY
PREREQUISITES: BIOL 1263 AND BIOL 1362
COURSE DESCRIPTION: Physiology of Animals is the study of how animals’ function. The course provides an introduction to molecular and cellular physiology and the principal physiological systems in animals, and how these systems function to maintain homeostasis in various environments. It covers fundamental concepts in osmoregulation and excretion, neurophysiology, muscle physiology, respiration, thermo-physiology, circulation and gas transport, endocrinology, and cardiovascular physiology. It also looks at some of the major stressors on physiological processes and how animals have been able to deal with them. Typical stressors that are covered include osmotic pressures, water limitation, hypoxia, altitude, depth, temperature extremes and exercise. While animal physiology examines systems and processes common to all animal species, this course will focus on vertebrates, with a special emphasis on mammalian systems.

ASSESSMENT:
Coursework 50%
Final Exam 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3063
COURSE TITLE: MARINE ECOLOGY AND OCEANOGRAPHY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 2063 MARINE ECOLOGY
PREREQUISITES: BIOL 1262, BIOL 1263 AND BIOL 2464
COURSE DESCRIPTION: After having completed the Fundamentals of Ecology this course focuses now on marine ecology and related aspects of oceanography and marine biology. Ecological processes and adaptations that act to structure marine associations are emphasised. Lectures provide an overview of characteristics, biodiversity and ecology of these marine ecosystems. They will also highlight concepts, ideas and hypotheses of how marine ecosystems function. These principles are examined on a global oceanographic scale and include relevant examples from both tropical (including local to Trinidad and Tobago and the Caribbean) and temperate systems.

ASSESSMENT:
Coursework 50%
Final Examination 50%

SEMESTER: 3 NOT OFFERED IN 2018/2019
COURSE CODE: BIOL 3068
COURSE TITLE: FIELD COURSE IN NEOTROPICAL ECOLOGY
NUMBER OF CREDITS: 4
PREREQUISITES BIOL 2464 AND
8 CREDITS OF ADVANCED LEVEL LIFE SCIENCES COURSES,
OR PERMISSION OF THE HEAD OF DEPARTMENT
COURSE DESCRIPTION: Introduction to focal group, ecological principles illustrated by focal group, specialised features of focal group, field research projects (aquatic or terrestrial). Students must consult with the course coordinator before registering for this course.

ASSESSMENT:
Coursework 100%
Project
- Oral presentation 10%
- Report 50%
- Filed Journal 40%
LEVEL: III
SEMESTERS: 1 & 2
COURSE CODE: BIOL 3069
COURSE TITLE: RESEARCH PROJECT
NUMBER OF CREDITS: 4
PREREQUISITES: AT LEAST A “B” AVERAGE IN LEVEL II LIFE SCIENCES COURSES OR PERMISSION OF THE HEAD OF DEPARTMENT.
STUDENTS WISHING TO DO THIS COURSE ARE STRONGLY ENCOURAGED TO READ AN ELEMENTARY STATISTICS COURSE
COURSE DESCRIPTION: Short lecture course (6-8 hours): Aims and means of assessing project feasibility; Methods of investigation; Experimental design; Project reporting and presentation. An approved investigation of a problem in biology and a written report thereon.
Students must consult with the course coordinator before registering for this course
ASSESSMENT:
<table>
<thead>
<tr>
<th>Assessment Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course assessment</td>
<td>40%</td>
</tr>
<tr>
<td>Project Proposal</td>
<td>10%</td>
</tr>
<tr>
<td>Literature Review</td>
<td>10%</td>
</tr>
<tr>
<td>Oral Presentation</td>
<td>20%</td>
</tr>
<tr>
<td>Project Report</td>
<td>60%</td>
</tr>
</tbody>
</table>

LEVEL: III
SEMESTER:
COURSE CODE: BIOL 3070
COURSE TITLE: CARIBBEAN ISLAND ECOLOGY BIOGEOGRAPHY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2163 AND BIOL 2464
COURSE DESCRIPTION:
This advanced course treats the islands of the Caribbean within a global perspective. Its subject is the special nature of island environments and their biotas, and its aim is an understanding of the distributions and ecological relationships of island plants and animals through an analysis of their origins, evolutionary past, population ecology and community composition. The course is expected to integrate much of the knowledge that advanced undergraduates have amassed. Teaching for the course will be approached in a blended/hybrid replacement classroom manner with asynchronous lectures presented online with recorded video and audio and select, classroom sessions. Practical exercises involving field work, literature review and synthesis work and exercises will also be applied to gain more practical skills. Coursework will be in the form of written reports of practical exercises and literature assignments.
ASSESSMENT:
<table>
<thead>
<tr>
<th>Assessment Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework</td>
<td>50%</td>
</tr>
<tr>
<td>Final Examination</td>
<td>50%</td>
</tr>
</tbody>
</table>

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3162
COURSE TITLE: PRINCIPLES OF MICROBIAL BIOTECHNOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3262 MICROBIAL BIOTECHNOLOGY
PREREQUISITES: STUDENT SHOULD MEET CRITERIA I OR II
I. BIOL 2164, BIOL 2165 AND BIOL 2265,
II. BIOC 2262 AND BIOC 3162
COURSE DESCRIPTION: This course focuses on the applications of microorganisms in a range of processes that are beneficial for humans and the environment. The topics covered include isolation, screening, genetic manipulation and culturing of microorganisms for selected biotechnological applications related to industries, health, agriculture and the environment. The course is organized into face-to-face lectures, tutorials and practical exercises. General and specific concepts would be covered in lectures while tutorials would be interactive, with students expected to prepare and fully participate in discussions and other class activities. Students will be continuously assessed via in-course tests, activities during lectures and tutorials, and attendance and participation in tutorials. Students’ practical exercises will be assessed and there is also a final end-of-semester theory examination.
ASSESSMENT:
<table>
<thead>
<tr>
<th>Assessment Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework</td>
<td>50%</td>
</tr>
<tr>
<td>Final Examination</td>
<td>50%</td>
</tr>
</tbody>
</table>
LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3263
COURSE TITLE: INTRODUCTION TO BIOINFORMATICS
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2164 AND BIOL 2165
COURSE DESCRIPTION: This course introduces students to bioinformatics tools and methods. It provides the conceptual background for using bioinformatics tools and application methods and offers skills and training on computational molecular biology and related fields. It gives an understanding about major advances in the analysis of genomes, sequences and their structures and also critically discusses the strength and limitations of the methods. The lecture component of this course provides the necessary conceptual backing and the practical component provides assignments for utilizing bioinformatics tools. Problem-based learning methods would be employed to teach the utility of bioinformatics tools. Teaching approaches include lectures, tutorials and lab sessions. Topics include (but not limited to) bioinformatics databases, sequence and structure alignment, protein structure prediction, protein folding, protein-protein interaction, simulation, and molecular dynamics.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3363
COURSE TITLE: MEDICAL BIOTECHNOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: STUDENTS SHOULD MEET CRITERIA I OR II:
I: BIOL 2164 AND, BIOL 2165 OR
II: BIOC 2262 AND BIOC 3162
COURSE DESCRIPTION: Biotechnology as a field has very high relevance and application to human and animal medicine. With the advent of research, we are at a stage to unravel the molecular mechanisms of several diseases and disorders. These studies have opened up a new era for the management of several problems facing human health and longevity. Biotechnology innovation is in a large part driven by the requirement for improvements in medical diagnosis and therapy for a range of diseases including autoimmune diseases, diseases of inflammation and cancer. This course gives students a detailed insight into the principles and techniques of biotechnology applied to human medicine. Topics include (but not limited to) biopharmaceuticals, stem cell technologies, tissue engineering and regenerative medicine, proteomics, antibody technologies, nanomedicine and molecular diagnostics. The teaching and learning methods include lectures/tutorials, and field trips to medical facilities (within Trinidad).
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3366
COURSE TITLE: PLANT BIOTECHNOLOGY AND GENETIC ENGINEERING
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2164 AND BIOL 2165
COURSE DESCRIPTION: This course introduces students to plant transformation technologies and genetic engineering methodologies for the introduction of beneficial traits into economically important plants. It also introduces students to plant tissue culture techniques and the impact of this technology on preservation of plant species and plant tissue based production of proteins and secondary metabolites. Topics include, Tissue culture applications in plant biotechnology; Advanced study of Gene sources and Gene expression; Promoters, selectable markers and reporter genes; Plant Transformation systems; Biology of Agrobacterium - mediated transformation; Agrobacterium – mediated gene transformation – methodology; Direct gene-transfer methods, Particle bombardment; Transgene Integration; Evaluation of Transgenics; Management of Gene silencing; Genetic engineering of plants for novel traits; herbicide tolerance, enhancing pest resistance, disease resistance; resistance to plant viruses, enhanced product qualities; Marker aided selection and gene pyramiding; Biofarming and plant expression systems; Phytoremediation, Genetic engineering of biofuel crops; Genetically modified crops - ethical, social biosafety and environmental issues. The teaching and learning methods include lectures/tutorials, group discussion, journal paper discussion and lab sessions. The teaching and learning methods include lectures/tutorials, and lab sessions.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: YEAR-LONG
COURSE CODE: BIOL 3369
COURSE TITLE: LABORATORY SKILLS IN BIOTECHNOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2164
COURSE DESCRIPTION: This course provides necessary practical skills on recombinant DNA technology and molecular biology and biotechnology techniques. This course will be taught through lab sessions, lab discussions/lectures. Course will be assessed for 100% course work. Lab experiments and lectures will comprehensively cover the experiments and methods involved in gene cloning, necessary instrumentation and Preparation of reagents; Extraction of DNA and RNA; Restriction digestion of plasmid and genomic DNA and fragment analysis; Extraction of plant proteins and SDS-PAGE analysis; DNA-PCR, RT-PCR, qPCR; Preparation of tissue culture media; Tissue culture of tobacco leaf explants; Cell culture techniques; DNA-sequencing and DNA finger printing
ASSESSMENT:
Coursework 100%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3409
COURSE TITLE: CARIBBEAN CORAL REEFS
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 3063
COURSE DESCRIPTION: This course develops student competence in the biology of reef-building corals, the ecology of coral communities, and the impact of natural and anthropogenic factors on coral reefs in the context of the Caribbean region. In addition, students are introduced to the ecosystem-based approach to reef management and to the economic valuation of reefs. Throughout the course the emphasis will be on the Caribbean and the interconnectedness of reefs throughout the region, however, comparisons will be made to reefs from other regions.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3462
COURSE TITLE: THE ECOLOGY OF FRESHWATERS
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 2062 FRESHWATER BIOLOGY
PREREQUISITES: BIOL 1262, BIOL 1263 AND BIOL 2464
COURSE DESCRIPTION: This course provides an overview of characteristics, biodiversity and ecology of freshwater systems, e.g. rivers, lakes, wetlands, and other low salinity inland aquatic environments. The course will cover the characteristics and variety of freshwater systems; the diversity, biology and ecology of living organisms found associated with these systems; the structure and function of freshwater communities and ecosystems; threats to freshwater systems and management strategies to provide sustainable benefits for ecosystems and human wellbeing. Students are expected to have a basic foundation in ecology and biodiversity. In addition to providing a foundation of theoretical knowledge, this course will emphasise practical skills and expose students to field and laboratory approaches for studying freshwater systems. It is an interactive ‘hands-on’ course where students are expected to prepare, participate and perform in an active way to engage with the content in a variety of ways. Assessment is designed to encourage students to work continuously with the course materials, explore and critically analyse research in this rapidly developing field.

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3465
COURSE TITLE: TROPICAL FOREST ECOLOGY AND USE
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3464 TROPICAL FORESTRY ECOLOGY AND MANAGEMENT
PREREQUISITES: BIOL 2163 AND BIOL 2464
COURSE DESCRIPTION: This course is designed to expose students to the tropical forest ecology and how it influences the human use of tropical forests such as timber production and conservation. The course is organised into background lectures and tutorials covering general and specific concepts in tropical forest ecology and management. In tutorials students are expected to prepare, participate and perform in an active way in order to engage with the content. Assessment will be based largely on in course tests and a final theory exam.

ASSESSMENT:
Coursework 60%
Final Examination 40%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3466
COURSE TITLE: COASTAL ECOSYSTEMS AND RESOURCE MANAGEMENT
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 3063
COURSE DESCRIPTION: This course will provide students with an understanding of the characteristics of the major coastal ecosystems of the Caribbean and adjacent regions. It emphasises the ecological processes that determine resource values and functions and highlights the reasons for habitat and resource degradation. The course examines the principles and practices of coastal ecosystem management and reviews the major coastal management initiatives in the region. It includes field surveys which cover many of the issues covered in the lectures. Students are introduced to ecosystems as resources and some basic management principles are also introduced. For each ecosystem the goods, services and attributes are described. Students are additionally exposed to a number of management tools and applications using relevant Caribbean examples.

ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3468
COURSE TITLE: BIODIVERSITY AND CONSERVATION
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2163 AND BIOL 2464
COURSE DESCRIPTION: This course introduces students to one of the most important issues facing biologists and society at large today and in the coming decades: the enormous loss of biological diversity that accompanies the expansion of human populations. The objectives of this course are to provide students with an understanding of biodiversity, the threats to it and methods for preventing its loss. The perspective will be primarily biological, but social and economic aspects will be covered also. Because of the complexity of the issues involved, the course tries to foster interdisciplinary thinking and problem solving
ASSESSMENT:
 Coursework 60%
 Final Examination 40%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3469
COURSE TITLE: RESEARCH AND PRACTICAL SKILLS IN ENVIRONMENTAL BIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3069 RESEARCH PROJECT
PREREQUISITES: PERMISSION OF THE HEAD OF DEPARTMENT. ONLY AVAILABLE TO STUDENTS TAKING THE ECOLOGY & ENVIRONMENTAL BIOLOGY SPECIALISATION WITH 24 LEVEL II BIOLOGY CREDITS
COURSE DESCRIPTION: This course is designed to expose students to the general approaches and techniques used for research in Environmental Biology by conducting research in a selected area of Environmental Biology. The course is organised into background lectures and tutorials, field and laboratory sessions covering general practical skills and a short group research project. It is a 'hands-on' course where students are expected to prepare, participate and perform in an active way in order to engage with the content. Assessment will be based entirely on practical activities, skills and reporting.
ASSESSMENT:
 Coursework 100%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3768
COURSE TITLE: PLANT DIVERSITY AND SYSTEMATICS
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 1262 AND BIOL 2764
COURSE DESCRIPTION: This course provides an overview of plant diversity and systematics and explores the origin and diversity of vascular land plants emphasizing flowering plants in the flora of Trinidad and Tobago. The course covers taxonomy (identification, nomenclature, and classification), diversity, morphology and evolution of vascular plant groups, as well as phylogenetics (phenetics, cladistics, morphology and molecules). Practicals focus on skills and activities necessary for identifying vascular plants in Trinidad and Tobago and the tools necessary for the understanding of the study of systematics. The course would be taught using interactive lectures, tutorials and hands on practical sessions. Assessment would consist of a final written examination and in course, online and practical assignments
ASSESSMENT:
 Coursework 50%
 Final Examination 50%
LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3769
COURSE TITLE: PLANT GENETIC IMPROVEMENT
NUMBER OF CREDITS: 3
ANTI-REQUIRE: BIOL 3763 CROP IMPROVEMENT
PREREQUISITES: BIOL 2165 OR AGCP 2001
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3770
COURSE TITLE: PLANT PATHOGENS
NUMBER OF CREDITS: 3
ANTI-REQUIRE: BIOL 3767 BIOLOGY OF PLANT PATHOGENS
PREREQUISITE: BIOL 2265
COURSE DESCRIPTION: This course introduces the learner to the field of plant pathology and provides basic information on the biology and epidemiology and disease cycle of important plant pathogens affecting plants of this region. This course provides comprehensive knowledge about plant pathogens and their interactions with the host. Topics include: Biology of plant pathogens; Classification of plant pathogens; their cellular organization, structure; Examples of pathogens; Pathogen-life cycles, disease cycle; Symptomology; epidemiology, spread, survival; Host-pathogen interactions, mechanism of infection, physiological and biochemical processes of infection; Host resistance and defense mechanisms; Principles of disease management; Molecular-based pathogen detection and disease diagnosis. This course will be taught through lectures/tutorials, lab sessions, field trips. Students are expected to complete a group project.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3771
COURSE TITLE: ENVIRONMENTAL PLANT PHYSIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUIRE: BIOL 3766 PLANT ECOPHYSIOLOGY
PREREQUISITES: BIOL 2764
COURSE DESCRIPTION: Environmental Plant Physiology focuses on the interaction between plants and their environment, exploring the diverse ways in which plants adapt to and influence their surroundings. This course will equip students with knowledge of how plants can be used to conserve land, restore ecosystem services, and provide sustainable food and energy. The first part of the course introduces the essential concepts of Environmental Plant Physiology and looks in detail at three important abiotic factors: light, water and temperature. The second part of the course examines the application of concepts through a series of case studies looking at different habitats and applied scenarios. In addition to case studies developed by the instructor, students will have the opportunity to develop their own case studies that explore the role of plant research in meeting the challenge of global climate change.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3772
COURSE TITLE: PLANT DEVELOPMENT
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2061 AND BIOL 2764
COURSE DESCRIPTION: This course provides an advanced level focus on the molecular genetic, biochemical and physiological bases of plant development. Concepts of signal perception and transduction are initially reviewed. Students will be introduced to important experiments that have led to understanding many basic principles of plant development. Of particular importance is the use of mutation genetics as a tool to study development. Students in dissecting these experiments would be required to perform planned experiments and present their results and analysis in a group presentation format.
ASSESSMENT: Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3773
COURSE TITLE: PLANT ANATOMY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2764
COURSE DESCRIPTION: The course integrates developmental and functional aspects to explain the internal structure and external form of seed plants. The cells, tissues and organs, as well as their modifications, of representative plants are described. The roles of meristematic activity in primary and secondary growth and in determinate and indeterminate growth patterns are explained. Practical exercises are integrated with lectures as much as possible and emphasis is placed on hands-on specimen preparation and on effective use of the light microscope.
ASSESSMENT: Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1 OR 2
COURSE CODE: BIOL 3774
COURSE TITLE: RESEARCH AND PRACTICAL SKILLS IN PLANT BIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 3069 RESEARCH PROJECT
PREREQUISITES: AT LEAST 24 ADVANCED LEVEL BIOL COURSES
COURSE DESCRIPTION: This course affords students taking the Plant Biology Specialisation in the Biology Degree, the opportunity to work independently or in groups under the supervision of a member of staff on a research question in plant biology of local or regional interest. The project is compulsory for students taking the Plant Biology Specialisation, but may be done in any of three forms: individual research project, small group research project, or individual library project. Students develop research and/or evaluation and reporting skills as they design and conduct experiments, collect and analyse data and report and discuss the results of their own research or of the scientific literature pertaining to a research question, in an oral and written format.
ASSESSMENT: Coursework 100%
LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3866
COURSE TITLE: PARASITE BIOLOGY
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL 2864 PARASITISM
PREREQUISITES: BIOL 1263 COURSE DESCRIPTION: The course Parasite Biology is divided as follows:
- The study of individual parasites: It is only through the study of a parasite’s biology and functions that steps can be taken to fight it.
- The study of host-parasite relationships: Disciplines which investigate how the host and parasite(s) interact include Physiology, Biochemistry, Cell Biology, and Pharmacology.
- Immunology: This deals with the immunological response that is triggered in the host and the ways in which the parasite attempts to evade it. Disciplines include Cellular and Molecular Immunology.
- Chemotherapy: This area investigates the effect of drugs on both the parasite and the host, as well effective treatments to ensure the death of the parasite and the recuperation of the host. Disciplines include Organic Chemistry, Pharmacology, Biochemistry and Medicine.
- Epidemiology: This field looks at the spread of parasitic diseases through study of the host, parasite and vectors. Disciplines include Tropical Hygiene, Entomology and Geographical distribution.

This course will be taught using a mixture of lectures, seminars and projects, team oral presentations, individual essays, reading materials and seminar-style classes, laboratory session to reinforce lectures and for hands on experience identifying, understanding form and function, and evolutionary processes. Course assessment will be based on a student seminar and an essay on current topics in parasitism together with lab exercises on form and function, and evolutionary processes. A final examination will be used to ensure student learning objectives are achieved.

ASSESSMENT:
- Coursework 40%
- Final Examination 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3867
COURSE TITLE: BIOLOGY OF ANIMAL BEHAVIOUR
NUMBER OF CREDITS: 3
ANTI-REQUISITE: BIOL3861 ANIMAL BEHAVIOUR
PREREQUISITES: BIOL 2867

ASSESSMENT:
- Coursework 50%
- Final Examination 50%
LEVEL: III
SEMESTER: 1
COURSE CODE: BIOL 3868
COURSE TITLE: THE ECOLOGY OF HUMANS
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2461 HUMANS & THE ENVIRONMENT

COURSE DESCRIPTION: This course focuses on one of the most important animals on Earth today, Homo sapiens, considering the species from a broad biological and ecological perspective. The course introduces the evolution and origin of modern humans, the extent of their uniqueness in comparison with other animals and Primates, and the characteristics that contribute to their unprecedented success and dominance of their environment. We also explore selected aspects of human biology and ecology including genetic and cultural diversity and adaptation; technological and lifestyle changes and their relationship with health and disease patterns; human populations, resources and wellbeing; resource depletion, environmental degradation and global climate change. In conclusion we discuss the future of the human animal.

Students are expected to have a basic foundation in ecology and biodiversity. In addition to providing a foundation of theoretical knowledge, this course takes a ‘hands-on’ approach where students are expected to prepare, participate and perform in an active way in order to engage with the content in a variety of ways. Assessment is designed to encourage students to work continuously with the course materials, explore and critically analyse research in this complex and rapidly developing field. Students are expected to have a basic foundation in animal biology.

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1 AND 2
COURSE CODE: BIOL 3869
COURSE TITLE: ZOOLOGY PROJECT
NUMBER OF CREDITS: 3
PREREQUISITES: PERMISSION OF THE HEAD OF DEPARTMENT. ONLY AVAILABLE TO STUDENTS TAKING THE ZOOLOGY SPECIALISATION, WITH 24 LEVEL II BIOLOGY CREDITS.

COURSE DESCRIPTION: This course gives students taking the Zoology Specialisation the opportunity to work independently or in a small group under the supervision of a member of staff on a research or study question in zoology of local and regional interest. Students develop research and/or evaluation and reporting skills as they design and conduct experiments, collect and analyse data and report and discuss the results of their own research or of the scientific literature, in an oral and written format.

ASSESSMENT:
Coursework 40%
Final Examination 60%

LEVEL III
SEMESTER: (NOT OFFERED IN 2019/2020)
COURSE CODE: BIOL 3870
COURSE TITLE: INSECT BIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2866 ENTOMOLOGY

COURSE DESCRIPTION: The first half of the course treats the unity of insects, i.e. those features that are common to all or many orders. The second half is an evolutionary survey of the insects, with some attention to arachnids, treating major orders and some families or superfamilies. In addition, one lecture is devoted to a more in-depth treatment of a selected group of insects or arachnids or a particular theme in arthropod biology. The basic teaching/learning approach is a traditional one of practical exercises followed by lectures and reading. Assessment is by means of reports on practical exercises, tests and an individualized species account.

ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMMESTER: 1
COURSE CODE: BIOL 3960
COURSE TITLE: ENVIRONMENTAL MICROBIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2164, BIOL 2165, BIOL 2265 AND BIOL 2360
COURSE DESCRIPTION: This course explores the diversity and function of microorganisms in the environment. Emphasis is placed on metabolic processes employed by microbes to transform organic and inorganic substances as part of biogeochemical cycles. The role of microorganisms in pollution of water, soil and air is considered in addition to microbial processes used in environmental remediation and conservation. Conventional and molecular-based tools used for detecting, characterizing and monitoring microbes in the environment are also covered. The teaching and learning methods include lectures/tutorials, discussion sessions and labs.
Assessment
Coursework 50%
Final Examination 50%

LEVEL: III
SEMMESTER: 1
COURSE CODE: BIOL 3961
COURSE TITLE: PRINCIPLES OF MEDICAL MICROBIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2164, BIOL 2165, BIOL 2265 AND BIOL 2360
COURSE DESCRIPTION: Principles Medical Microbiology gives students a detailed insight into the principles and techniques of microbiology applied to human medicine. It covers medically important bacteria, viruses, fungi and parasites. Emphasis is placed on classification, detection and diagnosis of microbial pathogens and parasites in addition to their mechanisms and clinical manifestation. Students would also gain an understanding of epidemiological factors that contribute to human infectious disease and be introduced to the uses and challenges of antimicrobial and anti-parasitic agents for managing microbial diseases. The teaching and learning methods include lectures/tutorials and laboratory sessions.
Assessment
Coursework 50%
Final Examination 50%

LEVEL: III
SEMMESTER: 1
COURSE CODE: BIOL 3970
COURSE TITLE: AQUACULTURE
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 1262 AND BIOL 1263
Course Description: In Aquaculture students will be exposed to basic knowledge in the related fields of culturing fish in both the marine and brackish-water environments. You will learn about the various techniques and the exciting field of tropical aquaculture- which is currently the fastest growing food-production system in the world. The course covers major trends in aquacultural practices, human and environmental influences on productivity and sustainability and traditional and modern strategies for managing aquaculture. Emphasis will be placed on tropical culture species.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: BIOL 3971
COURSE TITLE: FISHERIES MANAGEMENT
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 3063
COURSE DESCRIPTION: Fisheries biology and management are critical disciplines in today's world, given the importance of the fishing industry as a source of animal protein in the human diet; the basis of a multimillion-dollar industry; and the threatened status of many of the major species on which we depend. This course introduces concepts in the related fields of fisheries biology, stock assessment and fisheries management. The course covers major trends in global and regional fisheries and fishing patterns; human and environmental influences on productivity and sustainability; traditional fish stock assessment models; and traditional, modern and emerging strategies for managing fisheries. Emphasis will be placed on tropical fisheries, which are among the most difficult fisheries to manage.
ASSESSMENT:
Coursework 50%
Final Examination 50%

BIOMEDICAL: BMET
LEVEL: I
SEMESTER: 1
COURSE CODE: BMET 1004
COURSE TITLE: INTRODUCTORY HUMAN ANATOMY AND PHYSIOLOGY I
NUMBER OF CREDITS: 3
PREREQUISITES: CAPE PHYSICS (UNITS I AND II) OR CAPE MATHEMATICS (UNITS I AND II) AND CSEC (CXC) PHYSICS OR PHYS 0100 AND PHYS 0200 OR THEIR EQUIVALENT
COURSE DESCRIPTION: It is essential that biotechnology personnel, in any form of the use of the body, should be more than merely acquainted with the human body and the relationship of its parts to the total working of the healthy person. Scientific background will underscore student opportunities to think critically, from the perspective of the human organism functioning independently, the interface between the individual and his/her immediate environment, including interactive relationships with technology, and global environment. This course integrates several disciplines including the basic gross anatomy and histology of all the system, as well as physiology of the human body. Contemporaneous issues of homeostasis, ergonomics, adaptation and health will be discussed in the context of today's emerging environmental and inter-organism impacts in the quality of life. This course comprises: General Introduction of Gross anatomy, concepts and principles of cell biology; histology; the integumentary, skeletal, muscular, and nervous systems; special senses; and the endocrine system. This course will be assessed through in-course assignments, in-course laboratory exercises and a final examination.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%
LEVEL: I
SEMESTER: 2
COURSE CODE: BMET 1005
COURSE TITLE: INTRODUCTORY HUMAN ANATOMY AND PHYSIOLOGY II
NUMBER OF CREDITS: 3
PREREQUISITES: CAPE PHYSICS (UNITS I AND II) OR CAPE MATHEMATICS (UNITS I AND II) AND CSEC (CXC) PHYSICS OR PHYS 0100 AND PHYS 0200 OR THEIR EQUIVALENT
COURSE DESCRIPTION: Introductory Human Anatomy and Physiology II is an extension of its first semester counterpart Introductory Human Anatomy and Physiology I. Introductory Human Anatomy & Physiology II offers a broad overview of the structure (anatomy) and function (physiology) of tissues, organs and organ systems. The systems covered in this course are: heart, blood and circulatory system; the lymphatic system, immune System and disease; the digestive System and nutrition; the excretory System, kidneys and fluid balance; and the respiratory system, lungs and respiration. The course concludes with human reproductive anatomy and physiology. This course will be assessed through in-course assignments, in-course laboratory exercises and a final examination.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%
LEVEL: II
SEMESTER: 1
COURSE CODE: BMET 2001
COURSE TITLE: BIOENGINEERING
NUMBER OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS

Course Description: This course will emphasize a systemic view of human anatomy, hierarchy of structures, the function of the various systems of the body and an introduction to selected physiological functions in the human body. Additionally, the physics of the human body will be addressed in terms of the generation of electricity and the use of biopotential measurements in medical diagnostics. This course will focus on the following: Review of radiation interaction with matter; Biomechanics as applied in orthopaedic and cardiac surgery; Biomaterials: focusing on the properties of implantable materials and their preparation for implantation; Kinetic and blood flow studies. This course will be assessed through in-course assignments and a final examination.

ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: II
SEMESTER: 1
COURSE CODE: BMET 2002
COURSE TITLE: INTRODUCTION TO MEDICAL PHYSICS
NUMBER OF CREDITS: 3
PREREQUISITES: PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224

Course Description: The Medical Physics section of this course will focus on radiation diagnostic methods, corresponding equipment and image analysis in medicine in addition to the production and use of different radiation types for diagnosis and cancer therapy. While in the Bioengineering section, human movement analysis, the development of prostheses and orthoses, the use of man-made materials in the human body, fluid flow and tracer techniques for diagnosis will be considered. This course will focus on the following: Feedback and Control systems in the body and homeostasis. Biomedical potentials, electrooculogram (EOG), electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG) and magnetocardiogram (MCG). The visual system and the auditory system. This course will be assessed through in-course assignments and a final examination.

ASSESSMENT:
Coursework 50%
Final Examination (One 2-hr paper) 50%

LEVEL: III
SEMESTER: YEAR-LONG
COURSE CODE: BMET 3000
COURSE TITLE: BIOMEDICAL TECHNOLOGY PROJECT
NUMBER OF CREDITS: 6
PREREQUISITES: AVAILABLE TO BSC BIOMEDICAL TECHNOLOGY STUDENTS ONLY, WITH AT LEAST 30 LEVEL II/III CREDITS

Course Description: The project will be compulsory for all BSc Biomedical Technology students and will consist of practical work and related activities such as writing critiques of selected literature, training on equipment, attending and presenting interim reports verbally, and meeting with supervisors. A final report is to be submitted for assessment by a deadline set by the Department of Physics. Students will also be required to orally present their project to an open audience on dates set by the Department of Physics. The oral presentation should make use of current presentation technologies and technique and should be of ten minutes duration per student. This course will be assessed through a written report and an oral presentation.

ASSESSMENT:
Oral Dissertation 20%
Written Report 80%
LEVEL: III
SEMESTER: 1
COURSE CODE: BMET 3001
COURSE TITLE: LABORATORY MANAGEMENT AND PRACTICE
NUMBER OF CREDITS: 3
PREREQUISITES: AVAILABLE ONLY TO BSc BIOMEDICAL TECHNOLOGY STUDENTS
Course Description: Biomedical technologists may work within a laboratory environment and may be managers of a laboratory. Technologists may calibrate, test, sample, and evaluate various types of signals and materials and quantify results that may be used by other medical professionals for interpretation. One objective of laboratories is the achievement of documented processes and error-free results that are above reproach. Mistakes can lead to a lack of confidence in the results and services provided by a laboratory. Laboratories are designed, managed, and operated in a manner to consistently provide reliable services. This course provides an introductory overview on the various aspects involved in managing the laboratory environment. The content comprises the following topics: General concepts and administrative issues; optimizing efficiency in workflow processes; workload management; quality management and performance improvement; laboratory informatics and data management; financial management; staff management; laboratory safety; competitive performance in the market. This course will be assessed through in-course assignments.
ASSessment:
Coursework 100%

LEVEL: III
SEMESTER: 1
COURSE CODE: BMET 3002
COURSE TITLE: LIGHT AND OPTICS IN MEDICINE
NUMBER OF CREDITS: 3
PREREQUISITES: PHYS 1221, PHYS 1222, PHYS 1223 AND PHYS 1224
Course Description: This course provides a background on fundamental optics, fiber optics, and lasers, and their applications to biomedical instrumentation. This course comprises: physics of fiber optics; fiber modes, transmission, and detection; fiber bundles; endoscopy imaging; sigmoidoscopy; colonoscopy; bronchoscopy; physics of lasers; laser classifications and characteristics; laser types; laser interaction with tissue; laser medical applications; laser radiation safety; clinical applications of fiber-optic laser systems. This course will be assessed through in-course assignments and a final examination.
ASSessment:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: BMET 3003
COURSE TITLE: BIOMEDICAL TECHNOLOGY LABORATORY
NUMBER OF CREDITS: 3
PREREQUISITES: AVAILABLE ONLY TO BSc BIOMEDICAL TECHNOLOGY STUDENTS
Course Description: Biomedical Technology is based on scientific principles which are tested by practical experimentation. In the process, the students are expected to deepen their understanding of the relations between experiment and theory. The data obtained will have the inevitable systematic and random errors that obscure the relations between macroscopic observables of our sensory experience and the ideal laws that govern the phenomena. Students will be challenged to learn how each of the experimental configurations work, to master its manipulation so as to obtain the best possible data set and then to interpret the data in light of theory and a quantitative assessment of the errors. This course stresses data analysis in a laboratory setting. This course will be assessed through in-course assignments.
ASSessment:
Coursework 100%
LEVEL: III
SEMESTER: 2
COURSE CODE: BMET 3004
COURSE TITLE: METROLOGY & REGULATORY STANDARDS
NUMBER OF CREDITS: 3
PREREQUISITES: AVAILABLE ONLY TO BSc BIOMEDICAL TECHNOLOGY STUDENTS
Course Description: In the health sector, due to the inherent potential risk to life it is necessary to measure quantities as accurately as possible. The accuracy and reliability of medical measurements have direct consequences on each individual's health. In addition, medical decisions are often based on statistical analysis and on the conclusions of clinical studies. Medical measurements are incorporated within these studies and are correlated with other medical findings. Thus, the accuracy, reproducibility, and repeatability as well as the quality assurance (calibration, legal metrological control and reference measurement methods) of medical instrumentation must be assured. This course introduces the metrology and regulatory framework and standards of certain categories of medical devices. This course comprises: metrology principles; quality in measurement and testing; the different international classification systems for medical devices; the life phases to developing medical devices; medical device design standards versus medical device operational standards; the regulatory framework for medical devices including the World Health Organization Medical Devices regulations; International Electrotechnical Commission standards for electrical equipment in medical practice and on medical device software; Examples of metrological characteristics (methods and equipment) for specific equipment such as, but not limited to, electrocardiographs. This course will be assessed through in-course assignments.
ASSESSMENT:
Coursework 100%

CHEMISTRY: CHEM

LEVEL: 0 (PRELIMINARY)
SEMESTER: 1
COURSE CODE: CHEM 0100
COURSE TITLE: N1 CHEMISTRY I
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC OR EQUIVALENT PASS IN CHEMISTRY
Practical: Forty-eight (48) hours of practical work
ASSESSMENT:
Coursework 40%
Final Examination - 3-hour written paper 60%

LEVEL: 0 (PRELIMINARY)
SEMESTER: 2
COURSE CODE: CHEM 0200
COURSE TITLE: N1 CHEMISTRY II
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC OR EQUIVALENT PASS IN CHEMISTRY
Practical: Forty-eight (48) hours of practical work.
ASSESSMENT:
Coursework 40%
Final Examination - 3-hour written paper 60%
<table>
<thead>
<tr>
<th>LEVEL: I</th>
<th>SEMESTER: 1</th>
<th>COURSE CODE: CHEM 1062</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE TITLE: BASIC CHEMISTRY FOR LIFE SCIENCES</td>
<td>NUMBER OF CREDITS: 3</td>
<td></td>
</tr>
<tr>
<td>PREREQUISITES: NONE</td>
<td>COURSE DESCRIPTION: The course is intended to provide students, who have had very little exposure to chemistry and who intend to proceed to degree level in the Life and Health Sciences, with a working knowledge of the basic concepts and principles of Chemistry. Topics of study: atoms, bonding, (ionic and covalent) intermolecular forces, quantifying matter, classes of reactions; properties of ionic and covalent compounds; solution chemistry; acid-base equilibrium; reaction kinetics; thermochemistry; gases; properties and reactions of carbon compounds including alcohols, aldehydes and ketones, carboxylic acids, esters and ethers, amines and amides; amino acids and peptides, natural polymers and stereochemistry.</td>
<td></td>
</tr>
<tr>
<td>ASSESSMENT: Coursework</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Final Examination - 2-hour written paper</td>
<td>60%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL: I</th>
<th>SEMESTER: 1</th>
<th>COURSE CODE: CHEM 1066</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE TITLE: INTRODUCTION TO CHEMISTRY I</td>
<td>NUMBER OF CREDITS: 3</td>
<td></td>
</tr>
<tr>
<td>PREREQUISITES: CHEM 0060 & CHEM 0061 OR CHEM 0100 & CHEM 0200 OR CAPE CHEMISTRY OR EQUIVALENT</td>
<td>COURSE DESCRIPTION: Atomic structure, group and periodic trends, chemical reactivity, fundamentals of bonding.</td>
<td></td>
</tr>
<tr>
<td>ASSESSMENT: Coursework</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Final Examination - 2-hour written paper</td>
<td>60%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL: I</th>
<th>SEMESTER: 2</th>
<th>COURSE CODE: CHEM 1067</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE TITLE: INTRODUCTION TO CHEMISTRY II</td>
<td>NUMBER OF CREDITS: 3</td>
<td></td>
</tr>
<tr>
<td>PREREQUISITES: CHEM 0060 & CHEM 0061 OR CHEM 0100 & CHEM 0200 OR CAPE CHEMISTRY OR EQUIVALENT</td>
<td>COURSE DESCRIPTION: Fundamentals of organic chemistry, introduction to chemical thermodynamics, reaction kinetics, chemical equilibria, d-block elements and coordination chemistry.</td>
<td></td>
</tr>
<tr>
<td>ASSESSMENT: Coursework</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Final Examination - 2-hour written paper</td>
<td>60%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL: I</th>
<th>SEMESTER: 2</th>
<th>COURSE CODE: CHEM 1068</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE TITLE: INTRODUCTION TO CHEMISTRY III</td>
<td>NUMBER OF CREDITS: 3</td>
<td></td>
</tr>
<tr>
<td>PREREQUISITES: CHEM 0060 & CHEM 0061 OR CHEM 0100 & CHEM 0200 OR CAPE CHEMISTRY OR EQUIVALENT</td>
<td>COURSE DESCRIPTION: Particle in a box, eigenvalues, harmonic oscillators, heat capacity, entropy, Gibbs free energy. Organic chemistry: addition, substitution, elimination and hydrolysis reactions.</td>
<td></td>
</tr>
<tr>
<td>ASSESSMENT: Coursework</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Final Examination - 2-hour written paper</td>
<td>60%</td>
<td></td>
</tr>
</tbody>
</table>
LEVEL: I
SEMMESTER: YEAR-LONG
COURSE CODE: CHEM 1070
COURSE TITLE: INTRODUCTORY CHEMISTRY LABORATORY
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 0060 & CHEM 0061 OR CHEM 0100 & CHEM 0200 OR CAPE CHEMISTRY OR EQUIVALENT
COURSE DESCRIPTION: This is a laboratory based course covering basic and intermediate laboratory skills, including chemical calculations, simple data and statistical analyses, volumetric and gravimetric techniques, chemical quantitation, pH measurements, purification of mixtures, chromatography, measurement of thermodynamic and kinetic parameters of reactions, basic symmetry and laboratory safety. Laboratory exercises begin with a careful emphasis on skill acquisition, then move towards more complicated exercises. During the later stages of the course students would be expected to do more advanced laboratory activities, using the techniques taught in the earlier sessions to plan, design and execute their own solution to a laboratory problem. The final grade for CHEM 1070 will be determined from an assessment of student performance in the following activities: general laboratory reports / exercises, laboratory quizzes, laboratory skills evaluation, and mini-projects.
ASSESSMENT:
Coursework 100%

LEVEL: II
SEMMESTER: 1
COURSE CODE: CHEM 2170
COURSE TITLE: FUNDAMENTALS OF INORGANIC CHEMISTRY I
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1065 OR CHEM 1070, AND AT LEAST CHEM 1066 AND CHEM 1067; (OR CHEM 1060 AND CHEM 1061)
COURSE DESCRIPTION: This is part I of two of core inorganic chemistry courses and gives an introduction to fundamental concepts in inorganic chemistry with a focus on descriptive inorganic chemistry and bonding theories both in inorganic molecules and in the solid state. The course is divided into topic themes and includes structure of solids, survey of properties of main group elements, aqueous and redox chemistry of ionic compounds, principles of group theory, descriptive transition metal chemistry the basis of which includes crystal field theory and extending into basic molecular magnetism and electronic spectroscopy. The topics are pursued with a common theme of chemical bonding and structure and the derived chemical properties of compounds of elements across the most of the periodic table. The assessment approach will be varied and continuous throughout the course and include online quizzes, in-course exams, tutorial worksheets and group research paper.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%

LEVEL: II
SEMMESTER: 1
COURSE CODE: CHEM 2270
COURSE TITLE: ORGANIC CHEMISTRY I
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1065 OR CHEM 1070, AND AT LEAST CHEM 1067 AND CHEM 1068; (OR CHEM 1060)
COURSE DESCRIPTION: This course will be the first of the two basic organic chemistry courses required for students who have completed the Introductory Chemistry programme and wish to pursue a major in chemistry. Students are introduced to the basic reactions, principles and tools which will enable them to devise reasonable schemes for the synthesis of given molecules, to determine the structures of these molecules and to explain the formation of the products obtained from reactions. This will be achieved through six lectures in Stereochemistry, six lectures in Spectroscopy and 12 lectures on Synthetic Design which will focus on applying knowledge of aromatic and carbanion chemistry and retrosynthetic analysis to the synthesis of given organic molecules. There will be twelve weekly tutorials during which assigned problems will be discussed. Students will be assigned to work in small groups on the problems and hand in their solutions before each tutorial.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%
LEVEL: II
SEMESTER: 1
COURSE CODE: CHEM 2370
COURSE TITLE: PHYSICAL CHEMISTRY I
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1065 OR CHEM 1070 AND AT LEAST CHEM 1067 AND CHEM 1068; (OR CHEM 1061)
COURSE DESCRIPTION: Introduction and fundamental theory of spectroscopic techniques important to chemists and how the techniques can be used to find out more about atoms and molecules. The course also includes reaction kinetics, particularly its application to real world chemistry problems. This is a core subject area in physical chemistry. The course covers important material that will be needed in subsequent courses in all disciplines of chemistry. The course is assessed by two in-course examinations, and tutorial activities, along with a final examination.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%

LEVEL: II
SEMESTER: 1
COURSE CODE: CHEM 2470
COURSE TITLE: INTRODUCTION TO ANALYTICAL CHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: Student should meet criteria I or II
I: CHEM 1065 OR CHEM 1070 AND AT LEAST ONE OF CHEM 1066, CHEM 1067, CHEM 1068 (OR CHEM 1060 AND CHEM 1061)
II: ESST 1002
COURSE DESCRIPTION: This course emphasizes classical methods in analytical chemistry. In the first of two units, students are introduced to the basic tools needed in all chemical analyses. The techniques of chemical measurements of mass and volume, for example, are studied, along with relevant units and interconversions. The errors associated with chemical analyses are discussed; students will be able to describe these errors, identify how they can occur in an analysis and suggest methods for minimizing or eliminating them. Simple statistical analysis is also considered in this unit. In the second unit, students are introduced to a survey of classical and modern analytical methods. This is followed by the principles of chemical equilibria, and how these apply to the important classical analytical chemistry methods of gravimetry and titration. The teaching/learning strategies in use in this course are based on the classroom lecture along with small group activities, supported by myelearning components. The course is assessed by in-course examinations, tutorial activities and participation, along with a final examination.
ASSESSMENT:
Coursework 50%
Final Examination - 2-hour written paper 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: CHEM 2471
COURSE TITLE: ANALYTICAL METHODS IN CHEMISTRY I
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2460 OR CHEM 2470
COURSE DESCRIPTION: This is a compulsory course for students who wish to pursue the Minor in Analytical Chemistry, which continues the study of analytical chemistry concepts begun in CHEM 2470. More advanced concepts are presented, including further development of titrimetric techniques, focusing on complexometric titrations. The understanding and use of instrumental techniques begins in this course, with electrochemical methods, basic spectroscopy and separation techniques. The unit on electrochemical methods covers the chemical theory that is exploited in potentiometric and other analytical techniques as well as more applied issues to do with the appropriate use of these methods. The units on basic spectroscopy and separation techniques provide a general introduction to these advanced instrumental techniques. The teaching/learning strategies used in this course are based on the classroom lecture along with small group activities and participation; all of this supported by myelearning components. The course is assessed by in-course examination, tutorial activities, poster preparation, a literature review and a final examination.
ASSESSMENT:
Coursework 50%
Final Examination - 2-hour written paper 50%
LEVEL: II
SEMESTER: 2
COURSE CODE: CHEM 2472
COURSE TITLE: ANALYTICAL CHEMISTRY LABORATORY
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2460 OR CHEM 2470
COURSE DESCRIPTION: This is a compulsory course for students who wish to pursue the Minor in Analytical Chemistry, which provides a general survey of the most common laboratory activities required by the modern analytical chemist. These activities include planning and design, techniques for the acquisition, handling and processing of samples, analytical techniques, data analysis and quality control and quality assurance concepts. The course is organised as a semester-long “research project” with the students working on one site/problem over the whole semester using a range of analytical techniques. In the first year, the site/problem under investigation will be an environmental survey of a contaminated river. Each week a different set of relevant analytical techniques will be emphasised, while some critical areas will be repeated in a variety of labs for better understanding by students. For example, the use of replicates, simple statistical analysis and error evaluation will be conducted in every lab. Group learning is emphasised, as students will carry out all course activities in small groups. The course is assessed entirely by coursework, which consists of a variety of activities; including laboratory skill demonstrations, weekly lab reports, a final lab report and an oral presentation.
ASSESSMENT: Coursework 100%

LEVEL: II
SEMESTER: 1
COURSE CODE: CHEM 2672
COURSE TITLE: CORE CHEMISTRY LABORATORY I
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1070 OR CHEM 1065
COURSE DESCRIPTION: CHEM 2672 reinforces and further develops basic and intermediate laboratory skills covered in CHEM 1070. The course also introduces students to advanced techniques and skills such as advanced separation and purification techniques; chemical quantitation; reaction thermodynamics and kinetics; one step and basic multistep reaction syntheses; interpretation of spectral data; structure elucidation and chemical characterization; stereochemistry; as well as the basic analytical & spectroscopic instrumentation skills required of a chemist: HPLC, GC, Flame Atomic Absorption, UV-Visible Spectroscopy, IR, 1H NMR and mass spectrometry. The final grade for CHEM 2672 will be determined from an assessment of student performance in the following activities: pre-lab preparation, general laboratory reports / exercises, laboratory quizzes oral and written, practical lab skills and tutorial/group discussions.
ASSESSMENT: Coursework 100%

LEVEL: II
SEMESTER: 2
COURSE CODE: CHEM 2673
COURSE TITLE: CORE CHEMISTRY LABORATORY II
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1070 OR CHEM 1065
COURSE DESCRIPTION: This course integrates and further develops the basic laboratory skills covered in CHEM 1070 and CHEM 2672 courses. The course also introduces students to further advanced experimental techniques and skills ranging from experimental design and planning of multistep reaction syntheses to product purification and quantitation; complex structure/mixture elucidation and chemical characterization with the aid of advanced spectroscopic techniques to the investigation and measurement of the physical parameters (thermodynamics, equilibria and kinetics) of reactions. In this course students will be continuously evaluated throughout the semester on pre-lab preparation, experimental planning and design, post lab report write-up, practical lab skills through the acquisition of meaningful accurate experimental data as well as on their chemical knowledge through short lab quizzes, oral examinations and tutorial/group discussions.
ASSESSMENT: Coursework 100%
LEVEL: II
SEMMESTER: NOT OFFERED IN 2019/2020
COURSE CODE: CHEM 2770
COURSE TITLE: INTRODUCTION TO RESEARCH IN CHEMISTRY LEARNING
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 1065 OR CHEM1070, CHEM 1066, CHEM 1067 AND CHEM 1068 OR (CHEM 1060 AND CHEM 1061)
COURSE DESCRIPTION: CHEM 2770 is one of an intended series of courses that a student with an interest in the field of Chemical Education will take. This course thus provides an introduction to a variety of research topics in Chemical Education Research (CER). The course begins with an investigation into what exactly is research in Chemistry Education followed by an exploration of the chemical education literature in the following areas: chemistry problem-solving and the development of misconceptions among chemistry learners; the application of learning theories to the practice of chemistry teaching and learning; the use of non-traditional assessment methods in measuring chemistry learning and the impact of CER on college-level chemistry teaching and learning. The topics were chosen as they represent examples of on-going areas of research in the developing field of CER. Learning in this course will be facilitated in large part through interactive weekly discussion forums based on thorough reading of the course materials by all class participants. Students will also experience small-group learning activities during the weekly tutorial sessions. The course will be assessed via a series of exercises that will be conducted during the course of the semester, namely, preparation/participation in weekly discussions, review of journal articles, exploratory essays and a research paper. There will be no final examination in this course.
ASSESSMENT:
Coursework: 100%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3162
COURSE TITLE: CHEMISTRY OF METAL-CATALYZED TRANSFORMATIONS
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2160 OR CHEM 2170
COURSE DESCRIPTION: The applications of metals and their compounds in industrial and chemically significant transformations; some processes of local significance such as the synthesis of ammonia and petrochemicals as well as bioinorganic processes. Process control variables in homogeneous, heterogeneous and phase transfer catalysis and a survey of the active sites of metalloenzymes in light harvesting molecules, oxygen transport, nitrogen fixation and electron transfer processes.
ASSESSMENT:
Theory Coursework: 50%
Final Examination - 2-hour written paper: 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3163
COURSE TITLE: CHEMISTRY OF TECHNOLOGICALLY IMPORTANT MATERIALS
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2160 OR CHEM 2170
COURSE DESCRIPTION: The properties, characterization and applications of various advanced technologically important materials such as Liquid Crystals for LCD applications, Semiconductors for electronic device and Solar Cell applications, lanthanide phosphors for LED applications and Nanomaterials.
ASSESSMENT:
Theory Coursework: 50%
Final Examination - 2-hour written paper: 50%
LEVEL: II/III
SEMESTER: 2
COURSE CODE: CHEM 3170
COURSE TITLE: FUNDAMENTALS OF INORGANIC CHEMISTRY II
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2160 OR CHEM 2170
COURSE DESCRIPTION: This course is part II of the core inorganic chemistry courses and provides comprehensive fundamental basis for chemistry students and designed with the aim of introducing the salient features of the vast inorganic chemistry of main group, transition metal and inner transition metal compounds. The course is structured into three subtopics which specifically discusses exclusively the chemistry of their compounds. These topics include: chemistry of the main group elements with a focus on hydrides, oxides and halides, etc; coordination and organometallic chemistry, the basis of which is ligand field theory and molecular orbital theory and then extending into chemistry of organometallic compounds, electronic spectroscopy and magnetic properties; and finally, chemistry of the lanthanides and actinides. The assessment approach will be varied and continuous throughout the course and include online quizzes, in-course exams, tutorial worksheets and group research paper.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3172
COURSE TITLE: ADVANCED INORGANIC CHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM2170 AND CHEM 3170
COURSE DESCRIPTION: This course is the result of a major revision of the advanced programme being offered in the Department of Chemistry and is an essential component for students who are likely to either pursue the single Chemistry discipline for their Bachelor’s Degree or to cover the special topics offered within in preparation for graduate study and research. The course builds on the knowledge base and experiences of the student who has successfully completed core Level II inorganic chemistry. The course content is therefore specialized in depth rather than diversity, and heavily biased toward topics which cover areas of active research in the department. It is intended that students who complete this course will be well exposed to and competent in the usage of common methodologies for the characterization and study of metal complexes, with a good grasp of the principles, limitations, calculations and derivations that apply in each general case.
ASSESSMENT:
Coursework: 40%
Final Examination: 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3268
COURSE TITLE: CHEMISTRY OF NATURAL PRODUCTS
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2260 OR CHEM 2270
COURSE DESCRIPTION: Importance of natural products to man - medicine, agriculture - and in plant-plant and plant-animal interactions. Biosynthesis of natural products in acetate-malonate (polyketides), mevalonate (terpenoids), shikimic acid (aromatics), amino acids (alkaloids), modern methods of characterization of natural products; manipulating biosynthetic pathways.
ASSESSMENT:
Theory Coursework 40%
Final Examination - 2-hour written paper 60%
LEVEL: II/III
SEMESTER: 2
COURSE CODE: CHEM 3270
COURSE TITLE: ORGANIC CHEMISTRY II
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM2260 OR CHEM 2270
COURSE DESCRIPTION: This course follows on the Organic Chemistry I course which students would have already taken and is designed to complete the organic chemistry theoretical knowledge considered essential for a major in Chemistry. Students will apply the knowledge they have gained in stereochemistry, spectroscopy and synthetic methodology. The course introduces the student to the basic chemistry and synthesis of heterocyclic compounds, amino acids, peptides and carbohydrates and to the mechanistic features of important types of organic reactions, namely substitution and elimination. The properties and role of reactive intermediates, eg carbenes, nitrenes, radicals and carbocations, in organic chemistry are also discussed.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3273
COURSE TITLE: SYNTHESIS OF BLOCKBUSTER DRUGS
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 3270
COURSE DESCRIPTION: The course introduces the student to the modern organic chemistry and synthesis of selected modern blockbuster drugs. The synthesis of the ring systems is underpinned by theoretical organic chemistry. Application of the Woodward Hoffmann rules and the Baldwin ring closure rules will be discussed. The mechanistic features of important types of selected organic reactions in organic chemistry will also be discussed. Modern Mass and NMR spectrometric methods for determining the structures of intermediates and target drugs will also be presented.
ASSESSMENT:
Coursework 40%
Final Examination 60%

Level: II/III
SEMESTER: 2
Course Code: CHEM 3370
Course Title: PHYSICAL CHEMISTRY II
Number of Credits: 3
Prerequisites: CHEM 1065 OR CHEM 1070, CHEM 1066, CHEM 1067 AND CHEM 1068 OR (CHEM 1061)
Course Description: This is a core course for anyone pursuing the BSc or a major in chemistry. This rigorous and comprehensive course continues building student knowledge of concepts in modern physical chemistry. The material covers: Gases, Liquids & Solids introducing the student to adhesion forces and the characteristics of ideal and non-ideal gases; Surface Chemistry and discusses catalytic activity at surface; and Electrochemistry and oxidation-reduction reactions with insight into industrial chemical processes as related to redox reactions. The knowledge and understanding gained in this course will be important for the more advanced physical chemistry and elective courses. The final grade for CHEM 3370 will be determined from student performance in the in-course examinations, graded tutorials and the final examination.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%
LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3373
COURSE TITLE: ADVANCED TOPICS IN PHYSICAL CHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2370 AND CHEM 3370
COURSE DESCRIPTION: Statistical Thermodynamics: microstates and configurations, Boltzmann distribution; Partition functions for translation, rotation and vibration; Calculation of Internal energy, entropy and Gibbs free energy and equilibrium constants. Computational chemistry: molecular mechanics - potential energy functions - stretching, bending and torsions. Molecular Orbital Theory - Ab initio Methods, Hartree-Fock approximation self consistent field (SCF) theory, basis sets electron correlation. Comparison of available software and practical workshop.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3470
COURSE TITLE: ANALYTICAL METHODS IN CHEMISTRY II
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2470 AND CHEM 2471
COURSE DESCRIPTION: The course “Analytical Methods in Chemistry II” is a compulsory course for students who wish to pursue the Minor in Analytical Chemistry. It seeks to reinforce the principles and practices of chemical analyses that were taught in CHEM 2470 and CHEM 2471 by use of appropriate training materials and methods to the application of analysis of real samples. This course also introduces students to experimental designs and project management which utilizes problem solving skills to solve real-world problems. The teaching/learning strategies in use in this course are based on the classroom lecture along with small group activities, supported by myeLearning components. The course is assessed entirely by coursework, involving in-course exams, the production of an experimental proposal, and the design and construction of a functioning analytical instrument. In order to be awarded with a Minor in Analytical Chemistry, students must also successfully complete two additional optional courses.
ASSESSMENT:
Coursework 100%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3471
COURSE TITLE: QUALITY ASSURANCE FOR LABORATORIES
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2470
COURSE DESCRIPTION: This is a compulsory course for students who wish to pursue the Minor in Analytical Chemistry, which continues the study of analytical chemistry concepts begun in CHEM 2470 and CHEM. Quality Control and Quality Assurance are of the highest importance, and are a part of every step in most processes be it manufacturing, medical, research, construction or any project. This course introduces the student to the important role of the laboratory in an organization and in particular its critical function in any Quality System. Practices to ensure that the laboratory meets the needs of the organization and its customers will be explored. The concepts of quality, the importance of the customer and their requirements, and the use of international standards will be assessed. Quality Control and Quality Assurance tools will be evaluated. Implementation of the appropriate Quality Management plan will be studied as well as ISO Accreditation, Internal Audits and Information Management Systems. This course provides the essential knowledge required by every chemist to consistently produce the highest quality results and ensure reliability. The concepts being explored are not limited to the laboratory only, but are taught from a larger point of view emphasising the conceptualisation and development of each concept and it impact on the modern world, global trade and everyday life.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%
LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3563
COURSE TITLE: ENVIRONMENTAL DEGRADATION OF MATERIALS
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2360 OR CHEM 3370
COURSE DESCRIPTION: This course is a revised version of Corrosion Science - CHEM3562. It is an applied chemistry elective which covers environmental degradation of materials with particular reference to the degradation of metals in their environment. Topics include the basic principles of aqueous corrosion of metals, costs resulting from corrosion, different forms of corrosion, corrosion rate expressions, monitoring and visualization, testing, and prevention techniques. The course also includes degradation of plastics by UV and high temperatures and the degradation of concrete. A candidate for this course should have a clear understanding of the thermodynamics and electrochemistry theory covered in CHEM1067, CHEM1068 and CHEM 2360 or 3370. If you feel uncertain in those areas a thorough review of that material is advised before the start of this course. This is a Level III course as such there are two, 1-hour, lectures and one tutorial weekly. There will be one field trip on a Thursday to be announced. This visit will be to a company where corrosion affects the way they do business. A written report from this visit will contribute to the course mark.
ASSESSMENT:
Coursework 40%
Final Examination 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3564
COURSE TITLE: PRINCIPLES OF POLYMER CHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: PASSES IN CHEM 2470, CHEM 2672 AND ONE OF CHEM 2160, CHEM 2170, CHEM 2260, CHEM 2270, CHEM 2370
COURSE DESCRIPTION: This chemistry elective introduces students to the field of macromolecular chemistry, from both industrial and research perspectives. Students will be introduced to various elements involved in the study of polymers, from their synthesis and characterization to applications in industry and everyday life. The two laboratory-based demonstration exercises will allow students to interact with various models of polymers as well as observe at least one synthesis performed on a laboratory scale. This component is especially useful for what can be viewed as a largely practical area of study.
ASSESSMENT:
Coursework 40%
Final Examination 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3570
COURSE TITLE: CHEMISTRY OF THE ENVIRONMENT
NUMBER OF CREDITS: 3
PREREQUISITES: ANY TWO (2) OF CHEM 2160 OR CHEM 2170; CHEM 2260 OR CHEM 2270; CHEM 2360 OR CHEM 2370; CHEM 2460 OR CHEM 2470.
COURSE DESCRIPTION: CHEM 3570 is a broad-based introduction to environmental chemistry for advanced chemistry students. The goal of the course is to introduce you, using unusual and innovative learning experiences, to the application of chemical facts and principles to processes occurring in the environment, and the solution of problems relating to environmental processes and pollution.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3573
COURSE TITLE: CONTEMPORARY CHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: PASS IN ONE OF CHEM 2160, CHEM 2170, CHEM 2260, CHEM 2270, CHEM 2370, CHEM 2460 OR CHEM 2470
COURSE DESCRIPTION: This course focuses on recent advances in chemistry and on the role of chemistry in helping to address the challenges faced by modern society in the areas of energy, health and nutrition, the environment and food security. It also places emphasis on the development of skills of scientific writing, on critical analysis of published articles and on publication of research work in peer reviewed journals. The topics to be dealt with each year will vary depending on the developments both in the area of chemistry itself and in its application to the contemporary social challenges. The course will be delivered through a multimodal teaching-learning approach and will include lectures and discussions of emerging topics in chemistry as a basis for further assigned reading which will be from articles chosen from the recent scientific literature. Online discussion, oral presentations and in-class discussions involving critical analysis of the assigned reading material will be other features of the course. Students will also be required to produce written reviews and analyses of articles in the major emerging areas of chemical science and its applications towards the solution of major problems. Students will critically assess the scientific method as a means of generating knowledge, and discuss modern research strategies or methodologies including building value through interdisciplinary research at an advanced level.
ASSESSMENT:
Coursework 100%

LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3575
COURSE TITLE: CHEMISTRY AND INDUSTRY I
NUMBER OF CREDITS: 3
PREREQUISITES: ANY TWO OF CHEM 2160 OR CHEM 2170; CHEM 2260 OR CHEM 2270; CHEM 2360 OR CHEM 2370; CHEM 2460 OR CHEM 2470.
COURSE DESCRIPTION: The course introduces the student to the chemical principles involved in the production and use of a wide range of food, household and industrial products. Discussion of the chemical processes involved will draw on the knowledge already gained from all areas of chemistry.
ASSESSMENT:
Coursework 40%
Final Examination 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3576
COURSE TITLE: CHEMISTRY OF MEDICINES
NUMBER OF CREDITS: 3
PREREQUISITES: CHEM 2260 OR CHEM 2270
COURSE DESCRIPTION: The course introduces the student to the chemical principles involved in modern medicinal chemistry. The chemical processes involved in the production of these products in everyday life will be discussed. Aspects of general and organic chemistry will be employed in the discussion and understanding of the chemical principles and reactions involved in the efficacy and use of these products.
ASSESSMENT:
Coursework 40%
Final Examination 60%
LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3577
COURSE TITLE: GREEN CHEMISTRY
NUMBER OF CREDITS: 3
PREREQUISITES: ANY TWO OF CHEM 2160 OR CHEM 2170; CHEM 2260 OR CHEM 2270; CHEM 2360 OR CHEM 2370;
CHEM 2460 OR CHEM 2470.
COURSE DESCRIPTION: This exciting new elective is based on the recently elaborated concept of Green Chemistry. It encompasses the use of sustainable design from the viewpoint of the chemical reaction itself to the choice of reaction materials or process design. Areas such as hetero- and homogeneous catalysis, material synthesis, assisted reactions, use of solvents and others will be presented in relation to introducing inherently green design. The information presented in lectures and developed in tutorials (hands-on) will give the student a sound basis for chemical design in a like manner to other international courses adopted by world leading institutions.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3578
COURSE TITLE: ENERGY FOR A SUSTAINABLE FUTURE
NUMBER OF CREDITS: 3
PREREQUISITE: CHEM 2370
COURSE DESCRIPTION: Energy is an integral part of the future of mankind. By 2050 it is estimated that 9 billion people will be housed on planet earth... 9 billion people to feed, clothe and provide facilities such as education, work, housing, health care and others. Each and every human activity requires energy and how energy is used in the modern world goes beyond the simple process of growing and eating food crops. As the energy demand grows human innovation and creative design of new systems based on chemically sound technologies will become increasingly necessary. This course will take you from the layman's perspective on energy to the current status of the energy industry and then into the technologies being proposed for a sustainable future. This course is truly an applied chemistry module and will be underpinned by your previous learning of fundamental chemical principles and as such more emphasis will be placed on the chemistry involved in specific applications as opposed to an overview of knowledge garnered in earlier courses. The course approach is an integrated one where the student has the opportunity to utilise the material presented in lectures in real-life applications, thereby gaining a deeper understanding of the topic in the wider sense, i.e. beyond the chemistry taught in the classroom. The fundamentals of, as well as advances in, biomass (alternative bio-renewable energy), traditional renewable energy and the hydrogen economy will be presented through examples of the best-in-class proven and emerging technologies for each area. This will be positioned in the context of fossil and nuclear fuels currently used for the energy and chemicals industry.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3579
COURSE TITLE: CHEMISTRY AND INDUSTRY II
NUMBER OF CREDITS: 3
PREREQUISITES: PASSES IN ANY TWO OF CHEM 2460 OR 2470; CHEM 2160 OR CHEM 2170; CHEM 2260 OR CHEM 2270;
CHEM 2360 OR CHEM 2370
COURSE DESCRIPTION: The chemical industry sustains human activity across the globe. Industrialised and developing nations depend on a vast array of chemical products for agriculture, energy and consumer needs. This course is designed to provide students with an overview of the manufacture and used of major industrial chemicals, and processes, as well as some appreciation of production levels, costs and future directions. This will be delivered through lectures that cover the fundamental principles in the manufacture of selected chemicals, with a focus on how the chemistry taught in core courses is integrated into the chemical industry. Additionally, students be exposed to the working environment of local industrial plants through site visits and recent literature on chemical production (markets and outlooks) Finally health and safety aspects of the manufacturing processes and the chemical products themselves will be presented to students for discussion.
ASSESSMENT:
Coursework 40%
Final Examination 60%
LEVEL: III
SEMESTER: 1 OR 2
COURSE CODE: CHEM 3670
COURSE TITLE: RESEARCH PROJECT FOR CHEMISTRY MAJORS
NUMBER OF CREDITS: 3

PREREQUISITES: PASSES IN EITHER CHEM 2670 AND CHEM 2671 OR CHEM 2672 AND CHEM 2673
COURSE DESCRIPTION: CHEM 3670 is a one semester condensed chemistry research project course for students pursuing a Chemistry Major in which the skills and techniques acquired in the Level I and II lab courses are utilized in solving a research problem. In this course each student will engage in guided research under the supervision of a member of staff on a project which may be interdisciplinary or in one of the sub-disciplines: analytical, inorganic, organic and physical chemistry. The student will be required to meet each week with his/her supervisor to discuss/review their experimental results, progress on the project and weekly work plan before executing their plan each week. Students are expected to work more independently in this course but will receive further guidance on specific safety issues; searching, reviewing and critically assessing the chemical literature; developing and testing a research question/hypothesis; interpreting and drawing conclusions from experimental results and in presenting research results in written and oral formats. The course also introduces students to specialized advanced techniques and skills specific to individual projects and provides hands-on experience with modern research instrumentation. CHEM 3670 comprises sixty hours of bench work, two two-hour sessions of instruction and ten one-hour non-lab based research work sessions each semester. A compulsory research project specific safety test must be passed within the first two weeks of the course before lab work can commence. Assessment will focus primarily on the chemical knowledge, practical competency, problem-solving skills and research capability of students through the preparation and quality of milestone reports, the final project report, and oral presentation as well as the quality of research work performed, and active participation in group discussions.
ASSESSMENT:
Coursework 100%

LEVEL: III
SEMESTER: (YEAR-LONG)
COURSE CODE: CHEM 3671
COURSE TITLE: RESEARCH PROJECT FOR B.SC. CHEMISTRY
NUMBER OF CREDITS: 6

PREREQUISITES: PASSES IN EITHER CHEM 2670 AND CHEM 2671 OR CHEM 2672 AND CHEM 2673
COURSE DESCRIPTION: CHEM 3671 is a year-long intensive chemistry research project course for students in the BSc Chemistry programme in which the skills and techniques acquired in the Level I and II lab courses are utilized in solving a research problem. In this course each student will get involved in guided research under the supervision of a member of staff on a project which may be interdisciplinary or in one of the sub-disciplines in chemistry. Students will get hands-on experience on addressing laboratory safety issues; searching, reviewing and critically assessing the chemical literature; developing a research proposal and testing a research question/hypothesis, interpreting and drawing conclusions from experimental results, and in presenting research results in written and oral formats. The course also introduces students to specialized advanced techniques and skills specific to individual projects and provides hands-on experience with modern research instrumentation. Assessment will focus primarily on the chemical knowledge, practical competency, problem-solving skills and research capability of students through the preparation and quality of milestone reports, the final project report, and oral presentation as well as the quality of research work performed, and active participation in group discussions.
ASSESSMENT:
Coursework 100%
LEVEL: III
SEMESTER: 1
COURSE CODE: CHEM 3870
COURSE TITLE: PRINCIPLES OF CHEMICAL BIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: PASS IN ONE OF CHEM 2260, CHEM 2270, CHEM 2370, CHEM 2460 OR CHEM 2470
COURSE DESCRIPTION: This chemistry elective provides knowledge of the three major classes of bioactive molecules (Carbohydrates, Proteins and Nucleic Acids). Quite distinct from simply examining the chemical reactions of the three molecular classes, this course focuses on their structures, functioning in signalling and recognition pathways, and their role in diseases and the aging process. For each biomolecule, its use and potential in the design of new drug therapies is addressed. The section on free radicals acts as a tie-in for the three biomolecules, in terms of relating the onset and prognosis of all diseases to a free radical origin. The two laboratory-based demonstration exercises (Carbohydrates and Nucleic Acids) will allow students to appreciate the dynamic 3-D nature of these molecules and the implications of their structure, conformation and configuration on their chemical and biological properties.
ASSESSMENT:
Coursework 40%
Final Examination - 2-hour written paper 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: CHEM 3871
COURSE TITLE: METHODS IN CHEMICAL BIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: PASS IN ONE OF CHEM 2260, CHEM 2270, CHEM 2370, OR CHEM 2460 OR CHEM 2470
COURSE DESCRIPTION: This chemistry elective introduces the practical/ experimental techniques available to study the biomolecules described in CHEM 3870, Principles of Chemical Biology. Description of the chemical biology tools available for researchers at this interfacial discipline, provided in lectures, is followed by hands-on laboratory demonstrations; where students can immerse themselves in the actual execution and manipulation of different techniques. This is a very practical / technique oriented course. Each section concludes with research opportunities available and potential future developments, to address current needs as well as deficiencies in techniques and understanding.
ASSESSMENT:
Coursework 40%
Final Examination 60%

CHINESE : CHIN

LEVEL: I
SEMESTER: 1
COURSE CODE: CHIN 1003
COURSE TITLE: LEVEL 1A CHINESE (MANDARIN)
NUMBER OF CREDITS: 2
PREREQUISITES: NONE
COURSE DESCRIPTION: The course which involves four skills (listening, speaking, reading and writing) introduces students to Mandarin Chinese and some aspects of Chinese culture and daily life. Students will develop an ability to communicate in Chinese in basic situations relating to their personal lives via exposure to the new language and culture. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by two hours of independent study for each contact hour.
ASSESSMENT:
In-course testing: 100%: 40% [mid-semester]; 40% [end of semester]; 20% [two assignments]
LEVEL: I
SEMESTER: 1
COURSE CODE: CHIN 1004
COURSE TITLE: LEVEL 1B CHINESE (MANDARIN)
NUMBER OF CREDITS: 2
PREREQUISITES: CHIN 1003/1A CHINESE OR EQUIVALENT
COURSE DESCRIPTION: This course introduces the further study of Mandarin Chinese (listening, speaking, reading, and writing) and Chinese culture begun in CHIN 1003/1A Chinese. Students will develop a minimal level of communicative competence for socializing in everyday situations. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by two hours of independent study for each contact hour.
ASSESSMENT:
In-course testing: 100%: 40% [mid-semester]; 40% [end of semester]; 20% [two assignments]

COMPUTER SCIENCE: COMP

LEVEL: 0 (PRELIMINARY)
SEMESTER: 1
COURSE CODE: COMP 0100
COURSE TITLE: N1 COMPUTER SCIENCE I
NUMBER OF CREDITS: 0
PREREQUISITES: CXC/CSEC MATHEMATICS
COURSE DESCRIPTION: This first preliminary course in computer science exposes students to the fundamental nature of computing by discussing the internal hardware components of a computer and explaining how to manipulate these components through computer programs to achieve a particular task. In order to design programs to solve problems, students must first understand the problem-solving process and then learn how to craft solutions to problems using suitable algorithms. A major portion of the course therefore focusses on problem-solving, designing algorithms, and implementing algorithms using a suitable programming language.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: 0 (PRELIMINARY)
SEMESTER: 2
COURSE CODE: COMP 0200
COURSE TITLE: N1 COMPUTER SCIENCE II
NUMBER OF CREDITS: 0
PREREQUISITES: CXC/CSEC MATHEMATICS
COURSE DESCRIPTION: This second preliminary course in computer science is designed to expose students to the fundamentals of computer science and information technology. It introduces additional topics in computer science and information technology such as data structures, software engineering, operating systems, computer networks, and the use of information technology tools. This course gives students a deeper understanding of programming a computer by explaining how to solve problems using data structures and algorithms. It also exposes students to “programming-in-the-large”, such as, developing software systems to solve problems of the magnitude typically encountered in real-life. Students will acquire the skills required for developing software solutions for real-life problems by exposing them to software engineering process models.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: I
SEMESTERS: 1 AND 2
COURSE CODE: COMP 1011

COURSE TITLE: INTRODUCTION TO INFORMATION TECHNOLOGY

NUMBER OF CREDITS: 3

PREREQUISITES: NONE

COURSE DESCRIPTION: This course will provide the knowledge needed to formulate a sound but basic understanding of Information Technology, its major components and its broad applications. Students will acquire hands-on experience with computers. They will become familiar with the components of a computer and learn about the various elements that make up an information system. The course deals with hardware, software, telecommunications and computer networks.

General Topics: The Technology Revolution; Inside the Computer; Information Input and Output; Storing and Retrieving Information; Software; Networks and Networking; Internet and The Web.

ASSESSMENT:
- Practical Coursework 50%
- Project Report 25%
- Mid-term examination 25%

(No final written examination)

LEVEL: I
SEMESTERS: 1 OR 2
COURSE CODE: COMP 1126

COURSE TITLE: INTRODUCTION TO COMPUTING I

NUMBER OF CREDITS: 3

PREREQUISITES: NONE

RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY

COURSE CONTENT:
1. **History of Programming Languages:** Brief survey of programming paradigms.
2. Building Abstractions.
3. **Computational Processes:** Primitive Operations, Special Forms for naming, conditional execution, Procedures as sequences of operations, Recursion and Iteration, Lexical scoping and Nested Procedures.
4. **Higher-order Procedures:** Customising Procedures with procedural arguments.
5. Creating new functions at run-time.
6. **Compound Data:** Pairs and Lists.

ASSESSMENT:
- Coursework 40%
- Final Examination (2 hours) 60%

LEVEL: I
SEMESTERS: 1 OR 2
COURSE CODE: COMP 1127

COURSE TITLE: INTRODUCTION TO COMPUTING II

NUMBER OF CREDITS: 3

PREREQUISITES: NONE

RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY

COURSE CONTENT:
1. **Building Abstractions:** Compound Data (Lists and Trees); Abstract Data Types.
2. **Controlling Interactions:** Generic operations; Self-Describing Data; Message Passing; Streams and Infinite Data Structures; Object-oriented Programming.

ASSESSMENT:
- Coursework 40%
- Final Examination (2 hours) 60%
LEVEL: I
SEMESTERS: 1 OR 2
COURSE CODE: COMP 1161
COURSE TITLE: OBJECT-ORIENTED PROGRAMMING
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 1126 AND COMP 1127
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE CONTENT:
1. Object-Oriented Programming: Objects and Classes (Methods, Message Passing, Instance and Class Variables); Encapsulation and Information-Hiding; Imperative Control Structures, Assignment/State, Parameter Passing Models; Primitive Types, Inheritance, Polymorphism, Class Hierarchies; Object Composition; Abstract and Concrete Classes; Interfaces. Templates; Using APIS, Class Libraries, Modules/Packages; Array and String Processing; I/O Processing; Concept of Object References and Aliases; Collection Classes and Iterators; OO Testing. Debugging Tools.
2. Graphics and GUI Programming, Web Concepts and Objects: Introduction to GUI programming; Event-driven programming; Exception handling; Use of simple graphical libraries; and simple animation programming; Simple HTML-embedded objects such as applets.

ASSESSMENT:
Coursework 50%
Final Examination (2 hours) 50%

LEVEL: I
SEMESTERS: 1 OR 2
COURSE CODE: COMP 1210
COURSE TITLE: MATHEMATICS FOR COMPUTING
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE CONTENT: Propositional Logic; Logical Connectives; Truth Tables; Normal Forms (Conjunctive And Disjunctive); Validity; Predicate Logic; Universal and Existential Quantification; Modus Ponens and Modus Tollens; Limitations of Predicate Logic; Functions (Surjections, Injections, Inverses, Composition); Relations (Reflexivity, Symmetry, Transitivity, Equivalence Relations); Sets (Venn Diagrams, Complements, Cartesian Products, Power Sets); Pigeonhole Principle; Cardinality and Countability; Finite Probability Space, Probability Measure, Events; Conditional Probability, Independence; Trees, Undirected Graphs, Directed Graphs, Spanning Trees/Forests.

ASSESSMENT:
Coursework 40%
Final Examination (2 hours) 60%
LEVEL: I
SEMESTERS: 1 OR 2
COURSE CODE: COMP 1220
COURSE TITLE: COMPUTING AND SOCIETY
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE CONTENT:
1. History of Computing: History of computer hardware, software, networking; Regional computing history; Pioneers of computing. Contributions of region and of other developing countries.
2. An Overview of Computing: How hardware, software, and networks work at a conceptual level; use and high-level construction of computing artefacts, e.g. simple webpages, animations, robotics programs; Sub-disciplines within Computing: Computer Science, IT, IS, etc.; he global computing industry and its impact on industry and society; The use of computing in enterprise, entrepreneurship, various disciplines and careers.
3. Social Context of Computing: Social implications of computing and networked communication in general and on youth, e.g. cultural, self-image, possible effects of videogames; Understanding the social and cultural context of design; Understanding the potential of computing to transform society positively, globally or regionally, or to exacerbate inequalities or mask underdevelopment; Analysis of the government and business policies of developing and developed countries with successful computing industries; Accessibility issues in computing professions (e.g. class, culture, ethnicity, gender, disabled); Public policy issues (e.g. cyber-crime, privacy, electronic voting); Growth and control of and access to the Internet; Environmental Issues and Computing, e.g. e-waste, green computing.
4. Professional Ethics in Computing: Making and evaluating ethical choices and arguments, identifying assumptions and values; The nature of professionalism (including care, attention and discipline, fiduciary responsibility, and mentoring); Keeping up-to-date as a professional (in terms of knowledge, tools, skills, legal and professional framework as well as the ability to self-assess and computer fluency); Various forms of professional credentialing and the advantages and disadvantages; The role of the professional in public policy; Maintaining awareness of consequences of decisions; Introduction to ethics, ethical dissent and whistle-blowing; Codes of ethics, conduct, and practice (IEEE, ACM, SE, and so forth); Harassment and discrimination, “Acceptable use” policies for computing in the workplace; Healthy computing environment (ergonomics).
5. Risks of Computing Products: Historical examples of software risks (such as the Therac-25 case); Implications of software complexity on risk. The limits of computing.

ASSESSMENT:
Coursework 50%
Final Examination (2 hours) 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: COMP 1600
COURSE TITLE: INTRODUCTION TO COMPUTING CONCEPTS
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: This course presents an overview of computing technology and the field of computer science. Discussion topics will include the organization of modern computers, operating systems, algorithms, programming languages and database systems.

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: COMP 1601
COURSE TITLE: COMPUTER PROGRAMMING I
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: This course uses an appropriate programming language as a tool to teach fundamental programming concepts. The main concepts covered are sequence, selection and repetition logic, character and string manipulation, functions, and a basic introduction to arrays and their applications.

ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: I
SEMESTER: 2
COURSE CODE: COMP 1602
COURSE TITLE: COMPUTER PROGRAMMING II
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: This course uses an appropriate programming language as a tool to teach intermediate programming concepts. The main concepts covered are structures, one and two dimensional arrays and applications involving searching, sorting and merging, random number generation, numerical methods, games and simulation.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: I
SEMESTER: 1 AND 2
COURSE CODE: COMP 1603
COURSE TITLE: COMPUTER PROGRAMMING III
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: This course uses an appropriate programming language as a tool to teach intermediate programming concepts. The main concepts covered are pointers, linked lists, stacks and queues and their implementations using arrays and linked lists and recursion.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: COMP 1604
COURSE TITLE: MATHEMATICS FOR COMPUTING
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: This course introduces students to the basic mathematical structures and computational techniques that are considered to be the foundation for courses in computer science and information technology. Students are also taught how to reason logically and how to solve problems using various proof techniques. The main mathematical structures covered are logic, sets, relations and functions.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: COMP 2140
COURSE TITLE: SOFTWARE ENGINEERING
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 1126, COMP 1127 AND COMP 1161
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY

COURSE CONTENT:

1. **Software Design**: Fundamental design concepts and principles; The role and the use of contracts; Structured design; Design qualities; Internal - including low coupling, high cohesion, information hiding, efficiency; External - including reliability, maintainability, usability, performance.

2. **Using APIs**: Programming using APIs.

3. **Tools and Environments**: Programming environments; Requirements analysis and design modelling tools; Testing tools including static and dynamic analysis tools; Tools for source control, and their use in particular in team-work; Configuration management and version control tools; Tool integration mechanisms.

4. **Software Processes**: Software life-cycle and process models; Software process capability maturity models; Approaches to process improvement; Process assessment models; Software process measurements.

5. **Requirements Specifications**: Systems level considerations; Software requirements elicitation; Requirements analysis modelling techniques; Functional and non-functional requirements; Acceptability of certainty/uncertainty considerations regarding software / system behaviour; Prototyping.

6. **Software Verification Validation**: Distinguishing between verification and validation; Static approaches and dynamic approaches; Validation planning; documentation for validation; Different kinds of testing – human computer interface, usability, reliability, security, conformant to specification; Testing fundamentals, including test plan creation and test case generation black-box and white-box testing techniques; Defect seeding; Unit, integration, validation, and system testing; Measurements: process, design, program; Verification and validation of non-code (documentation, help files, training materials); Fault logging, fault tracking and technical support for such activities; Regression testing; Inspections, reviews, audits.

7. **Software Evolution**: Software maintenance; Characteristics of maintainable software; Reengineering Legacy systems; Refactoring.

8. **SE/Software Project Management**: Team management; Team processes; Team organization and decision-making; Roles and responsibilities in a software team; Role identification and assignment; Project tracking; Team problem resolution; Project scheduling; Software measurement and estimation techniques; Risk analysis (The issue of security, High integrity systems, safety critical systems, The role of risk in the life cycle); Software quality assurance (The role of measurements); Software configuration management and version control; release management; Project management tools; Software process models and process measurements.

9. **Professional Ethics**: Community values and the laws by which we live; The nature of professionalism (including care, attention and discipline, fiduciary responsibility, and mentoring); Keeping up-to-date as a professional (in terms of knowledge, tools, skills, legal and professional framework as well as the ability to self-assess and computer fluency); Various forms of professional credentialing and the advantages and disadvantages; The role of the professional in public policy; Maintaining awareness of consequences; Ethical dissent and whistle-blowing; Codes of ethics, conduct, and practice (IEEE, ACM, SE, AITP, and so forth); Dealing with harassment and discrimination; “Acceptable use” policies for computing in the workplace; Healthy computing environment (ergonomics).

10. **Risks**: Historical examples of software risks (such as the Therac-25 case); Implications of software complexity; Risk assessment and risk management; risk removal, risk reduction and risk control.

ASSESSMENT:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework</td>
<td>60%</td>
</tr>
<tr>
<td>Final Examination (2 hours)</td>
<td>40%</td>
</tr>
</tbody>
</table>
LEVEL: II
SEMESTER: 2
COURSE CODE: COMP 2171
COURSE TITLE: OBJECT ORIENTED DESIGN AND IMPLEMENTATION
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 1161 AND COMP 2140
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE CONTENT:
2. Identifying Classes: Domain Analysis, Systems Analysis, Class/Responsibility/Collaboration Cards (CRC Cards), Noun Verb Analysis.
3. Identifying Class Relationships: Dependencies, Associations, Aggregations, Compositions, Association Classes.
4. Objects and relationships between objects: Links and object diagrams.
7. Software Architecture: Definition, rationale, benefits, business and technical impact etc., Architectural patterns Emerging Topics in Object Oriented Design, Model Driven Engineering.
ASSESSMENT:
Coursework 60%
Final Examination (2 hours) 40%

LEVEL: II
SEMESTER: 2
COURSE CODE: COMP 2190
COURSE TITLE: NET CENTRIC COMPUTING
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 1126, COMP 1127, 1161 AND COMP 1210
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE CONTENT:
1. Introduction: Background and history of network and the Internet; Network architectures; Networks and protocols; Client/server and peer-to-peer paradigms; Mobile and wireless computing.
2. Network Communication: Network standards and standardization bodies; The ISO 7-layer reference model in general and its instantiation in TCP/IP; Overview of physical and data link layer concepts (framing, error control, flow control, and protocols); Data link layer access control concepts; Internetworking and routing (routing algorithms, internetworking, and congestion control); Transport layer services (connection establishment, performance issues, flow and error control); Web protocols with particular emphasis on HTTP.
3. Distributed Computing.
4. Network Security: Fundamentals of cryptography (Secret-key algorithms, Public-key algorithms); Authentication protocols, Network attack types, e.g., denial of service, flooding, sniffing, and traffic redirection; Basic network defence tools and strategies (Intrusion detection, Firewalls, Detection of malware, Kerberos, IPSec, Virtual Private Networks, Network Address Translation).
ASSESSMENT:
Coursework 50%
Final Examination (2 hours) 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: COMP 2201
COURSE TITLE: DISCRETE MATHEMATICS FOR COMPUTER SCIENCE
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 1210
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE CONTENT:
1. Basics of Counting: Arithmetic and geometric progressions; Fibonacci numbers; The pigeonhole principle; Basic definitions; Pascal’s identity; The binomial theorem; The Master theorem.
2. Asymptotic Analysis: Limits; Orders of Growth (Big-oh O, Omega Ω and Theta Θ).
3. Graph Theory: Trees; Planarity; Eulerian and Hamiltonian Cycles; Matching and Colouring.
4. Elementary Probability Theory: Counting in event space; Probability Tree; Probability distributions; Finite probability space, probability measure, events; Conditional probability, independence, Bayes’ theorem; Integer random variables, expectation; Law of large numbers.
5. Generating Functions: Convergence Properties; Convolution; Applications.
6. Recurrence Relations.
7. Introduction to Automata, Grammars and Languages: Finite-state machines; Context-free grammars; Language type classification and grammar type.

ASSESSMENT:
Coursework 40%
Final Examination (2 hours) 60%

LEVEL: II
SEMESTER: 2
COURSE CODE: COMP 2211
COURSE TITLE: ANALYSIS OF ALGORITHMS
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 1126, COMP 1127, COMP 1161 AND COMP 1210
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE CONTENT:
Analysing algorithms (solving recurrence equations with the Master Theorem); Algorithm strategies (brute force, greedy, divide, and conquer, branch-and-bound, heuristic; Iterated approximations (Newton = Raphson method, searching for roots of a polynomial (in one variable)); Fast exponentiation; Euclid’s algorithm; Discrete logarithm; RSA cryptograph; Heaps as implementations for priority queues; Sorting; Binary search trees; Red-Black trees; Hashing; Graphs and graph algorithms; Distributed computing (introduction (consensus vs. election algorithms)); NP Basic Computability: uncomputable functions, the halting problem implicated of uncomputability.

ASSESSMENT:
Coursework 50%
Final Examination (2 hours) 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: COMP 2601
COURSE TITLE: COMPUTER ARCHITECTURE
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 1600
COURSE DESCRIPTION: This course builds upon knowledge and skills developed in COMP 1600. This course explores how computers from a programmer’s view point rather than from the hardware designer’s perspective. Topics include: Digital Logic and Digital Systems, Machine Level Representation of Data, Assembly Level Machine Organization, Memory System Organization and Architecture, Interfacing and Communication, Multiprocessing and Alternative Architectures, and Performance Enhancements. The overarching theme of the course is the hardware-software interface; in particular, focusing on what a programmer needs to know about the underlying hardware to achieve high performance for his or her code.

ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: COMP 2602
COURSE TITLE: COMPUTER NETWORKS
CREDITS: 3
PREREQUISITES: COMP 1600
COURSE DESCRIPTION: This course examines some of the important concepts related to computer networks, e.g., the network edge and core, routers, the ISO and TCP/IP reference models for computer communication and networking protocols. Many use the Internet and local area networks every day but are not fully aware as to what goes on “behind-the-scenes” to make network communication possible. In this course, students explore what happens to the data in the computer before it is prepared for transmission, how protocols work to transmit the data and how it is received at other computers. Error control and recovery methods for lost or corrupted data are also investigated. A layered model for computer communications is thoroughly examined. Students will write networking programs and test them on a local area network or on the Internet.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: COMP 2603
COURSE TITLE: OBJECT-ORIENTED PROGRAMMING I
CREDITS: 3
PREREQUISITES: COMP 1603
COURSE DESCRIPTION: This course provides a comprehensive introduction to the concepts and techniques of object-oriented programming. This course introduces the concepts of object-oriented programming to students with a background in the procedural paradigm.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: COMP 2604
COURSE TITLE: OPERATING SYSTEMS
CREDITS: 3
PREREQUISITES: COMP 1600
COURSE DESCRIPTION: This course looks at the inner workings of operating systems such as Windows, Ubuntu, and Mac OS X, both from a theoretical algorithmic point of view as well as a practical system programming point of view. The student will be introduced to the fundamental algorithms that support the existence of contemporary operating systems. Topics include the important areas of processes, threads, and CPU management, main and virtual memory management, file systems, disk scheduling algorithms, protection and security.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: COMP 2605
COURSE TITLE: ENTERPRISE DATABASE SYSTEMS
CREDITS: 3
PREREQUISITES: COMP 1602
COURSE DESCRIPTION: This course covers the design and implementation of relational database systems. Emphasis is placed on the database design of real world business application using Entity Relationship modeling. SQL programming is covered in detail. Data Management concepts such as Transaction Management, Concurrency Control, Recovery, and backups are presented. XML-enabled databases are also studied. An overview of several specialized databases is introduced and the technical and managerial responsibilities of a database administrator are discussed.

By utilizing an abundance of real world business applications, students are introduced to database systems and designs used by organizations. Additionally, students examine the characteristics of database transactions and how they affect database integrity and consistency. At the end of this course, students will be able to effectively design and implement enterprise database systems.

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: COMP 2606
COURSE TITLE: SOFTWARE ENGINEERING I
CREDITS: 3
PREREQUISITES: COMP 1603
COURSE DESCRIPTION: The specification, development, management, and evolution of software systems make up the discipline of software engineering. In this course, students apply methods and tools to develop software designs and specifications. The course focuses on universal techniques for developing large-scale systems rather than individual algorithms. In order to build good business systems, it is particularly important that the student place a great deal of emphasis in exploring the different process models and the topics covering requirements analysis and system specification, system architecture and design, verification and validation and system evolution. During the course, students will participate in a real problem solving/software development project which will expose them to the processes, tools and techniques of professional product-quality software development.

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: COMP 2611
COURSE TITLE: DATA STRUCTURES
CREDITS: 3
PREREQUISITES: COMP 1603
COURSE DESCRIPTION: A data structure is a way of storing data in a computer so that it can be used efficiently. Data structures are an important part of the equation; Programs = Algorithms + Data structures. Often a carefully chosen data structure will allow the most efficient algorithm to be used. A well-designed data structure allows a variety of critical operations to be performed, minimizing the use of execution time and memory space.

This course covers some fundamental data structures—stacks, queues, linked lists, binary trees, heaps and graphs—which are required for programming the solutions to a wide variety of real-world and theoretical problems.

ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: COMP 3161
COURSE TITLE: DATABASE MANAGEMENT SYSTEMS
NUMBER OF CREDITS: 3
REQUIREMENTS: COMP 1126, COMP 1127, COMP 1161 AND COMP 1210
ASSESSMENT: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE CONTENT:
1. Information Management Concepts: Basic information storage and retrieval concepts; Information capture and representation.
2. Database Systems: Components of database systems; Database architecture and data independence; Use of a declarative query language (SQL).
3. Data Modelling: Relational data models; Object-oriented models; Semi-structured data models.
4. Relational Databases: Relational algebra; Relational database design; Functional dependency; Decomposition of a schema; Normal forms; Multi-valued dependency.
5. Query Languages: Overview of database languages; SQL (data definition, query formulation, update, constraints, and integrity); Select-project-join; Subqueries; Querying XML; Stored procedures.
6. Views and Indexes: Basic structure of an index; Creating indexes with SQL; Materialized Views.
7. Transaction Processing: Transactions; Failure and recovery; Concurrency control.
8. Distributed Databases: MapReduce processing model; NoSQL systems.
9. Advanced Topics: Security and user authorization; Recursion; On-line analytical processing (OLAP); Query optimization.
ASSESSMENT:
Coursework 50%
Final Examination (2 hours) 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: COMP 3601
COURSE TITLE: DESIGN AND ANALYSIS OF ALGORITHMS
NUMBER OF CREDITS: 3
REQUIREMENTS: COMP 2611
COURSE DESCRIPTION: This course covers specific fundamental algorithm-design techniques used to formulate solutions to a wide variety of problems. It also covers problem-solving techniques for analyzing algorithms to determine space/time requirements.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: COMP 3602
COURSE TITLE: THEORY OF COMPUTING
NUMBER OF CREDITS: 3
REQUIREMENTS: COMP 2611
COURSE DESCRIPTION: This course introduces undergraduate computer science students to the foundations of theoretical computer science. It exposes them to abstractions which can be used to solve complex real world problems. It introduces: Regular Languages, Finite Automata, Context-free Languages, Computability; Turing machines and Complexity Classes. Finally, students gain an appreciation for theoretical aspects of computing and the basic skills required to assess the limitations of the computer.
ASSESSMENT:
Coursework 50%
Final Examination 50%
Level: III
Semester: 2
Course Code: COMP 3603
Course Title: Human-Computer Interaction
- **Number of Credits:** 3
- **Prerequisites:** COMP 2606

Course Description: Human-computer interaction is an interdisciplinary field that integrates theories and methodologies from computer science, cognitive psychology, design, and many other areas. The course is intended to introduce the student to the basic concepts of human-computer interaction. It will cover the basic theory and methods that exist in the field. The course will unfold by examining design and evaluation. Case studies are used throughout the readings to exemplify the methods presented and to lend a context to the issues discussed. The students will gain principles and skills for designing and evaluating interactive systems. The heart of the course is a semester-long group project that will help students learn in a hands-on way about the various stages of an effective design process. The goal of this course is to help students realize that user interface development is an ongoing process throughout the full product life cycle, and developing the human-computer interface is not something to be done at the last minute, when the "rest of the system" is finished. Hence, this course concentrates on creating and testing DESIGNS of human-computer systems through low and medium fidelity prototypes and NOT with implementing a piece of software in this class.

Assessment:
- Individual Work: 70%
- Group Project: 30%

Level: III
Semester: 1
Course Code: COMP 3605
Course Title: Introduction to Data Analytics
- **Number of Credits:** 3
- **Prerequisites:** MATH 2250

Course Description: This course provides an introduction to various computational and data mining techniques that are used within the computer science discipline to facilitate intelligent decision making and analysis within systems. The course focuses on providing a practical understanding of a number of computational intelligence techniques without overburdening the student with the theoretical foundation that many of these techniques possess. The course provides a foundational understanding of topics that will be useful for further work in data mining analysis and machine learning. The course will utilize an appropriate programming language (e.g., python) and available software tools (e.g., scikit-learn, scipy and pandas) to give students practical experience utilizing these algorithms to solve real world problems.

Assessment:
- Coursework: 50%
- Final Examination: 50%

Level: III
Semester: 1
Course Code: COMP 3606
Course Title: Wireless and Mobile Computing
- **Number of Credits:** 3
- **Prerequisites:** COMP 2602

Course Description: This course is recommended as an essential part of the "Net-centric Computing" component of the ACM Computing curricula. It looks at the architecture of wireless networks and associated protocols. Software support for wireless and mobile computing is also examined. This includes Android Programming and SMS based applications. The course recognizes that software regimes may evolve over time and hence would examine at least one of the major relevant and applicable wireless programming languages available from time to time. Emerging technologies are also discussed.

Assessment:
- Coursework: 50%
- Final Examination: 50%
LEVEL: III
SEMESTER: 1
COURSE CODE: COMP 3607
COURSE TITLE: OBJECT-ORIENTED PROGRAMMING II
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2603
COURSE DESCRIPTION: The course looks at the main tools of modern object-oriented software development. The main tools are: design-support tools (principally design patterns) and programming-support tools (principally IDE). This course has a strong emphasis on project design and programming using design patterns. Each pattern represents a best practice solution to a software problem in a specific context. The course covers the rationale and benefits of object-oriented software design patterns. Numerous problems will be studied to investigate the implementation of good design patterns.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: COMP 3608
COURSE TITLE: INTELLIGENT SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2611 AND MATH 2250
COURSE DESCRIPTION: This course provides an introduction to artificial intelligence and its applications. The course concentrates on solving problems associated with artificial intelligence using data mining and knowledge representation tools. Topics covered in the course include characteristics of intelligent systems, rule-based expert systems; production rules, reasoning with uncertainty, search strategies, artificial neural networks, genetic algorithms, knowledge engineering and data mining
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: COMP 3609
COURSE TITLE: GAME PROGRAMMING
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2603 AND COMP 2606
COURSE DESCRIPTION: The Game Programming course will allow students to combine concepts taught in order courses together with the new game programming concepts taught in this course, in order to build games. The students will be introduced to an appropriate 2D programming API (e.g., Java), the game loop, game entities, images, sound, animations, game physics and user input. At the end of the course students will have a good grasp on the concepts of game programming and will be able to produce games for multiple platforms. The course covers the fundamental aspects of images, sounds, animations and sprites and shows how to develop a two-dimensional game using these elements. Mathematics and Physics principles are discussed throughout the course whenever they are pertinent to the topics being presented (e.g. collision detection of sprites).
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: COMP 3610
COURSE TITLE: BIG DATA ANALYTICS
NUMBER OF CREDITS: 3
PREREQUISITE: COMP 3605
COURSE DESCRIPTION: The course exposes students to the various approaches used in analyzing big data. The course focuses on the use of data warehouses and distributed database design to analyse structured data and Hadoop for unstructured data. Students are also introduced to various NoSQL databases and approaches for storing and processing large volumes of data. The MapReduce model for processing large data sets in discussed and it is compared against the parallel database approach.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: COMP 3611
COURSE TITLE: MODELLING AND SIMULATION
NUMBER OF CREDITS: 3
PREREQUISITE: MATH 2250
COURSE DESCRIPTION: This course covers basic to intermediate techniques for discrete event simulation of common scenarios. It draws on concepts from the theory of computation and computer programming. In many real world situations, it is infeasible to develop a precise mathematical model with a closed-form analytic solution for a given problem. Modeling and simulation is a means of coping with this type of problem.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: NOT OFFERED IN 2019/2020
COURSE CODE: COMP 3612
COURSE TITLE: SPECIAL TOPICS IN COMPUTER SCIENCE
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2611, COMP 2603
COURSE DESCRIPTION: Each time this course is offered it addresses a topic in computer science that is not covered as a regular course. Topics may change from year to year. Some of these topics include: Computer Graphics; Robotics, Computer Assisted Design (CAD); E-Learning; Mobile Health; Data Visualization; E-Science; Speech Synthesizer; Advanced Processor Architecture; Expert Systems; Computability and Complexity; Proof of Correctness of Programs; Image Processing; any other approved topic.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: COMP 3613
COURSE TITLE: SOFTWARE ENGINEERING II
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2606
COURSE DESCRIPTION: This course is a continuation of developing skills surrounding software engineering, its principles and practical applications within the computer science curriculum. This course will expose students to the required engineering rigors of specifying, designing, developing and maintaining product-quality code. It will prepare them for the challenge of developing software systems as part of a team through a better understanding of development process methodologies, and an appreciation of the different challenges software engineers face in domains as varied as web-based systems, mission-critical systems and safety-critical systems.
ASSESSMENT:
Coursework 100%
LEVEL: III
SEMESTER: 1, 2 AND SUMMER
COURSE CODE: COMP 3911
COURSE TITLE: INTERNSHIP IN COMPUTING I
NUMBER OF CREDITS: 3
PREREQUISITE: PERMISSION OF THE HEAD OF DEPARTMENT
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY

COURSE CONTENT:
The exact nature of the internship depends upon the interests of the student and the specific needs of the cooperating organisation. It is assumed and expected that the intern will be involved in some area of computing and thereby gain valuable experience in his/her selected field of study.
Internships contribute to the education of the whole person by emphasizing the importance of work and by providing opportunities for self-reflection. The internship should be chosen to build on the student's own interests and to relate what he/she has learned in school to its application in the workplace. In addition, the internship should help the student evaluate him/herself as a worker and as a potential employee in a particular professional field. Through the internship, the student will enhance his/her feelings of self-worth and confidence in performing in the workplace. While on the job, the student should not only apply lessons learned in school to his/her particular job tasks, but he/she should also explore vocational possibilities and seek to discover what kinds of work he/she enjoys. In addition, the student will be able to build on his/her résumé and professional portfolio. Internship experiences should also offer the student access to potential mentors in his/her professional field.

Responsibility of the Student:
The student is required to spend about 150 working hours (e.g. 12 hours per week for approximately 13 weeks during semester 1 or 2, or 40 hours per week for approximately 4 weeks) working on a project or projects of the participating organisation’s choice. Where the students are registered for the course in semester 1 or 2, the hours allotted for the internship exercise should be selected by the student, at times when no classes are scheduled.

The student must:
- meet regularly with the Departmental Internship Coordinator (IC) and periodically with fellow interns to discuss his/her internship experiences
- maintain a journal indicating dates and hours worked, and a brief description of the work performed
- submit a final report summarising and evaluating the internship experience; and
- complete a résumé and interview at the Office of Placement and Career Services, UWI (Mona)

Any problems encountered during the internship should be discussed immediately with the IC so that appropriate action can be taken.

Responsibility of the participating Organisation:
Participating organisations will be vetted by the Internship Coordinator to ensure that they are suitable.

The organisation:
- provide a mentor and appropriate work environment
- expose the student to the type of work which he/she would encounter in an entry level professional position
- provide appropriate personnel to oversee the project(s) assigned to the student, and the resources needed to accomplish the work
- treat the student as it would any employee, and
- expect the same degree of responsibility from the student, even as the student is not an employee of the firm

The mentor will be asked to:
- provide a written evaluation of the student’s performance to the IC at the end of the internship;
- provide the student with a periodic evaluation of his/her performance; and
- consult with the IC when and if necessary.

Although an internship is a learning experience, it is expected that the student will normally earn some compensation for work performed that may contribute to income generating activities, either in the form of a wage, stipend, or reimbursement of expenses.
Responsibility of the Internship Coordinator (IC):
The IC will:
- organise preparation seminars for students at the start of each semester, featuring presentations from the Office of Placement and Career Services, industry personnel and alumni
- arrange preliminary meetings with mentors where students are briefed on expectations and responsibilities specific to the organisation;
- meet/correspond with students: student group meetings (weekly) via online journal, videoconference, etc. for students to share experiences;
- review reports from the organisation;
- review reports from the student;
- serve as a liaison between the Department of Computing & Information Technology (DCIT) and the participating organisation;
- oversee the progress of the intern;
- make suggestions to both the student and the organisation on ways to enhance the benefits of the internship;
- meet regularly with the intern to discuss his/her experiences
- help resolve any problems the organisation and the student might have; and
- review all the reports submitted by the participating organisation and the student.

Evaluation:
There will be two components of the course’s assessment: the internship mentor’s evaluation and the student’s work during the internship and his/her final submission at the conclusion of the internship. Students must pass both aspects of the course.

The internship mentor will provide a written evaluation of the student’s performance. This assessment will be done using a 5-point Likert scale. An assessment/evaluation form will be provided for this purpose, and the form will be returned to the DoC in a sealed envelope. The internship coordinator will assign a grade not exceeding 25% of the possible marks based on this assessment, and on the student’s journal which would detail the tasks assigned to the student and their level of completion.

The student will be evaluated on:
- Quality of work;
- Use of time (efficient/effective use of time to complete tasks);
- Ability to take initiative (ability to work independently);
- Grasp of subject (understanding of applicable standards and procedures);
- Judgement skills (ability to make appropriate work-related decisions);
- Interpersonal relations/teamwork (effectiveness in working with peers and supervisors);
- Adaptability (ability to alter activities to accommodate change);
- Problem solving/critical thinking skills;
- Punctuality, attendance;
- Verbal and written communication skills;
- Whether the goals of the internship were met (qualitative response);
- What skills the student developed (qualitative response);
- The observed primary strengths of the intern (qualitative response);
- Recommendations for improvement (qualitative response);
- What is your overall assessment of the student’s performance? (qualitative response); and
- Other relevant observations.

75% will be based on the following:
- Regular communication with the DIC (weekly reports) - 15%
- Attendance at and participation in required internship meetings (weekly) - 10%
- Oral presentation summarizing the activities completed during the internship - 20%
- Documentation of the internship experience in an internship portfolio (30%) which includes:
 - A final report summarizing the internship, relating it to courses done, and reflecting on the experience. The final report will have an appendix containing the student’s journal entries from the internship (guidelines will be provided).
 - An updated résumé that incorporates the internship experience.
 - A “company evaluation form” rating the participating organisation.
 - Proof of consultation/debriefing with the Office of Placement and Career Services, UWI (Mona).

Return to Table of Contents
LEVEL: III
SEMESTER: 1, 2 AND SUMMER
COURSE CODE: COMP 3912
COURSE TITLE: INTERNSHIP IN COMPUTING II
NUMBER OF CREDITS: 6
PREREQUISITE: PERMISSION OF THE HEAD OF DEPARTMENT
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY

COURSE CONTENT:
The exact nature of the internship depends upon the interests of the student and the specific needs of the cooperating organisation. It is assumed and expected that the intern will be involved in some area of computing and thereby gain valuable experience in his/her selected field of study.
Internships contribute to the education of the whole person by emphasizing the importance of work and by providing opportunities for self-reflection. The internship should be chosen to build on the student's own interests and to relate what he/she has learned in school to its application in the workplace. In addition, the internship should help the student evaluate him/herself as a worker and as a potential employee in a particular professional field. Through the internship, the student will enhance his/her feelings of self-worth and confidence in performing in the workplace.

While on the job, the student should not only apply lessons learned in school to his/her particular job tasks, but he/she should also explore vocational possibilities and seek to discover what kinds of work he/she enjoys. In addition, the student will be able to build on his/her résumé and professional portfolio. Internship experiences should also offer the student access to potential mentors in his/her professional field.

Responsibility of the Student:
The student is required to spend about 150 working hours (e.g. 12 hours per week for approximately 13 weeks during semester 1 or 2, or 40 hours per week for approximately 4 weeks) working on a project or projects of the participating organisation’s choice. Where the students are registered for the course in semester 1 or 2, the hours allotted for the internship exercise should be selected by the student, at times when no classes are scheduled.

The student must:
• meet regularly with the Departmental Internship Coordinator (IC) and periodically with fellow interns to discuss his/her internship experiences
• maintain a journal indicating dates and hours worked, and a brief description of the work performed
• submit a final report summarising and evaluating the internship experience; and
• complete a résumé and interview at the Office of Placement and Career Services, UWI (Mona)

Any problems encountered during the internship should be discussed immediately with the IC so that appropriate action can be taken.

Responsibility of the participating Organisation:
Participating organisations will be vetted by the Internship Coordinator to ensure that they are suitable.

The organisation will:
• provide a mentor and appropriate work environment
• expose the student to the type of work which he/she would encounter in an entry level professional position
• provide appropriate personnel to oversee the project(s) assigned to the student, and the resources needed to accomplish the work
• treat the student as it would any employee, and
• expect the same degree of responsibility from the student, even as the student is not an employee of the firm

The mentor will be asked to:
• provide a written evaluation of the student’s performance to the IC at the end of the internship
• provide the student with a periodic evaluation of his/her performance; and
• consult with the IC when and if necessary.

Although an internship is a learning experience, it is expected that the student will normally earn some compensation for work performed that may contribute to income generating activities, either in the form of a wage, stipend, or reimbursement of expenses.
Responsibility of the Internship Coordinator (IC):
The IC will:

• organise preparation seminars for students at the start of each semester., featuring presentations from the Office of Placement and Career Services, industry personnel and alumni;
• arrange preliminary meetings with mentors where students are briefed on expectations and responsibilities specific to the organisation;
• meet/correspond with students: student group meetings (weekly) via online journal, videoconference, etc. for students to share experiences;
• review reports from the organisation;
• review reports from the student;
• serve as a liaison between the Department of Computing (DoC) and the participating organisation;
• oversee the progress of the intern;
• make suggestions to both the student and the organisation on ways to enhance the benefits of the internship;
• meet regularly with the intern to discuss his/her experiences;
• help resolve any problems the organisation and the student might have; and
• review all the reports submitted by the participating organisation and the student.

Evaluation:
There will be two components of the course’s assessment: the internship mentor’s evaluation and the student’s work during the internship and his/her final submission at the conclusion of the internship. Students must pass both aspects of the course.

The internship mentor will provide a written evaluation of the student’s performance. This assessment will be done using a 5-point Likert scale. An assessment/evaluation form will be provided for this purpose, and the form will be returned to the DoC in a sealed envelope. The internship coordinator will assign a grade not exceeding 25% of the possible marks based on this assessment, and on the student’s journal which would detail the tasks assigned to the student and their level of completion.

The student will be evaluated on:

• Quality of work;
• Use of time (efficient/effective use of time to complete tasks);
• Ability to take initiative (ability to work independently);
• Grasp of subject (understanding of applicable standards and procedures);
• Judgement skills (ability to make appropriate work-related decisions);
• Interpersonal relations/teamwork (effectiveness in working with peers and supervisors);
• Adaptability (ability to alter activities to accommodate change);
• Problem solving/critical thinking skills;
• Punctuality, attendance;
• Verbal and written communication skills;
• Whether the goals of the internship were met (qualitative response);
• What skills the student developed (qualitative response);
• The observed primary strengths of the intern (qualitative response);
• Recommendations for improvement (qualitative response);
• What is your overall assessment of the student’s performance? (qualitative response); and
• Other relevant observations.
ELECTRICAL & COMPUTER ENGINEERING: ECNG

LEVEL: II
SEMESTER: 2
COURSE CODE: ECNG 2001
COURSE TITLE: COMMUNICATION SYSTEMS I
NUMBER OF CREDITS: 3
PREREQUISITES: ECNG 2011 SIGNALS AND SYSTEMS & ECNG 2013 MATHEMATICS FOR ELECTRICAL ENGINEERS II; PHYS 2150 MATHEMATICS FOR PHYSICISTS (for Physics students only)
DEPARTMENT RESPONSIBLE: ELECTRICAL AND COMPUTER ENGINEERING

COURSE DESCRIPTION: This is the introductory course in Communications in the Department. It establishes the technical foundation for the topic by introducing the fundamentals of communications and exploring the common principles that underpin communications systems. The course provides a detailed treatment of amplitude modulation (AM) techniques (such as conventional AM, double-sideband suppressed carrier AM, and single sideband AM) as well as that of angle modulation techniques (i.e., frequency modulation and phase modulation) in the presence of additive white Gaussian noise. Once these communication principles are well established, the course illustrates their application to a representative set of analog communication systems. This course will be assessed through simulation exercises, in-course examination, group project and a final examination.

LEVEL: III
SEMESTER: 1
COURSE CODE: ECNG 3001
COURSE TITLE: COMMUNICATION SYSTEMS II
NUMBER OF CREDITS: 3
PREREQUISITES: ECNG 2001 COMMUNICATION SYSTEMS I
DEPARTMENT RESPONSIBLE: ELECTRICAL AND COMPUTER ENGINEERING

COURSE DESCRIPTION: Digital communications is the primary means of electronic communications today, enjoying tremendous levels of reach around the world. ECNG 3001 Communications II provides students with the basic theoretical tools required for the modeling, analysis and design of digital communication systems. It begins with a brief review of analog communication systems and an overview of digital communication systems. The course then explores the key principles which underlie the characterization of information sources and the basic techniques employed in processing analog and digital information signals for transmission. Considerations for the digital transmission of information over various media are explored. Digital signal reception and detection techniques are introduced. The course closes with a concise treatment of the overall design of a basic digital communication system. This course is assessed through a design project and a final examination.

ASSESSMENT:
Coursework 30%
Final Examination (one 3-hr paper) 70%

LEVEL: III
SEMESTER: 1
COURSE CODE: ECNG 3002
COURSE TITLE: DATA COMMUNICATION SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: ELECTRICAL AND COMPUTER ENGINEERING

COURSE DESCRIPTION: ECNG 3002 explores the organization and operation of contemporary data networks by presenting fundamental principles and applying these to the architecture of the global Internet. It begins by identifying applications and requirements of data communication and exploring network structure and architecture. It distinguishes between the communication of data between a pair of computers and across a network of computers. Current standards, including the OSI and TCP/IP reference models are investigated. Once layered network architecture is established a top down approach is employed, investigating the functions, implementation and performance of the Application, Transport, Network, Data Link and Physical Layers. This course will be assessed through practical/laboratory based coursework and a final examination.

ASSESSMENT:
Coursework 30%
Final Examination (one 3-hr paper) 70%
LEVEL: III
SEMESTER: 2
COURSE CODE: ECNG 3003
COURSE TITLE: TELECOMMUNICATION NETWORKS
NUMBER OF CREDITS: 3
PREREQUISITES: ECNG 3001 AND ECNG 3002
DEPARTMENT RESPONSIBLE: ELECTRICAL AND COMPUTER ENGINEERING
COURSE DESCRIPTION: ECNG 3003 is a capstone course in contemporary telecommunications networks and technologies. Assuming prior understanding of fundamental communications including coding, modulation and error analysis, the course starts by dismantling the telecommunications network into its transmission, switching/routing, access and signaling network subsystems. Key technologies used in each sub network are explored, paying particular attention to those that facilitate the delivery of voice service over circuit switched networks. The course identifies the benefits, requirements, and challenges of transporting various traffic types on a single, converged network. The example of Voice over Internet Protocol (VoIP) is explored in detail and its implementation and performance compared to that of traditional circuit switched voice service. This course will be assessed through practical based coursework, in-course exam and a final examination.
ASSESSMENT:
Coursework 30%
Final Examination (One 3-hr paper) 70%

LEVEL: III
SEMESTER: 2
COURSE CODE: ECNG 3019
COURSE TITLE: ADVANCED CONTROL SYSTEMS DESIGN
NUMBER OF CREDITS: 3
PREREQUISITES: ECNG 2009 CONTROL SYSTEMS; PHYS 3201 ADVANCE ELECTRONICS AND CONTROL THEORY (for Physics students only)
DEPARTMENT RESPONSIBLE: ELECTRICAL AND COMPUTER ENGINEERING
COURSE DESCRIPTION: This course first reviews the typical techniques for classical control analysis and design as covered in earlier undergraduate study such as Bode plots, Nyquist, Root Locus etc. Control System Development such as lead/lag compensator design methods are comprehensively reviewed with continuous time approach first covered. After the fundamentals of digital control implementation are introduced, these classical control design methods are revisited in a digital/hybrid system development context. The second part of the course focuses on the introduction to modern control strategy using state space system analysis and development. State space representation, State diagrams, Canonical forms of system representation, controllability and observability as well as observer design are all introduced. This course will be assessed through in-course exam and a final examination.
ASSESSMENT:
Coursework 10%
Final Examination (One 3-hr paper) 90%

LEVEL: III
SEMESTER: 2
COURSE CODE: ECNG 3025
COURSE TITLE: DISCRETE SIGNAL PROCESSING
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: ELECTRICAL AND COMPUTER ENGINEERING
COURSE DESCRIPTION: In this course, we will examine the techniques of discrete-time signal processing and digital signal processing, investigate the development of digital FIR and IIR filters, study the Discrete-time Fourier Transform and in particular, a numerical, efficient version called the Fast Fourier Transform (FFT) and use the FFT to carry out spectral analysis of some sample signals. We will also examine some Digital Signal Processors which are specialized microprocessors created for the sole purpose of performing numerical calculations. This course will be assessed through in-course exam and a final examination.
ASSESSMENT:
Coursework 20%
Final Examination (One 3-hr paper) 80%
ECONOMICS: ECON

LEVEL: I
SEMESTER: 1
COURSE CODE: ECON 1001
COURSE TITLE: INTRODUCTION TO MICROECONOMICS
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: ECONOMICS
COURSE DESCRIPTION: This course provides students to the history of economic thought highlighting some of the key economic issues, which have preoccupied the discipline from its origins. The course also provides an introduction to the basic principles of micro-economic analysis together with the main perspectives on the functioning of the macro-economy. The micro-economic analysis is illustrated by reference to a key export sector in the Caribbean (e.g. oil or bananas). The implications of trends in the latter for the Balance of Payments and macro economy conclude this first semester course.

LEVEL: I
SEMESTER: 2
COURSE CODE: ECON 1002
COURSE TITLE: INTRODUCTION TO MACROECONOMICS
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
CO-REQUISITE: ECON 1001
DEPARTMENT RESPONSIBLE: ECONOMICS
COURSE DESCRIPTION: This course emphasises macro-economic theory and policy and the related national income accounting together with international trade and the balance of payments. There is a significant stress on the implications of these economic issues for the Caribbean reality.

LEVEL: I
SEMESTER:
COURSE CODE: ECON 1005
COURSE TITLE: INTRODUCTION TO STATISTICS
NUMBER OF CREDITS: 3
PREREQUISITES:
DEPARTMENT RESPONSIBLE: ECONOMICS
COURSE DESCRIPTION: Descriptive Statistics; Probability and Probability distributions, Sampling distributions, Estimation, Hypothesis testing, simple correlation and regression.

ENVIRONMENTAL SCIENCE: ESST

LEVEL: I
SEMESTER: 2
COURSE CODE: ESST 1000
COURSE TITLE: PHYSICS FOR ENVIRONMENTAL SCIENCES
NO. OF CREDITS: 3
PREREQUISITES: ONE CAPE SCIENCE SUBJECT (OR EQUIVALENT) IN EITHER BIOLOGY, GEOGRAPHY OR ENVIRONMENTAL SCIENCE OR AN APPROVED ASSOCIATE DEGREE IN SCIENCE WITH A MINIMUM GPA OF 2.50
COURSE DESCRIPTION: Physics for Environmental Sciences offers an introduction into the physics of the Earth’s climate system and the physical methods which are developed and applied to investigate quantitatively different environmental systems. The principal topics covered are the physics of the built environment, the physics of human survival, energy for living, environmental health, revealing the planet, the sun and the atmosphere, the biosphere, the global climate, and climate change. It provides an essentially non-mathematical treatment suitable for a first year undergraduate level course. Course delivery would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials

ASSESSMENT

Coursework 50%
Final Examination 50%
LEVEL: I
SEMESTER: 1
COURSE CODE: ESST 1001
COURSE TITLE: BIOLOGY FOR ENVIRONMENTAL SCIENCES
NO. OF CREDITS: 3
PREREQUISITES: ONE CAPE SCIENCE SUBJECT (OR EQUIVALENT) IN EITHER BIOLOGY, GEOGRAPHY OR ENVIRONMENTAL SCIENCE OR AN APPROVED ASSOCIATE DEGREE IN SCIENCE WITH A MINIMUM GPA OF 2.50
COURSE DESCRIPTION: This course introduces the biological principles underlying the study of environmental science, and provides an introduction to the diversity of microbes, plants and animals. It also examines the importance and diversity of the biological component of the environment. It will also cover basic principles of biochemistry and genetics, and is a necessary foundation course for several Level II-III courses in the Environmental Sciences programme. Delivery of course materials would involve a combination of lectures, practicals, tutorials, and web bases materials. Assessments are designed to encourage students to work continuously with the course materials
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: ESST 1002
COURSE TITLE: CHEMISTRY FOR ENVIRONMENTAL SCIENCES
NO. OF CREDITS: 3
PREREQUISITES: ONE CAPE SCIENCE SUBJECT (OR EQUIVALENT) IN EITHER BIOLOGY, GEOGRAPHY OR ENVIRONMENTAL SCIENCE OR AN APPROVED ASSOCIATE DEGREE IN SCIENCE WITH A MINIMUM GPA OF 2.50
COURSE DESCRIPTION: Introduction to Environmental Chemistry offers an introduction to the field of environmental chemistry. It is designed to provide fundamental understanding in the underlying concepts of Chemistry along with the more specific areas relevant to environmental concepts. Students will be introduced to the fundamentals of general, physical and organic chemistry within the context of their application to environmental issues. To achieve this, qualitative and quantitative aspects of environmental processes will be studied. Specific topics include processes in the atmosphere, natural waters, and soils, along with the transport and fate of chemicals in the environment. Wherever possible, examples involving local/regional issues and current events will be used to illustrate the concepts in the course. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: ESST 1004
COURSE TITLE: SCIENCE COMMUNICATION
NO. OF CREDITS: 3
PREREQUISITES: ONE CAPE SCIENCE SUBJECT (OR EQUIVALENT) IN EITHER BIOLOGY, GEOGRAPHY OR ENVIRONMENTAL SCIENCE OR AN APPROVED ASSOCIATE DEGREE IN SCIENCE WITH A MINIMUM GPA OF 2.50
COURSE DESCRIPTION: The ability to communicate information and ideas to others is fundamental to every branch of science. Communications skills are reported by employers to be the qualities they most desire in potential job applicants. Scientists are often required to report their findings to a range of audiences using various delivery methods. Unfortunately, communication skills do not come naturally, nor can they be learned by simply reading about the subject. They require development, with the opportunity for practice and feedback, before students can feel truly comfortable expressing themselves orally and in writing, in logical, clear and concise terms. The aim of this course is to provide students entering the Environmental Science and Sustainable technology with instruction on developing effective scientific communication skills relevant to areas of research and employment. Some of the main skills would include reporting writing, literature reviews, oral presentation and team-work. The course content would be delivered in 5 modules using a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT:
Coursework 100%
LEVEL: I
SEMESTER: 2
COURSE CODE: ESST 1005
COURSE TITLE: INFORMATION TECHNOLOGY FUNDAMENTALS
NO. OF CREDITS: 3
PREREQUISITES: ONE CAPE SCIENCE SUBJECT (OR EQUIVALENT) IN EITHER BIOLOGY, GEOGRAPHY OR ENVIRONMENTAL SCIENCE OR AN APPROVED ASSOCIATE DEGREE IN SCIENCE WITH A MINIMUM GPA OF 2.50
COURSE DESCRIPTION: This course provides an introduction of the discipline of IT. It describes how it relates to environmental science and sustainable technology. The goal is to help students understand the diverse contexts in which IT is used and the challenges inherent in the diffusion of innovative technology. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT
Coursework 50%
Final Examination 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: ESST 1006
COURSE TITLE: HUMAN IMPACTS ON THE ENVIRONMENT
NO. OF CREDITS: 3
PREREQUISITES: ONE CAPE SCIENCE SUBJECT (OR EQUIVALENT) IN EITHER BIOLOGY, GEOGRAPHY OR ENVIRONMENTAL SCIENCE OR AN APPROVED ASSOCIATE DEGREE IN SCIENCE WITH A MINIMUM GPA OF 2.50
COURSE DESCRIPTION: This course gives an overview of human-environment interactions exploring causes, effects and solutions of human impacts using a broad temporal and spatial perspective. We consider the evolutionary and historical changes in human-environment interactions and the main drivers of change: population growth, technological and lifestyle changes. Regional variation in these drivers along with issues of economy, urbanisation and inequality will also be considered. The bulk of the course illustrates the complex and dynamic ecological interactions between humans and specific resources and components of the environment necessary for human wellbeing namely ecosystems and biodiversity, food, freshwater, clean air, materials and energy. The consequences of these interactions such as resource depletion, environmental degradation and global climate change will be highlighted. Future scenarios and management solutions will be explored. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: ESST 2001
COURSE TITLE: PRINCIPLES OF ENVIRONMENTAL CHEMISTRY 1
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 1002 AND EITHER CAPE PURE MATHEMATICS (UNITS I AND II) OR (MATH 1115 OR MATH 1125)
COURSE DESCRIPTION: This course is a broad-based introduction to environmental chemistry for advanced environmental science students. The goal of the course is to introduce the application of chemical facts and principles to processes occurring in the environment, and the solution of problems relating to environmental processes and pollution. This course will cover issues surrounding water, air, soil chemistry, and the processes that occur naturally within them, along with the study of what happens when human interference changes the picture. There will be a specific effort made to include local and regional examples to illustrate the concepts covered in this course. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT
Coursework - 50%
Final Examination - 50%
LEVEL: II
SEMESTER: 2
COURSE CODE: ESST 2004
COURSE TITLE: PHYSICS FOR ENVIRONMENTAL SCIENCE II
PREREQUISITES: ESST 1000
COURSE DESCRIPTION: Environmental Physics builds on the level I courses, Physics for Environmental Sciences, Chemistry for Environmental Sciences, Mathematics for Environmental Sciences I and Mathematics for Environmental Sciences II. There is a quantitative approach to the physics of the processes of the environment together with a more of an integrated view of the science of the environment. Topics to be covered include energy and the environment, weather and climate, climate change and global warming, radiative forcing and pollution. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: ESST 2005
COURSE TITLE: POLLUTION MANAGEMENT AND ABATEMENT TECHNOLOGIES
PREREQUISITES: ESST 1006; ESST 1002
COURSE DESCRIPTION: This course examines the various approaches used for pollution management taking into account legislative, management systems and engineering approaches. This would be addressed within the context of sustainable development. It also highlights some of the major environmental problems and focuses on how these are addressed. It would cover major strategies used for dealing with waste/pollution control in different matrices (air, water and soils). The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT
Coursework 50%
Final Examination 50%
ASSESSMENT and population relationships; anthropogenic) environmental deliberate non-BIOLOGY PREREQUISITES: ESST 1001 OR BIOL 1262, BIOL 1263 AND BIOL 1362

COURSE DESCRIPTION: Healthy ecosystems rely on interactions between the living portions of the environment and its non-living components. However, human activities can cause significant disturbance as a result of the accidental or deliberate introduction of pollutants into the environment. These disturbances can cause significant alterations in the interactions between the various components that make up the ecosystem. The main focus would be on the effects of these pollutants and how they can be assessed using physicochemical and biological endpoints. Particular attention would be placed on describing (1) what pollution is and how/why it is harmful at multiple levels of biological organization, (2) what the root sources and causes of pollution are, (3) what happens to pollutants (chemical, biological and physical) when they enter the environment, and (4) how each pollutant class affects individual and community health over acute to chronic exposure periods. The course will focus on a variety of anthropogenic stressors in outdoor and indoor environments such as (1) chemical agents including ozone, asbestos, radon, smoke, nanoparticles, heavy metals, chlorination by-products, pesticides, petroleum hydrocarbons and endocrine active chemicals; (2) physical stressors including radiation, heat and noise; and (3) food/water-borne stressors such as bacteria, viruses, algae/biotoxins and parasites. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: ESST 3000
COURSE TITLE: ENVIRONMENTAL TOXICOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 2001

COURSE DESCRIPTION: Healthy ecosystems rely on interactions between the living portions of the environment and its non-living components. However, human activities can cause significant disturbance as a result of the accidental or deliberate introduction of contaminants into the environment. These disturbances can cause significant alterations in the interactions between the various components that make up the ecosystem. This course introduces the concepts of environmental toxicology. It is concerned with the toxic effects of environmental chemicals (both natural and anthropogenic) on living organisms. Fundamental toxicological concepts will be covered including dose-response relationships; absorption of toxicants; distribution and storage of toxicants; biotransformation and elimination of toxicants; acute and sub-lethal toxicity; target organ toxicity and risk assessment. The interaction between toxicants and organisms would be investigated at varying levels of biological organizations, ranging from molecular, tissue, organ, individual, population and ecosystem. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 1
COURSE CODE: ESST 3001
COURSE TITLE: ENVIRONMENTAL FATE AND TRANSPORT
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 3002 AND EITHER CAPE PURE MATHEMATICS (UNITS I AND II) OR (MATH 1115 OR MATH 1125)
COURSE DESCRIPTION: A significant aspect of environmental studies is the ability to predict the fate (end point) and transport mechanisms (how the contaminants get to the endpoint) of environmentally relevant chemicals. This course is designed to introduce students to the concepts of environmental fate and transport. The factors that affect the movement of chemicals in the air, soil, water and biotic environments will be discussed, including vapour pressure, wind, water movement, soil/water and biota/water partitioning and chemical transformation reactions. Mathematical and chemical treatments will be utilized to predict the final distribution of chemicals in the various environmental compartments. The delivery of course materials would involve a combination of lectures, tutorials and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT
Coursework 75%
Final Examination 25%

LEVEL: III
SEMESTER: 1
COURSE CODE: ESST 3002
COURSE TITLE: ENVIRONMENTAL MODELING
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2163 AND (MATH 1115 OR MATH 1125)
COURSE DESCRIPTION: This course introduces advanced statistical concepts that can be applied to data in the biological, life sciences and environmental sciences. It covers more advanced statistical concepts in the arena of experimental design, quantitative analysis of data and statistical inference. This course emphasises applications and will empower students to use sound statistical methods in the analysis of environmental data. Assessment is designed to make students work continuously with the course materials, exploring and critically analysing research and real world data. Assessment will be continuous through assigned problem sheets allowing continuous feedback and guidance on problem solving techniques.
ASSESSMENT
Coursework 100%

LEVEL: III
SEMESTER: 1
COURSE CODE: ESST 3003
COURSE TITLE: ENVIRONMENTAL MONITORING AND ASSESSMENT
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2163
COURSE DESCRIPTION: Environmental monitoring is a broad field which intends to answer both very specific questions such as "what is the concentration of lead in the water and is it above a threshold of safety" to very broad questions such as "what is the condition of a particular ecosystem and is it changing?" Answering such questions with an effective monitoring strategy takes very different approaches. The lectures, discussions, readings and field exercises for this course are intended to expose the student to a wide range of monitoring strategies and current environmental issues.
This course will introduce students to broad principles within the field of environmental monitoring and give students a basic understanding of various monitoring techniques that can be used to assess environmental impacts. It would focus on chemical, biological and ecological methods applied to air water and soil. It would emphasize why monitoring is important and focus on some approaches, sample management and quality control. The delivery of course materials would involve a combination of lectures, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT
Coursework 100%
LEVEL: III
SEMESTER: 11
COURSE CODE: ESST 3004
COURSE TITLE: CAPSTONE PROJECT
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2163 AND ESST 3002

COURSE DESCRIPTION: During the first semester, students would be required to discuss ideas with different advisors and decide on a specific project option. They would then be required to prepare a pre-proposal for submission. They would also be required to do a literature review, outlining the problem and the approach to be used. Upon completion of their research students would have to write up a project according to the specified format and submit it for assessment. They would also be required to do a 15 minutes oral presentation. Students should also consult the course manual for further details. Capstone projects are expected to demonstrate reflection, critical thinking, and effective communication (including presentation, research and technological skills as defined by the nature of the project). The benefit of the capstone project is that you are able to take the theoretical ideas learned and apply them to address real issues.

ASSESSMENT
Coursework 100%

LEVEL: III
SEMESTER: 2
COURSE CODE: ESST 3006
COURSE TITLE: FUNDAMENTALS OF GEOGRAPHIC INFORMATION SYSTEMS (GIS)
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2163

COURSE DESCRIPTION: A basic course that focuses on how geographical information science (GIS) is used and applied in environmental research and resource management. It introduces students to fundamental concepts in GIS including the basic data structures in GIS, sources of data, geographic positioning systems and other data collection techniques, geodesy (including geoids, datums, geographic coordinate systems and map projections) and data management (including fundamental concepts in the development of geodatabases). Using examples from the natural sciences, we will explore basic spatial and tabular analyses, and how GIS is used to assist environmental scientists and natural resource managers, how it is employed for data management, landscape ecology and how it aids in decision making. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT
Coursework 100%

LEVEL: III
SEMESTER: 2
COURSE CODE: ESST 3007
COURSE TITLE: ENVIRONMENTAL MANAGEMENT INFORMATION SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 2003

COURSE DESCRIPTION: Environmental management information systems (EMIS) present ICT solution for environmental management: planning, assessment, compliance monitoring and impact assessment as well as emergency. They integrate a number of advanced analytical functions for operational real-time control, but also scenario analysis, strategic planning, and optimization, within a shared common information basis. EMIS should be compliant with environmental management system standard ISO 14001 on integrated pollution prevention and control, including industrial emissions, and noise monitoring and management for construction, operations, and traffic. Students will learn what hardware, software and techniques are appropriate for building an EMIS. They will be familiar with EMIS design principles and guidelines illustrated by a number of case studies. Industrial EMIS support strategic planning and environmental impact assessment with real-time monitoring, on-line reporting, and operational control including emergency management options. They could include EMIS modules like: 1) tools addressing resources (e.g. water, energy) efficiency, emission optimization and techno-economic valuation; 2) model supported tools for monitoring, reporting and forecasting of environmental impacts from normal operations with online compliance reporting, alerts and alarms; 3) tools for risk assessment and emergency management of accidental release of hazardous materials; 4) administrative data bases of emission sources, MSDS and hazardous substances data base, use and storage, waste streams; 5) tools for simulation model-based analysis, environmental and strategic impact environmental assessment.

ASSESSMENT
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: NOT OFFERED IN 2018/2019
COURSE CODE: ESST 3101
COURSE TITLE: ENVIRONMENTAL ERGONOMICS
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 2002
COURSE DESCRIPTION: The course concentrates on the interaction between the user and his or her physical environment. The principles, methods and models used in environmental ergonomics are provided in terms of the effects of heat and cold, vibration, noise and light on the health, comfort and performance of people. Humans do not respond to the environment in a way monotonically related to direct measures of the physical environment. There are human characteristics which determine human sensitivities and responses. Practical methods for assessing responses to individual environmental components are presented as well as responses to ‘total’ environments. The course provides a basic explanation of the systems of the body to establish a foundation for understanding and consistently applying ergonomic principles. Covers the human senses and the sensory process for each, including techniques for assessing sensory impact. Explains the functionality, relationship, and elements of the integrated roles of the musculo-skeletal system. Introduces the basic ergonomic principles of work place and work tool design. Includes coverage of the concepts of information processing and user experience design of digital workplaces. The course introduces the green ergonomics approach and the relationship between ergonomics and sustainable development. Design principles for green ergonomics based on ecological and ergonomics science are introduced. Environmental health and safety principles are presented. The course content is oriented to the model of European Ergonomist. Study of this course is beneficial to students wishing to qualify for the title Eur. Ergs. in this subject.
ASSESSMENT
Coursework 100%

LEVEL: III
SEMESTER: 2
COURSE CODE: ESST 3102
COURSE TITLE: ENVIRONMENTAL IMPACT ASSESSMENTS
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 3003
COURSE DESCRIPTION: This course introduces the methodology of environmental impact assessment (EIA) as a vital tool for sound environmental decision-making. It provides an introduction to the concepts, methods, issues and various stages of the EIA process. The role of the various stages of the EIA process, such as screening, scoping, EIA document preparation, public involvement, review and assessment, monitoring and auditing, appeal rights and decision-making are examined. The course mainly focuses on EIA in the Caribbean drawing on case studies from the region, but also includes other EIA systems of other countries. The delivery of course materials would involve a combination of lectures, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.
ASSESSMENT
Coursework 50%
Final Examination 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: ESST 3103
COURSE TITLE: ENVIRONMENTAL HEALTH
NUMBER OF CREDITS: 3
PREREQUISITES: BIOL 2464 AND ESST 1006
COURSE DESCRIPTION: This course provide an understand of how both the natural and built environment affect human health, by looking at the impact of physical, chemical and biological factors external to humans. It examines health issues, scientific understanding of causes, and possible future approaches to control of the major environmental health problems in industrialized and developing countries. Topics include how the body reacts to environmental pollutants; physical, chemical, and biological agents of environmental contamination; vectors for dissemination (air, water, soil); solid and hazardous waste; susceptible populations; biomarkers and risk analysis; the scientific basis for policy decisions; and emerging global environmental health problems. The delivery of course materials would involve a combination of lectures, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials
ASSESSMENT
Coursework 100%
LEVEL: III
SEMESTER: 1
COURSE CODE: ESST 3104
COURSE TITLE: CLIMATE CHANGE AND ABATEMENT TECHNOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: ESST 2005
COURSE DESCRIPTION: Climate change and its effects are a major environmental concern today; this is particularly so for small island developing states in the Caribbean. This course will develop students' understanding of the nature of climate change and the strategies that can be used to mitigate its effects. The course will have two main units; the first will discuss the issues surrounding climate change, primarily the science behind climate change; the mechanisms that underpin the greenhouse effect, energy balances, molecular energy absorption by greenhouse gases, the sources of these gases and the general global effects of the global warming and how this translates into climate change. The consequences of climate change will be discussed, as well as the continuing debate on whether or not global warming/climate change are happening at all, or being caused by rising carbon dioxide concentrations in the atmosphere. The second unit will introduce the mechanisms that are in use to mitigate the potential hazards of climate change. This will include legislative and technical efforts to reduce greenhouse gas emissions. The course will cover international agreements like the Kyoto Protocol, local and regional legislation, technological solutions, like alternative energy sources and strategies to reduce the current climate change impacts being experienced by some nations. The delivery of course materials would involve a combination of lectures, practicals, tutorials, and web based materials. Assessments are designed to encourage students to work continuously with the course materials.

ASSESSMENT
Coursework
Final Examination

50%
50%

FOUNDATION COURSES: FOUN

LEVEL: I
SEMESTERS: 1 AND 2
COURSE CODE: FOUN 1101
COURSE TITLE: CARIBBEAN CIVILISATION
NUMBER OF CREDITS: 3
PREREQUISITES:
FACULTY RESPONSIBLE: FACULTY OF HUMANITIES & EDUCATION
COURSE DESCRIPTION: (NOT FOR HUMANITIES STUDENTS)
OBJECTIVES:
1. To develop an awareness of the main process of cultural development in Caribbean societies, highlighting the factors, the problematics and the creative output that have fed the emergence of Caribbean identities.
2. To develop a perception of the Caribbean as wider than island nations or linguistic blocs.
3. To stimulate students' interest in, and commitment to Caribbean civilisation and to further their self-definition.
Modules:
1. Origins
 I Caribbean space / physical environment / Amerindian peoples and Cultures: their legacy.
 II European conquest, settlement and demographic changes.
2. Fighting for Freedom
 I Slavery, marronage and rebellion.
 II New in/out- migration, indenture, and their consequences: 19th and 20th centuries.
3. Quest for Identity
 I Race and nationalism.
 II Independence, dependence and regionalism.
 III Creolisation and ethnic identity.
4. Ideas, Ideologies and Theologies
 I Education/religion in the Caribbean.
 II Caribbean Intellectual Traditions.
5. Caribbean Expressions
 I Caribbean music - Calypso, Reggae.
 II Caribbean festivals.
 III Sports.
 IV Caribbean voices - French, English, Spanish, Linguistic Identity.

ASSESSMENT
In-course test
Final 2-hour examination

40%
60%
LEVEL: 1
SEMESTER: 2
COURSE CODE: FOUN 1105
COURSE TITLE: SCIENTIFIC AND TECHNICAL WRITING
NUMBER OF CREDITS: 3
PREREQUISITES:
Any one of the following:
- CSEC English Language Grade I (General Proficiency) Grade I or II in CAPE Communication Studies
- General Paper Grade A or B
- A Pass in the English Language Proficiency Test
- A Pass in English as a Foreign Language (Intermediate)

FACULTY RESPONSIBLE: FACULTY OF HUMANITIES & EDUCATION
COURSE DESCRIPTION: The aim of this course is to develop students writing skills in areas related to their academic disciplines. There will be twenty-four (24) contact hours. Classroom activity will be supplemented by printed materials.

Option C
Scientific and Technical Writing (Compulsory for FST Students)
Technical Description
Expository Writing for Scientific and Technical Purposes

ASSESSMENT
Coursework 50%
Final Examination 50%

Students must pass both coursework and final examination in order to qualify for an overall pass in the course.

Attendance Regulation:
A student in any of the Foundation courses in English Language who misses two (2) out of any six (6) class hours will be warned, and after two warnings any further absence without prior permission or an acceptable medical certificate will result in automatic exclusion from the examination.

NB: FST students should not register for FOUN 1001 – English for Academic Purposes

LEVEL: 1
SEMESTER: 1, 2 AND SUMMER
COURSE CODE: FOUN 1210
COURSE TITLE: SCIENCE, MEDICINE AND TECHNOLOGY IN SOCIETY
NUMBER OF CREDITS: 3
PREREQUISITES: NONE

RESTRICTIONS: NOT OFFERED TO FST STUDENTS
COURSE DESCRIPTION: Science and technology continue to have a major impact on modern society and given their increasing importance it is essential to have a scientifically literate society. The aim of the course is ‘to sensitize and equip’ students to engage, in an informed manner, in public discourse on matters pertaining to the impact of science, medicine and technology on society’. The course will be delivered using a blended approach comprising both face to face sessions and online activities. The course material is organized into two Modules. Module 1 focuses on The Nature, Importance and Methodology of Science while Module 2 explores The Impact of Science on Society in general and on Caribbean societies in particular. Module 1 consists of three main units with specific topics; Module 2 consists of five units. Teaching will involve weekly lectures, tutorial sessions and online activities that foster student engagement and discussion. A range of assessment tools is used including student assignments, a mid-sessional examination and a final examination.

ASSESSMENT:
Coursework 40%
Final Examination 60%
LEVEL: I
SEMESTERS: 1 AND 2
COURSE CODE: FOUN 1301
COURSE TITLE: LAW, GOVERNANCE, ECONOMY AND SOCIETY (UNIVERSITY FOUNDATION COURSE)
(FACULTY OF SOCIAL SCIENCES)
NUMBER OF CREDITS: 3
PREREQUISITES:
FACULTY RESPONSIBLE: FACULTY OF SOCIAL SCIENCES
COURSE DESCRIPTION: This course is delivered through the medium of print. The print package comprises a student manual, a study guide and a reader. In addition to the print material there are teleconferencing and/or tutorials. The course introduces students to some of the major institutions in Caribbean society. It exposes the student to both the historical and contemporary aspects of Caribbean society, including Caribbean legal, political and economic systems. In addition, Caribbean culture and Caribbean social problems are discussed.
ASSESSMENT is based solely on a final examination at the end of the semester. It consists of twelve (12) essay-type questions, of which students are required to write on three (3). All questions carry equal marks. The examination is divided into four (4) sections corresponding to the four (4) subject areas in the course. Students are not allowed to do more than one question in any one section.

FRENCH: FREN

LEVEL: I
SEMESTERS: 1 AND 2
COURSE CODE: FREN 1001
COURSE TITLE: LEVEL 1A FRENCH
NUMBER OF CREDITS: 2
PREREQUISITES: none
COURSE DESCRIPTION: This is a beginners’ course for students with no previous knowledge of French. It develops the communicative, linguistic, and intercultural competence of learners by focusing on their speaking, listening, reading and writing skills. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by one hour of independent study for each contact hour.
ASSESSMENT:
In-course testing: 100%: 40% [mid-semester]; 40% [end of semester]; 20% [two assignments]

LEVEL: I
SEMESTERS: 1 & 2
COURSE CODE: FREN 1002
COURSE TITLE: LEVEL 1B FRENCH
NUMBER OF CREDITS: 2
PREREQUISITES: FREN 1001/1A FRENCH OR EQUIVALENT
COURSE DESCRIPTION: This course is the next level after FREN 1001/1A French with the aim to further develop the communicative, linguistic, and inter cultural competence of learners. Emphasis is placed on the development of learners’ speaking, listening, reading, and writing skills. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by one hour of independent study for each contact hour.
ASSESSMENT:
In-course testing: 100%: 40% [mid-semester]; 40% [end of semester]; 20% [two assignments]
FACULTY COURSE: FST

LEVEL: I
SEMESTER: 1
COURSE CODE: FSTF 1000
COURSE TITLE: STUDY SKILLS FOR THE SCIENCES
NUMBER OF CREDITS: 1
PREREQUISITES: NONE
RESTRICTIONS: FOR FST STUDENTS ONLY
COURSE DESCRIPTION: This course is designed to help students improve their learning effectiveness, attitudes, and motivation. The following are part of the curriculum: Time management, concentration, coping with life challenges and studying, note taking skills, textbook study methods, test taking strategies, and critical thinking skills. Teaching and learning will be done by mixed mode with traditional lectures supported by online components. There will be continuous assessments with 100% coursework for this programme. The assessments will employ different methodologies such as multiple choice test, group work with presentations, journal writing and term research paper.
ASSESSMENT:
Coursework 100%
Term paper 25%
Multiple choice exam 25%
Poster 25%
Course journal for every class 25%

LEVEL: II
SEMESTER: 3 (SUMMER)
COURSE CODE: FSTF 2000
COURSE TITLE: HISTORY OF SCIENCE
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
RESTRICTIONS: FOR FST STUDENTS ONLY
COURSE DESCRIPTION: This course examines the development and impact of science in society. The course begins with the earliest scientific ideas, and progresses to science in the modern era with a focus on major contributions from the Caribbean as well. A philosophical analysis of the advances, role, and implications of science in society is used to study how science has changed over time, the challenges experienced by scholars to implement these changes and how such have impacted our world. Focus will be placed also on how knowledge progresses, ideas change and get superseded. The discussion addresses issues such as societal attitudes toward science, the achievements of great scientists, women in science and the effect on future generations. Some of the central questions to be addressed will include: What and who, is science for and how has science changed over time?
ASSESSMENT:
Coursework 100%
Multiple choice exam 25%
Short answers/essay 25%
Research paper* 25%
Group project with presentations 25%
Or posters 25%

* Students must select topics not related to their major or study programme.
LEVEL: III
SEMESTER: 3 (SUMMER)
COURSE CODE: FSTF 3000
COURSE TITLE: BUSINESS OF SCIENCE
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
RESTRICTIONS: FOR FST STUDENTS ONLY
COURSE DESCRIPTION: This course is designed to help students place the contemporary state of science and technology and innovation in the Caribbean in a global context. It covers the general questions about the best policies and strategies for promoting innovation and examines specific case studies that look at the practical successes and challenges associated with developing scientifically and technologically based societies and economies.
ASSESSMENT:
Coursework 100%
Case study / research paper 30%
Business plan 30%
Book/ paper review 20%
Multiple choice 20%

INFORMATION TECHNOLOGY: INFO

LEVEL: I
SEMESTER: 1
COURSE CODE: INFO 1600
COURSE TITLE: INTRODUCTION TO INFORMATION TECHNOLOGY CONCEPTS
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: This is a foundation course in Information Technology and introduces students to the discipline of Information Technology. It describes how it relates to other computing disciplines. At the end of the course, students will be able to appreciate what is Information Technology and how it is used by organizations today to improve their efficiency and profitability. The course also provides a general overview of the BSc in Information Technology so that when the course concludes, students will understand how the whole degree fits together in a cohesive manner. Numerous examples are presented throughout the course so that students can get a concrete picture of the role of information technology in organizations.
ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: INFO 1601
COURSE TITLE: INTRODUCTION TO WWW PROGRAMMING
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: This is an introduction to web technologies and systems, including hypertext, self-descriptive text, web page design, web navigational systems, and various mark-up languages and scripting languages. Programming examples, exercises and projects are drawn from practical web-based applications. Good programming practice and program clarity is emphasized throughout the course. At the end of the course, students will be able to appreciate the need for web related technologies and how they are used by organizations to improve their efficiency, marketability and profitability.
ASSESSMENT:
Coursework 100%
LEVEL: II
SEMESTER: 2
COURSE CODE: INFO 2600
COURSE TITLE: INFORMATION SYSTEMS DEVELOPMENT
CREDITS: 3
PREREQUISITES: INFO 1600
COURSE DESCRIPTION: This course exposes students to the basic concepts of Information Systems and Information Systems development. Throughout the course, information is seen as a valuable corporate resource, one that can be used to maximize profit and improve competitiveness of a business organization. Consequently, the course takes an in-depth look at business processes and the ways in which they can be automated through an Information System. There is extensive coverage of the technical foundations of modern Information Systems as well as the process of developing and implementing a suitable Information System for an organization. The development of web-based information systems is also covered. The course will be delivered using a combination of lectures, eLearning, case studies, field trips, guest lecturers and various online resources. Assignments will take the form of written examinations, group projects and presentations.

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: INFO 2601
COURSE TITLE: NETWORKING TECHNOLOGIES FUNDAMENTALS
CREDITS: 3
PREREQUISITES: COMP 1600 OR INFO 1600
COURSE DESCRIPTION: Computer networks are an indispensable component of any modern Information Technology infrastructure. This course introduces students to the world of computer networks. Principles and protocols for data communication are covered. Network architecture models are visited and students get exposure to the practical aspects of networking such as setting up a basic network, router configuration, crimping of cables, etc. The course will be delivered using a combination of lectures, blended learning, case studies, labs and various online resources. Assignments will take the form of written examinations, lab examinations, group projects, presentations and online assignments.

ASSESSMENT:
Coursework 50%
Final Examination 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: INFO 2602
COURSE TITLE: WEB PROGRAMMING AND TECHNOLOGIES I
CREDITS: 3
PREREQUISITE: INFO 1601
COURSE DESCRIPTION: This course covers the design, implementation and testing of web-based applications and the incorporation of a variety of digital media into these applications. Students are exposed to a range of web technologies, both client-side and server-side. The course will be delivered using a combination of lectures, blended learning, case studies and various online resources. Assignments will take the form of written examinations and lab examinations.

ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: INFO 2603
COURSE TITLE: PLATFORM TECHNOLOGIES I
CREDITS: 3
PREREQUISITES: INFO 1600 OR COMP 1600
COURSE DESCRIPTION: This course provides the student with an introductory understanding of the terminology and concepts of operating systems and computer networking. The technical foundation of operating system installation, configuration, administration and troubleshooting are introduced to students. The course will be delivered using a combination of lectures, eLearning and various online resources. Assignments will take the form of written examinations, lab examinations, group projects and presentations.
ASSESSMENT:
Coursework 25%
Lab Examinations 75%

LEVEL: II
SEMESTER: 2
COURSE CODE: INFO 2604
COURSE TITLE: INFORMATION SYSTEMS SECURITY
CREDITS: 3
PREREQUISITES: COMP 1602
COURSE DESCRIPTION: Information Systems Security builds upon concepts explored in Computer Programming II. This course explores concepts needed to manage the necessary processes that guarantee information assurance. It covers operational issues, policies and procedures, attacks and defense mechanisms, risk analyses and information security. The course will be delivered using a combination of lectures, blended learning, case studies and various online resources.
ASSESSMENT:
Coursework 60%
Final Examination 40%

LEVEL: II
SEMESTER: 1
COURSE CODE: INFO 2605
COURSE TITLE: PROFESSIONAL ETHICS AND LAW
CREDITS: 3
PREREQUISITES: INFO 1600
COURSE DESCRIPTION: This course provides an overview of current ethical standards and practices in the computing and information technology area. Students will develop an awareness of both the ethical and legal issues facing the computerized workplace. The course will be delivered using a combination of lectures, eLearning, case studies and various online resources. Assignments will take the form of written examinations, group projects and presentations.
ASSESSMENT:
Practical Coursework 20%
Coursework Examination 30%
Group Project 30%
Project Presentation 20%
(NO FINAL WRITTEN EXAMINATION)

LEVEL: III
SEMESTER: 1
COURSE CODE: INFO 3600
COURSE TITLE: BUSINESS INFORMATION SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2605
COURSE DESCRIPTION: The course focuses on Information Systems in terms of business processes. It covers transaction cycles, events, and activities of Revenue, Expenditure, Production, and Human Resources business processes. The course covers core application frameworks – customer relationship management, enterprise resource planning, revenue and expenditure management, and human resource management – with emphasis on modeling of business processes and data. The material is covered from the perspective of business in Trinidad & Tobago. E-Business concepts and principles are introduced. The course will be delivered using a combination of lectures, blended learning case studies, labs and various online resources.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 1
COURSE CODE: INFO 3601
COURSE TITLE: PLATFORM TECHNOLOGIES II
NUMBER OF CREDITS: 3
PREREQUISITES: INFO 2603 OR COMP 2601
COURSE DESCRIPTION: This course builds on operating systems concepts. It provides the student with a more detailed understanding of platform management. Students will be using numerous administrative tools to install, configure, manage and troubleshoot systems, applications and its services on an operating system platform. By extension students are expected to use this knowledge to manage different operating systems platforms including cluster systems and to some extent mobile operating system platforms. The course will be delivered using a combination of lectures and various online resources. Assignments will take the form of written examinations, lab examinations, group projects and presentations.
ASSESSMENT:
Coursework: 40%
Group Project: 40%
Presentation: 20%

LEVEL: III
SEMESTER: 2
COURSE CODE: INFO 3602
COURSE TITLE: WEB PROGRAMMING AND TECHNOLOGIES II
NUMBER OF CREDITS: 3
PREREQUISITES: INFO 2602
COURSE DESCRIPTION: This course focuses on the development of web services and the evaluation and utilization of software tools to provide solution to common business problems within the market place. Students are exposed to technologies involved in the development of web services and industry relevant tools for designing, developing and managing web systems. The course will be delivered using a combination of interactive lectures, eLearning, case studies and online resources. Assignments will take the form of lab examinations, group projects and presentations.
ASSESSMENT:
Coursework: 60%
Group Project (Report and Presentation): 40%

LEVEL: III
SEMESTER: 2
COURSE CODE: INFO 3604
COURSE TITLE: PROJECT
NUMBER OF CREDITS: 3
PREREQUISITES: INFO 2600 OR COMP 2606
COURSE DESCRIPTION: This course builds upon concepts explored in INFO 2600 or COMP 2606. The course requires the student to implement a project of an appropriate scope. The student will liaise with an academic supervisor. Several lectures may be given on project management and research methodologies. The course will be delivered using consultation sessions with student groups. Assignments will take the form of written deliverables, presentations and online journals.

This course will allow students to apply what they have learnt throughout their respective programmes in order to implement a functional project. The course also allows students to apply the project management process which involves project planning and group communication. These skills are necessary in the real world system development environment.
ASSESSMENT:
Project: 65%
Project Report and Presentation: 35%
LEVEL: III
SEMESTER: 1
COURSE CODE: INFO 3605
COURSE TITLE: FUNDAMENTALS OF LAN TECHNOLOGIES
NUMBER OF CREDITS: 3
PREREQUISITES: INFO 2601 OR COMP 2604
COURSE DESCRIPTION: This course builds on fundamental networking concepts by introducing students to Local-Area-Network (LAN) switching equipment, protocols and topologies. Students learn about Classless Routing, RIP V2, Single Area OSPF, EIGRP, the Spanning Tree Protocol and differentiate between cut-through and store-and-forward LAN switching. Lab activities include implementing VLSM, RIP V2, OSPF, EIGRP, trunking and routing VLANs. Students create virtual LANs and analyze various LAN segmentations. The course will be delivered using a combination of lectures, case studies, simulations and various online resources. Assignments will take the form of multiple choice, simulated lab examinations, group projects and presentations.
ASSESSMENT:
Coursework: 50%
Final Examination: 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: INFO 3606
COURSE TITLE: CLOUD COMPUTING
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2605
COURSE DESCRIPTION: This course provides the student with an understanding of virtualization and its role in both private and cloud technologies. The student will be able to manage virtualization technologies and management of private and public cloud technologies. The course will be delivered using a combination of lectures, case studies and various online resources. Assignments will take the form of written examinations, lab examinations, group projects and presentations.
ASSESSMENT:
Coursework: 70%
Project and Presentation: 30%

LEVEL: III
SEMESTER: 2
COURSE CODE: INFO 3607
COURSE TITLE: FUNDAMENTALS OF WAN TECHNOLOGIES
NUMBER OF CREDITS: 3
PREREQUISITES: INFO 2601 AND COMP 2604
COURSE DESCRIPTION: This course introduces WAN theory and design, WAN technology, PPP, ISDN and Frame Relay. Topics include network congestion problems, TCP/IP transport and network layer protocols, and advanced routing. The course will be delivered using a combination of lectures, eLearning, case studies, simulations and various online resources. Assignments will take the form of multiple choice, simulated lab examinations, group projects and presentations.
ASSESSMENT:
Coursework: 50%
Final Examination: 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: INFO 3608
COURSE TITLE: E-COMMERCE
NUMBER OF CREDITS: 3
PREREQUISITES: INFO 2600 OR COMP 2606
COURSE DESCRIPTION: This course provides broad coverage of e-commerce systems. It covers the various e-commerce business models and e-commerce payment systems. The course will be delivered using a combination of lectures, eLearning, case studies and various online resources. Assignments will take the form of written examinations, lab examinations, group projects and presentations.
ASSESSMENT:
Coursework: 50%
Final Examination: 50%
LEVEL: III
SEMESTER: 3
COURSE CODE: INFO 3609
COURSE TITLE: INTERNSHIP
NUMBER OF CREDITS: 3
PREREQUISITES: INFO 2600 OR COMP 2606
COURSE DESCRIPTION: This course provides students with an opportunity to develop practical skills through the application of computer science concepts within a structured and supervised environment. The course requires the student to develop software artifact(s) that will be useful to the business/institution and will be used beyond the scope/time of the internship.
ASSESSMENT:
- Performance Reports: 30%
- Project or Software Application: 50%
- Presentation: 20%

LEVEL: III
SEMESTER: 3
COURSE CODE: INFO 3610
COURSE TITLE: INTERNSHIP II
NUMBER OF CREDITS: 6
PREREQUISITES: INFO 2600 OR COMP 2606
COURSE DESCRIPTION: This course provides students with an opportunity to develop practical skills through the application of computer science concepts within a structured and supervised environment. The course requires the student to develop software artifact(s) that will be useful to the business/institution and will be used beyond the scope/time of the internship.
ASSESSMENT:
- Performance Reports: 30%
- Project or Software Application: 50%
- Presentation: 20%

LEVEL: III
SEMESTER: 2
COURSE CODE: INFO 3611
COURSE TITLE: DATABASE ADMINISTRATION FOR PROFESSIONALS
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2605
COURSE DESCRIPTION: This course introduces students to Database Administration. Students taking the course should have a basic understanding of how database concepts and SQL commands. The course provides practical experience in setting up and maintaining a MySQL/Oracle server, including backing up, recovery, configuration and optimisation strategies. This course is suitable for delegates intending to sit the Oracle SQL Fundamentals and Oracle Administration examinations for both Oracle and MySQL.
ASSESSMENT:
- Assignment: 30%
- Lab Assessment: 30%
- Coursework Exam: 40%
JAPANESE: JAPA

LEVEL: I
SEMESTER: 1
COURSE CODE: JAPA 1003
COURSE TITLE: LEVEL 1A JAPANESE
NUMBER OF CREDITS: 2
PREREQUISITES: NONE
COURSE DESCRIPTION: This is a beginners’ Japanese course that introduces students to the Japanese language and some aspects of Japanese culture and daily life. Classes are conducted as far as possible in the target language to give students maximum exposure to the new language and culture. During the course, students develop an ability to communicate in Japanese in basic situations relating to their personal lives. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by two hours of independent study for each contact hour.

ASSESSMENT:
In-course testing 100%
 40% [mid-semester];
 40% [end of semester];
 20% [two assignments]

LEVEL: I
SEMESTER: 2
COURSE CODE: JAPA 1004
COURSE TITLE: LEVEL 1B JAPANESE
NUMBER OF CREDITS: 2
PREREQUISITES: JAPA 1003/1A JAPANESE OR EQUIVALENT
COURSE DESCRIPTION: JAPA 1004 is the second part of the introductory Japanese programme continuing the work begun in JAPA 1003/1A Japanese. Classes are conducted as far as possible in the target language to give students maximum exposure to the language and culture during class time. During the course, students develop an ability to communicate in Japanese in basic situations relating to their personal lives. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by two hours of independent study for each contact hour.

ASSESSMENT:
In-course testing 100%
 40% [mid-semester];
 40% [end of semester];
 20% [two assignments]

MATHEMATICS: MATH

LEVEL: 0 (PRELIMINARY)
SEMESTER: 1
COURSE CODE: MATH 0100
COURSE TITLE: N1 MATHEMATICS I
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC MATHEMATICS OR EQUIVALENT
COURSE DESCRIPTION: The following topics will be treated with the minimum of rigour, but with emphasis on the understanding of the concepts involved.
Algebra: Elementary logic, number sets, real numbers, functions, inequalities, complex numbers, surds, logarithms, linear and quadratic equations, finite series, binomial theorem, mathematical induction.
Trigonometry: Trigonometric functions and their inverses, addition and multiplication formulae, identities, trigonometric equations, solutions of triangles.

ASSESSMENT:
Coursework - Test 50%
Final Examination - One 3-hour paper 50%
LEVEL: 0 (PRELIMINARY)
SEMESTER: 2
COURSE CODE: MATH 0200
COURSE TITLE: N1 MATHEMATICS II
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC MATHEMATICS OR EQUIVALENT

COURSE DESCRIPTION: The following topics will be treated with the minimum of rigour, but with emphasis on the understanding of the concepts involved. Calculus: Functions, limits, continuity, differentiability, higher derivatives and application, anti-derivatives, Simpson’s rule and the integral. Elementary methods of integration and solutions of simple differential equations. Analytical Geometry: Equations and representations of elementary plane curves. Applications of calculus to determine equations of tangents, normals and in the computation of areas and volumes.

ASSESSMENT:
Coursework - Test 50%
Final Examination - One 3-hour paper 50%

LEVEL: I - UNDERGRADUATE SERVICE COURSE
SEMESTER: 1
COURSE CODE: MATH 1115
COURSE TITLE: FUNDAMENTAL MATHEMATICS FOR THE GENERAL SCIENCES I
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
NB: STUDENTS WITH ANY TWO UNITS OF CAPE LEVEL MATHEMATICS (OR EQUIVALENT), AGRI 1003 (MATHEMATICS FOR SCIENTISTS) AND/OR MATH 0100 (PRE-CALCULUS) WILL NOT RECEIVE CREDITS FOR THIS COURSE.

ASSESSMENT:
Coursework 40%
Final Examination: One 2-hour written paper 60%

LEVEL: I - UNDERGRADUATE SERVICE COURSE
SEMESTER: 2
COURSE CODE: MATH 1125
COURSE TITLE: FUNDAMENTAL MATHEMATICS FOR THE GENERAL SCIENCES II
NUMBER OF CREDITS: 3
PREREQUISITES: EITHER CSEC MATHEMATICS (OR EQUIVALENT) OR MATH 1115

ASSESSMENT:
Coursework 40%
Final Examination: One 2-hour written paper 60%
LEVEL: II
SEMESTER: 2
COURSE CODE: MATH 1141
COURSE TITLE: INTRODUCTORY LINEAR ALGEBRA AND ANALYTICAL GEOMETRY
NUMBER OF CREDITS: 3
PREREQUISITES: TWO UNITS OF CAPE PURE MATHEMATICS, OR EQUIVALENT
COURSE DESCRIPTION: Vectors in two and three dimensions, the dot product and cross – product. Applications to geometry of lines and planes. Complex numbers as vectors. De Moivres Theorem; basic algebra of matrices of any order. Determinants. Solutions of systems of linear equations
ASSESSMENT:
Coursework 50%
Final Examination: One 2-hour written paper 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: MATH 1142
COURSE TITLE: CALCULUS I
NUMBER OF CREDITS: 3
PREREQUISITES: TWO UNITS (1 & 2) OF CAPE PURE MATHEMATICS OR MATH 0100 AND MATH 0200, OR EQUIVALENT
COURSE DESCRIPTION: Functions; elementary functions; definition of derivative and rules of differentiation. Applications to maxima, minima and curve tracing; Taylor and Maclaurin Series. Evaluation of indefinite integrals using substitution, integration by parts and partial fractions. Length of curve and areas of regions. First order differential equations and second order differential equations with constant coefficients.
ASSESSMENT:
Coursework 50%
Final Examination - One 2-hour written paper 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: MATH 1151
COURSE TITLE: CALCULUS II
NUMBER OF CREDITS: 3
PREREQUISITES: TWO UNITS (1 & 2) OF CAPE PURE MATHEMATICS OR MATH 0100 AND MATH 0200, OR EQUIVALENT
COURSE DESCRIPTION: Neighbourhoods and bounds of a function; definition of limit; properties of limits; continuity; the Intermediate Value Theorem; The derivative; Rolle’s Theorem; The Mean Value Theorem; L’Hospital’s Rule. The Riemann Integral: Fundamental Theorem of the Calculus. Partial Derivatives. Double integrals.
ASSESSMENT:
Coursework 50%
Final Examination - One 2-hour written paper 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: MATH 1152
COURSE TITLE: SETS AND NUMBER SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: TWO UNITS OF CAPE PURE MATHEMATICS, OR MATH 0100 AND MATH 0200, OR EQUIVALENT
COURSE DESCRIPTION: Set Theory. Elementary mathematical logic: logical statements, logical operations AND, OR and NOT. Illustration using Venn diagrams, Algebra of Sets. Relations and Binary operation Properties of the natural numbers; basic arithmetic of complex numbers. The polar and exponential forms of a complex number.
ASSESSMENT:
Coursework 50%
Final Examination: One 2-hour written paper 50%
LEVEL: I
SEMESTER: 1
COURSE CODE: MATH 1192
COURSE TITLE: MATHEMATICAL SOFTWARE I - A PRIMER ON EXCEL
NUMBER OF CREDITS: 1
PREREQUISITES: CAPE PURE MATHEMATICS (UNITS 1 & 2) OR MATH 1125 OR EQUIVALENT
COURSE DESCRIPTION: This course will enhance the student’s knowledge of Microsoft Excel, which will be used to solve frequently encountered mathematics and statistics problems. Microsoft Excel will be introduced as data management software, and popular features of Excel such as formatting, editing, chart types and ‘autofill’ will be covered at the beginning of the course. The student will later be introduced to statistical tools in Excel which assist in solving problems in inferential statistics. An introduction to the Visual Basic Editor and programming in Visual Basic is then offered to the student. Teaching will take place entirely in weekly interactive lab sessions where the emphasis will be on active learning. Assessment will be based on coursework examinations and several lab assignments.
ASSESSMENT:
Coursework 100%

LEVEL: I
SEMESTER: (NOT OFFERED IN 2019/2020)
COURSE CODE: MATH 1193
COURSE TITLE: MATHEMATICAL SOFTWARE II - A PRIMER ON MAPLE
NUMBER OF CREDITS: 1
PREREQUISITES: CAPE PURE MATHEMATICS (UNITS 1 & 2) OR MATH 1125 OR EQUIVALENT
COURSE DESCRIPTION: This course covers Maple software, which can be used to solve frequently encountered mathematics problems. Maple is a symbolic mathematical package with a wide range of applications. In this course, problem solving in algebra, calculus and differential equations will be covered. Maple’s word processing features will be shown to students, who will be expected to produce scientific documents using the Maple word processor. An introduction to the Maple programming language is also included in this module.

Teaching will take place entirely in weekly interactive lab sessions where the emphasis will be on active learning. Assessment will be based on coursework examinations and several lab assignments
ASSESSMENT:
Coursework 100%

LEVEL: I
SEMESTER: 1 AND 2
COURSE CODE: MATH 1194
COURSE TITLE: MATHEMATICAL SOFTWARE III - A PRIMER ON MATLAB
NUMBER OF CREDITS: 1
PREREQUISITES: CAPE PURE MATHEMATICS (UNITS 1 & 2) OR MATH 1125 OR EQUIVALENT
COURSE DESCRIPTION: MATLAB, which stands for Matrix Laboratory, is a software package for high-performance numerical computation and visualization. It provides an interactive environment with hundreds of built-in functions for technical computation, graphics and animation, while providing easy extensibility with its own high-level programming language. This course prepares the student to understand and properly apply MATLAB in analyzing and solving problems without a previous knowledge of either MATLAB or computer programming. It first introduces the student to the most useful and easily accessible features of MATLAB. Students will be guided through the MATLAB environment and shown basic functionalities of the package such as the use of MATLAB as a calculator. Online documentation and Help features will be delineated to the students, followed by interactive computation, including but not limited to matrices and vectors. The use of built-in functions and a thorough study on plots, graphics, and animations will be performed. The latter part of the course introduces the student to the programming language of MATLAB, particularly as it relates to the creation of user-designed functions. Teaching will take place entirely in weekly interactive lab sessions where the emphasis will be on active learning. Assessment will be based on coursework examinations and several lab assignments
ASSESSMENT:
Coursework 100%
LEVEL: II
SEMESTER: (NOT OFFERED IN 2019/2020)
COURSE CODE: MATH 1201
COURSE TITLE: APPLIED MATHEMATICS I
NUMBER OF CREDITS: 3
PREREQUISITES: CAPE PURE MATHEMATICS (UNITS 1 & 2) OR GCE A-LEVEL MATHEMATICS OR EQUIVALENT
COURSE DESCRIPTION: This course will cover the basic concepts and techniques of vectors and some common topics in statics. It will provide undergraduate students with a good understanding of the fundamental laws and associated applications of vectors, as well the necessary tools used in solving elementary common problems in vectors and statics.
ASSESSMENT:
Coursework: 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: (NOT OFFERED IN 2019/2020)
COURSE CODE: MATH 1202
COURSE TITLE: APPLIED MATHEMATICS II
NUMBER OF CREDITS: 3
PREREQUISITES: CAPE PURE MATHEMATICS (UNITS 1 & 2) OR GCE A-LEVEL MATHEMATICS OR EQUIVALENT
COURSE DESCRIPTION: This course will cover the basic concepts and techniques of Dynamics, mostly particle dynamics. It will provide students with a good understanding of the laws and associated applications of particles in motion, as well as supply the necessary tools used in solving elementary common problems in the field.
ASSESSMENT:
Coursework: 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: MATH 2115
COURSE TITLE: LIFE CONTINGENCIES I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2274 AND MATH 2211
COURSE DESCRIPTION: This course is an introduction to life contingencies as applied in actuarial practice. Topics include present value random variables for contingent annuities and insurance, their distributions and actuarial present values, equivalence principle, and other principles for determining premiums and reserves.
ASSESSMENT:
Coursework: 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 2211
COURSE TITLE: MATHEMATICS OF FINANCE I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1141, MATH 1142, MATH 1151, MATH 1152
COURSE DESCRIPTION: This course covers topics relevant in financial mathematics that include measurement of interest, accumulation and discount, forces of interest and discount, equations of value, annuities, perpetuities, amortization and sinking funds, yield rates, bonds and securities, depreciation, depletion, and capitalized costs.
ASSESSMENT:
Coursework: 50%
Final Examination - one 2-hour written paper 50%
LEVEL: II
SEMESTER: 2
COURSE CODE: MATH 2212
COURSE TITLE: MATHEMATICS OF FINANCE II
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2211
COURSE DESCRIPTION: This course covers topics relevant in financial mathematics that include mathematical techniques used to price and hedge derivative securities in modern finance. Assessment of the course will be continuous and students are encouraged to practice questions and read the prescribed reading texts to keep abreast. Assignments will employ the use of actuarial and statistical software to solve business oriented problems.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 2270
COURSE TITLE: MULTIVARIABLE CALCULUS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1142 AND MATH 1151 OR (MATH 1150)
COURSE DESCRIPTION: This is a one-semester, three-credit course at the intermediate level in multivariate calculus intended for students who have satisfactorily completed six credits in elementary differential and integral calculus. For this reason, MATH 1142 - Calculus I and MATH 1151 - Calculus II (or their equivalents) are listed as prerequisite courses. In this course, vector notation is introduced and utilized for modelling and solving problems in multidimensional space. The first section of the course deals with the Calculus of functions of several real variables. The fundamental ideas of limits and continuity are introduced, followed by the technique of partial differentiation via the chain rule and its related applications. One key application covered is the use of the method of Lagrange multipliers for the determination of constrained extrema. This is followed by the calculus of vectors and their description of curves and surfaces in space. Differentiation of vectors is more fully developed, extending elementary notions of differentiation to those involving multiple variables. Integration is developed to encompass double integrals and triple integrals. Finally, line and surface and volume integrals are considered. The Green’s Theorem in a plane, Stokes’ Theorem and the Divergence Theorem are introduced and utilized for the calculation of line, surface and volume integrals. This course includes proofs and discussions at a level of complexity suitable for those intending to specialize in mathematics, as well as many examples and applications of the theory for those more interested in being able to make use of the theory in their various fields of interest.
ASSESSMENT:
Coursework: 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: MATH 2271
COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1141, MATH 1142 AND MATH 1151
COURSE DESCRIPTION: This is an introductory course that involves the solving of various ordinary differential equations of first and second order, as well as the solution of systems of differential equations. Methods of solution include separation of variables, various substitution techniques and use of integrating factors, undetermined coefficients, and variation of parameters. Laplace transforms, infinite series, and selected numerical methods are also incorporated. Uniqueness and existence theorems are covered. A solid grounding in Calculus is necessary, as is knowledge of linear algebra for the theory of solution of systems of equations. For this reason, these are considered to be prerequisite courses. Prior knowledge of mathematical software (such as Maple and Matlab) will be an asset for the numerical work involved, but should not be considered to be a prerequisite. Active learning will be achieved through assigned problem sheets allowing continuous feedback and guidance on problem solving techniques in tutorials and on myeLearning and through four major assignments.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%
LEVEL: II
SEMESTER: 2
COURSE CODE: MATH 2272
COURSE TITLE: ABSTRACT ALGEBRA I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1141 AND MATH 1152 OR (MATH 1140)
COURSE DESCRIPTION: Students who take this course will require a basic grounding in set theory and logic. For this reason, Math 1152 is listed as a prerequisite. This course introduces students to basic structures of abstract algebra, including groups, rings and fields. In the introduction, the focus is on binary operations and equivalence relations, which will be used throughout this course. Then groups are introduced, and students will learn that they come in many varieties. Subgroups and maps between groups are studied. In the second part of the course, rings are studied. Again, examples are studied, some familiar and some new. As usual, subrings, ideals and maps between rings are studied. After this, Euclidean rings are studied. Finally, a brief introduction to fields is given. Since cogent communication of mathematical ideas is important in the presentation of proofs, the course will emphasize clear, concise exposition. This course will therefore be useful for all students who wish to improve their skills in mathematical proof and exposition, or who intend to study more advanced topics in mathematics.

ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 2273
COURSE TITLE: LINEAR ALGEBRA I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1141 OR MATH 1140
COURSE DESCRIPTION: Students who take this course will require a solid grounding in set theory and basic logic. For this reason, Math 1140 is listed as a pre-requisite. The course begins with a study of abstract linear algebra which involves vector spaces and linear transformations. Formulating such an approach leads to a study of linear equations and the technique of elementary row transformations used for solving them. The concepts of rank and equivalence are introduced. Determinants are discussed in terms of permutations. The important concepts of orthogonality, eigenvalues, eigenvectors are studied. A treatise on quadratic forms, diagonalisation of matrices and the Cayley – Hamilton theorem is included. The writing of detailed proofs is incorporated throughout.

ASSESSMENT:
Coursework: 50%
Final Examination - one 2-hour written paper 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 2274
COURSE TITLE: PROBABILITY THEORY I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1142 AND MATH 1151 OR (MATH 1150)
COURSE DESCRIPTION: This is an introductory course that approaches probability theory from two perspectives: Probability theory is a branch of mathematics. As such, we will focus on the fundamental assumptions of Probability Theory and how the main properties of Probability Measures proceed from these assumptions. Throughout the course, therefore, students will be expected to be able to derive the main results that they use. Very little will be assumed without proof. Probability Theory is primarily concerned with modelling phenomena with uncertain outcomes. The course emphasizes this. It is most definitely not a course in Pure Mathematics. A knowledge of calculus (including a good understanding of limits, continuity, differentiability) is assumed (hence the need for Math1150). An appreciation of the idea of proof is expected but Math1140 is not essential (though it is desirable). The course begins with a discussion of the basic ideas of probability, including the axioms of probability, combinatorial probability, conditional probability and independence. The rest of the course focuses on distribution theory. The distribution theory of one discrete and one continuous random variable is discussed. Special attention is paid to well-known discrete and continuous distributions such as the Bernoulli, Binomial, Poisson, Exponential, Gamma and Normal. Then the distribution theory of several random variables is discussed. The idea of a statistic is introduced and the distribution theory of the mean and the sample variance is described. This leads finally to the idea of convergence in distribution and the Central Limit Theorem (without proof)
The approach taken is non-rigorous. In particular, there will be no mention of sigma algebras or of measure theory. Assessment is designed to encourage students to work continuously with the course materials. Active learning will be achieved through weekly assignments and problem sheets allowing continuous feedback and guidance on problem solving techniques in tutorials and lectures.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: MATH 2275
COURSE TITLE: STATISTICS I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2274
COURSE DESCRIPTION: The course is a survey of the major ideas of inference, experimental design and statistical methods. The course may be viewed as consisting of three closely connected parts. In the first section, students are introduced to the basics of the statistical packages Minitab and R and their use in descriptive statistics. Emphasis is placed on the use of real data and both summary statistical measures and graphical descriptive devices for continuous and discrete data are discussed.
In the second section, we discuss the frequentist theory of inference, including point estimation, confidence intervals and hypothesis testing. Section three is devoted to various statistical methods. The major ones are regression models and the use of ANOVA in designed experiments. Several of the important basic designs are discussed. We also discuss methods for the analysis of discrete data, such as in contingency tables, and non-parametric procedures.
A knowledge of Probability Theory I is assumed. This is needed since we derive the distributions of most statistics that are used and also discuss systematic mathematical methods for finding point estimators and constructing tests.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 2276
COURSE TITLE: DISCRETE MATHEMATICS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1141 AND MATH 1152 OR (MATH 1140)
COURSE DESCRIPTION: Students who take this course will require a solid foundation of most topics that are examined in the level 1 courses Math 1141 and Math 1152. We begin with a study of methods of proofs and discrete mathematical structures. Some basic definitions in combinatorics and graph theory are given. In such a situation recurrence relations are formulated but linear type ones are solved. The solutions of various problems in enumeration are expressed in terms of recurrences. We introduce different general network structures and the models that generate them. Some of the notations and terminology of graphs are used that would lead to established properties of networks, combinatorial designs and the efficiency of the Hungarian algorithm.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 2
COURSE CODE: MATH 2277
COURSE TITLE: INTRODUCTION TO REAL ANALYSIS I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1140 OR MATH 1152 AND MATH 1150 OR (MATH 1142 AND MATH 1151)
COURSE DESCRIPTION: This is a classical course in analysis, providing a foundation for many other mathematical courses. Knowledge of Calculus, analytical geometry and basic set theory is required. The course exposes students to rigorous mathematical definitions of limits of sequences of numbers and functions, classical results about continuity and series of numbers and their proofs. A major emphasis is placed on the proper use of definitions for the rigorous proof of theorems. The following topics will be covered: The real number system, topological properties of real numbers, sequences, continuity and differentiation.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 2400
COURSE TITLE: ELEMENTARY NUMBER THEORY
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1152 AND MATH 1141 OR COMP 1604 AND MATH 1115 OR (COMP 1402) AND COMP 1406
COURSE DESCRIPTION: Without assuming any algebra or analysis beyond the first year we cover topics such as prime numbers, GCDs and modular arithmetic. This allows us to introduce the basics of the RSA cryptographic scheme. It also serves as an invitation to explore some of the structural properties of the integers modulo a fixed prime. We study primitive roots, quadratic residues and quadratic reciprocity. We are also naturally drawn to study the order of the multiplicative group of units modulo n, giving us the Euler- function. We study the properties of this function as well as other arithmetic functions. Then we study Diophantine approximation and continued fractions. We study computational problems such as primality testing and factorization. Finally, we will study the RSA cryptoscheme and other related cryptographic algorithms.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%
LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 2410
COURSE TITLE: COMBINATORICS I
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1141 AND MATH 1152

COURSE DESCRIPTION: Students taking this course will be expected to know the basic principles of sets and number systems, linear algebra and analytical geometry. For this reason, MATH 1152 and MATH 1141 are listed as course prerequisites. This course is divided into the two sections - enumeration and applications. We begin the section on enumeration well-fortified with the methods of proof encountered in the prerequisite courses to study permutations and combinations. The important Pascal numbers are defined from the basis of the binomial theorem for expansion of expressions. By using algebraic and analysis techniques, simple combinatorial identities are established. Next we expand on set algebra theory to formulate the potent principle of inclusion and exclusion. An important application of this principle is seen in the integer solutions of linear equations having unit coefficients where we examine solutions that are bounded above and below. The solution by iteration is discussed. Sufficient conditions for applying the summation method are given in solving a linear homogeneous recurrence of order k. Generating functions are also used to solve non-linear recurrences. The enumeration methods and methods of proof have applications to combinatorial problems as well as areas of applied mathematics dealing with finite sets of objects. Combinatorial probability arises naturally as a result of permutations and combinations. Next we apply the knowledge of generating functions and recurrence relations to study partitions of integers. By including the binomial expansion, we examine random walks in two and three dimensions.

ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: (NOT OFFERED IN 2019/2020)
COURSE CODE: MATH 2420
COURSE TITLE: INTRODUCTION TO GRAPH THEORY AND OPTIMIZATION
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 1141 AND MATH 1152

COURSE DESCRIPTION: Students taking this course will be expected to know the basic principles of sets and number systems, linear algebra and analytical geometry. For this reason, MATH 1152 and MATH 1141 are listed as course prerequisites. This course can be divided into two sections of (i) graphs and digraphs and (ii) linear programming. In (i), we begin with basic graph theoretic definitions that also involve graphical operations. Some simple theorems are proved including an extremal result. We express some of these concepts in the missionaries and cannibal problems as well as the instant insanity problem. Next we define a number of important matrices associated with these graphs via an examination of the general entry of products of these matrices. In so doing, digraphs are introduced and an application is demonstrated in the finding of determinants. Properties of relations are visualized with respect to structural features of digraphs. We formulate communication networks and kernels by the use of digraphs. This leads to the definitions of basis digraphs, progression sequences and canonical ordering of nodes. These graphical concepts are then incorporated into the solving of a system of linear equations. In (ii), we revise the linear relation in the Cartesian plane. The idea of a convex set is introduced in relation to maximization and minimization linear programming problems. Extreme points of bounded polyhedral regions are found by the simplex method and also by simple constructions in the xy plane. The principle of duality is given.

ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%
LEVEL: III
SEMESTER: 1
COURSE CODE: MATH 3272
COURSE TITLE: ABSTRACT ALGEBRA II
NUMBER OF CREDITS: 3
PREREQUISITES: (MATH 2272 OR MATH 2100) AND (MATH 2273 OR MATH 2110)
COURSE DESCRIPTION: Students who take this course will require knowledge of the basic concepts of Algebra. Thus, ABSTRACT ALGEBRA I and LINEAR ALGEBRA are both listed as pre-requisites. The first part of the course continues the treatment of Groups started in ABSTRACT ALGEBRA I. Some important subgroups are defined, and the important concept of a group acting on a set is introduced. The power of group actions is demonstrated by using the technique to prove several key results about finite groups. The investigation of finite groups is concluded with the famous Sylow Theorems. The construction of the (finite) direct product should be familiar to any mathematician, and so the course proceeds to do this. Abelian groups are discussed briefly; a statement of the Decomposition Theorem for finite groups is given. The section on Group Theory is concluded with a discussion of subgroup series – an important technique in determining the structure of a group. The Jordan-Holder Theorem is proved, and an important class of groups - the solvable groups are introduced. The course then shifts focus to one of the most important examples of a Euclidean ring – the polynomial ring over a field. (Euclidean rings were introduced in ABSTRACT ALGEBRA I.) The fundamental results that transfer from Euclidean rings are restated in context, and the idea of irreducibility is introduced. The course then specialises to the rational field, and several key results concerning polynomials over the rationals are proved. The course naturally progresses to investigate the existence of roots of polynomials over their base field. The extremely important construction of the algebraic extension containing the root of a polynomial is done in detail, with several interesting and motivating examples. The course continues to prove the existence of a splitting field, and concludes with a statement of the Fundamental Theorem of Algebra. Straightedge and compass constructions will be presented as an application if time permits. Since cogent communication of mathematical ideas is important in the presentation of proofs, the course will emphasize clear, concise exposition. This course will therefore be useful for all students who wish to improve their skills in mathematical proof and exposition, or who intend to study more advanced topics in mathematics.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: MATH 3273
COURSE TITLE: LINEAR ALGEBRA II
NUMBER OF CREDITS: 3

PREREQUISITES: MATH 2272 AND MATH 2273

COURSE DESCRIPTION: Students who take this course will require knowledge of the basic and some advanced concepts of Algebra. Thus, ABSTRACT ALGEBRA I & II and LINEAR ALGEBRA I are both listed as prerequisites.

The first part of the course continues the treatment of Vector Spaces and Linear Transformations started in LINEAR ALGEBRA I. The Rank-Nullity Theorem is stated and proved. Linear transformations are then viewed as elements of a larger algebraic structure, the algebra. In this formal context, the idea of polynomials of linear transformations is developed. The theory of eigenvalues and eigenvectors is fundamental to Linear Algebra, and the course proceeds to study the same in detail. The connection between polynomials of matrices and their eigenvalues is explored and the celebrated Cayley-Hamilton Theorem is proved.

At this point, the students become aware that an algorithm for writing a matrix in a standard form, where the eigenvalues of the matrix may be easily obtained, is desirable. With this motivation, the existence and uniqueness of the Jordan Normal Form is proved. Techniques for computing the Jordan Normal Form are presented. The applications and limitations of the Jordan Normal Form are discussed.

The module is a natural generalisation of a vector space, and any student of advanced Linear Algebra should be familiar with the structure. The course therefore proceeds to define the module, giving motivating examples. The fundamental theorems are proved, drawing parallels with the algebraic structures which the students have already met. The existence and uniqueness of the Rational Canonical Form are stated here. Proofs may be sketched, but are not examinable.

The course then turns to vector spaces over the complex numbers, where the concept of an inner product is introduced. The properties of the inner product are discussed, and the fundamental definitions of unitary and Hermitian (in the context of linear transformations and matrices) are made. The base field is then further restricted to the reals, and the results developed are specialised to this case. An elegant proof of the Spectral Theorem for real symmetric matrices is given. The material developed here is applied to the study of quadratic forms.

The true power of Linear Algebra lies in its adaptability to computational tasks. As an illustration of this, the Singular Value Decomposition is introduced and its applications are discussed.

Traditionally, the tools of Linear Algebra have been heavily used in geometrical applications. As a demonstration of this, the material developed on quadratic forms is used to investigate the nature of quadric surfaces.

Since cogent communication of mathematical ideas is important in the presentation of proofs, the course will emphasize clear, concise exposition. This course will therefore be useful for all students who wish to improve their skills in mathematical proof and exposition, or who intend to study more advanced topics in mathematics.

ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: MATH 3274
COURSE TITLE: SET THEORY
NUMBER OF CREDITS: 3

PREREQUISITES: (MATH 2272 OR MATH 2100) AND (MATH 2277 OR MATH 2120)

COURSE DESCRIPTION: Students who take this course will require knowledge of the basic concepts of Algebra. They will also be required to have a solid grounding in elementary set theory and basic logic. Thus, ABSTRACT ALGEBRA I is listed as a prerequisite.

The first part of the course involves axiomatic set theory, which includes philosophy of sets. The language of set theory is used to describe representations of relations and functions. A fundamental approach to concepts in set and the algebraic structures of groups, rings and fields is utilized to develop number systems. These systems include the natural numbers, integers, rationals, reals and complex numbers. The course proceeds onto a treatise on infinite sets and on the different cardinal numbers that lead to transfinite arithmetic. Axiom of Choice and its equivalent representations are then introduced, as well as point-set topology.

Since cogent communication of mathematical ideas is important in the presentation of proofs, the course will emphasize clear, concise exposition. This course will therefore be useful for all students who wish to improve their skills in mathematical proof and exposition, or who intend to study more advanced topics in mathematics.

ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: MATH 3275
COURSE TITLE: INTRODUCTION TO COMPLEX ANALYSIS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2277 OR MATH 2120
COURSE DESCRIPTION: This course provides an introduction to the theory and application of complex variables and
complex functions. The properties of elementary complex functions are outlined, and the concept of analyticity is
developed in its entirety. The most fundamental theorems are stated, proved and utilized throughout. Particular emphasis
is placed on the development of integral calculus in the complex plane. Practice problems will be incorporated throughout
to provide concrete examples of how to apply the theory.
A sound knowledge of introductory Real Analysis is required. For this reason, Analysis I is listed as a course prerequisite.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: MATH 3277
COURSE TITLE: INTRODUCTION TO REAL ANALYSIS II
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2277 OR MATH 2120
COURSE DESCRIPTION: This is the follow-up course for MATH 2277 Introduction to Real Analysis I. The course exposes
students to rigorous mathematical definitions, proofs and classical results on differentiation, Riemann integration,
sequences and series of functions. Major emphasis is placed on the proper use of definitions for the rigorous proof of
theorems. The following topics will be covered: Differentiation, Riemann integration, sequences and series of functions
and metric spaces.
Assessment is designed to encourage students to work continuously with the course materials. Active learning will be
achieved through weekly problem sheets, allowing continuous feedback and guidance on problem solving techniques in
tutorials and lectures, and periodic marked assignments
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: MATH 3278
COURSE TITLE: PROBABILITY THEORY II
NUMBER OF CREDITS: 3
PREREQUISITES: (MATH 2270 OR MATH 2120) AND (MATH 2274 OR MATH 2140)
COURSE DESCRIPTION: The course begins with a discussion of the axioms of probability. We point out that not all subsets
of an arbitrary sample can be events and introduce the idea of a sigma field. There is a careful discussion of distribution
functions in general (including continuous, absolutely continuous and discrete cases). The rest of the section on
distribution theory focuses on the distribution theory of several random variables. Joint density functions, transformations,
joint mgfs, order statistics, convolution are discussed. We then define conditional expectation and give its main properties.
The section on distribution theory closes with a discussion of multivariate distributions, including the multinomial
and multivariate normal. We prove that the sample mean and sample variance in a sample from the normal distribution
are independent and obtain the distribution of the sample variance.
The second half of the course focuses on stochastic processes. Markov Chains in discrete time and with discrete state
space are discussed. Details are as follows:
Definition of a stochastic process and a Markov Chain; Chapman-Kolmogorov Equations; Classification of states; Ergodic
theorem; The Poisson process; Generating functions with Applications to Branching Processes.
ASSESSMENT:
Coursework 50%
Final Examination - One 2-hour written paper 50%
LEVEL: III
SEMESTER: (NOT OFFERED IN 2019/2020)
COURSE CODE: MATH 3401
COURSE TITLE: MATHEMATICAL MODELLING
NUMBER OF CREDITS: 3
COURSE DESCRIPTION: The course outlines the different stages of the mathematical modeling process. It is designed to guide the student through carefully chosen examples designed to illustrate the process of constructing and analyzing a mathematical model. Discrete and continuous system models are analysed throughout using mathematical and computer-based methods. Knowledge of Multivariable Calculus, elementary Linear Algebra and Ordinary Differential Equations is essential for this course. As Matlab will be utilized extensively in the compulsory computer lab sessions, an introductory course in Matlab is also listed as a mandatory prerequisite.
All lectures, assignments, handouts, and review materials are available online through myeLearning to all students. Blended learning techniques will be employed. Lectures will be supplemented with laboratory work and group discussions.
ASSESSMENT:
Coursework 50%
Final Examination - One 2-hour written paper 50%

LEVEL: III
SEMESTER: 1
COURSE CODE: MATH 3402
COURSE TITLE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS
NUMBER OF CREDITS: 3
PREREQUISITES: (MATH 2270 OR MATH 2160) AND (MATH 2271 OR MATH 2160)
COURSE DESCRIPTION: This course is a basic introduction to PDEs and is designed for students who are interested in applied mathematics or analysis. It is an elective third level course for advanced undergraduate students. The concentration is on concrete examples of PDEs that arise in various physical systems. The most widely utilized methods for solving these problems will be covered.
This elective course requires prior knowledge of ODEs and Multivariate Calculus. For this reason, these courses are listed as prerequisites.
ASSESSMENT:
Coursework 50%
Final Examination - One 2-hour written paper 50%

LEVEL: III
SEMESTERS: 2
COURSE CODE: MATH 3465
COURSE TITLE: STATISTICAL INFERENCE
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2275
COURSE DESCRIPTION: This is a second course in Statistical Theory. The course may be thought of as a direct continuation of the introductory second year course Statistics I. This course is necessary to expose students to both classical and Bayesian inference which they would not have encountered in Statistics I. While Statistics I gives a relatively broad non-theoretical approach to statistics, this course completes the undergraduate statistical theory so that students can understand the underlying concepts in a more concise mathematical setting.
The course consists of three fairly distinct modules--frequentist inference, Bayesian inference and non-parametric methods. We continue the discussion of classical inference begun in Math 2275 Likelihood techniques are applied to a wide range of models. There is a fairly detailed discussion of unbiasedness and sufficiency. UMP and likelihood ratio tests are discussed. For Bayesian Inference, we introduce the ideas of subjective probability, prior and posterior distributions and the basics of Bayesian estimation and testing. In the short section on non-parametric methods we introduce the empirical distribution function and tests based on it. There is a brief introduction to inference on censored data and an introduction to the bootstrap.
ASSESSMENT:
Coursework 50%
Final Examination (One 2-hr paper) 50%
LEVEL: III
SEMESTER: (NOT OFFERED IN 2019/2020)
COURSE CODE: MATH 3540
COURSE TITLE: INTRODUCTION TO FLUID DYNAMICS
NUMBER OF CREDITS: 3
PREREQUISITES: (MATH 2270 OR MATH 2120) AND (MATH 2271 OR MATH 2160)
COURSE DESCRIPTION: This course covers a general Orthogonal Curvilinear Co-ordinate System and thereafter looks at particular ones, that is, Cartesian, Cylindrical and Spherical. An introduction to tensors is then presented. This is followed by inviscid flows and special characteristics of such, in particular, Streamlines, Pathlines, Velocity Potential, Continuity Equation, Vorticity, Circulation, Euler’s equation of motion with special cases, and Complex Potential. The final part derives the Navier-Stokes equation for viscous fluid flows and applies it to some cases that give rise to exact solutions.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: III
SEMESTER: 2
COURSE CODE: MATH 3610
COURSE TITLE: COMBINATORICS II
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2272 OR MATH 2273
COURSE DESCRIPTION: This course deals with concrete problems by considering finite collections of discrete objects as opposed to continuous mathematics. Students taking this course will be expected to have a solid foundation in algebra (either abstract or linear), and for this reason either MATH 2272 or MATH 2273 are listed as a course prerequisite. The main focus is neither on the use of standard algebraic manipulations nor on any given systematic problem solving framework. We begin with a study of combinations and permutations of objects which are incorporated in the binomial and associated multinomial theorem. The cases of redundant permutations and combinations are examined. Bell numbers and Catalan numbers are analyzed by recurrence relations. We illustrate how calculus techniques are applied to the binomial theorem leading to the formation of combinatorial identities. Generating functions are introduced to count number of permutations and combinations which involves different types of indicator functions. In so doing, we define Stirling numbers of the first and second kind, and provide connections with number of permutations of distinct objects. Ordinary generating functions are developed, leading to various problems on partitions of integers. The concept of a Ferrers graph is used to illustrate partitions, and results are deduced on numbers of partitions by looking at conjugacy. The study of ordered partitions or compositions is closely compared to that of partitions. Particular emphasis is given to recurrence relations and an entire section is devoted to the solving of both one index and two indices recurrence relations, which are subsequently solved by means of generating functions or by repeated iteration techniques. The principle of inclusion and exclusion is a very potent tool in mathematics and we apply this principle to a variety of problems on arrangements with restrictions. In so doing the rook polynomial of an associated chessboard is introduced as a generating function.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

LEVEL: III
SEMESTER: (NOT OFFERED IN 2019/2020)
COURSE CODE: MATH 3615
COURSE TITLE: GRAPH THEORY AND APPLICATIONS NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2272
COURSE DESCRIPTION: Students taking this course will be expected to have a solid foundation in abstract algebra. For this reason, MATH 2272 is listed as a course prerequisite. Basic definitions used in Graph Theory are introduced. Terms like valency, graphical sequences, walk, trail, path, connected graph etc. are defined. The concepts of graph isomorphism and connectedness are introduced. Trees are given attention because of their importance in Graph Theory. Algorithms for tree coding are described. Spanning trees, the Spanning Tree algorithm and Matrix Tree Theorem are developed. Classical result in tranversability like Eulerian graphs and Hamiltonian Graphs are given attention. Then the important concepts like planarity and colourability are examined. A description of the proof of Kuratowski’s Theorem from Tutte’s Theorem is provided.
ASSESSMENT:
Coursework 50%
Final Examination - one 2-hour written paper 50%

MANAGEMENT: MGMT

LEVEL: II
SEMESTER: 2
COURSE CODE: MGMT 2006
COURSE TITLE: MANAGEMENT INFORMATION SYSTEMS I
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course provides an overview of Management Information Systems. It describes the components of Management Information Systems and the relationship of MIS to the larger area of Organisation and Management. Information Systems Technology is covered.
ASSESSMENT:
Coursework 25%
Final Examination 75%

LEVEL: II
SEMESTER:
COURSE CODE: MGMT 2007
COURSE TITLE: INTRODUCTION TO E-COMMERCE
NUMBER OF CREDITS: 3
PREREQUISITES/CO-REQUISITE: MKTG 2080 AND MGMT 2006
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course aims to prepare students with the requisite fundamentals to enable them to provide the business perspective/inputs to the e-commerce adoption process. Emphasis will be on the underlying commercial principles of e-commerce rather than on the technological processes. Topics to be covered include: internet demographics; internet business models; customer support strategies; security issues in e-commerce; legal issues in e-commerce; logistical challenges for Caribbean e-commerce.
ASSESSMENT:
Coursework 40%
Final Examination 60%

LEVEL: II
SEMESTERS: 2
COURSE CODE: MGMT 2008
COURSE TITLE: ORGANISATIONAL BEHAVIOUR
NUMBER OF CREDITS: 3
PREREQUISITES FOR CHEMISTRY AND MANAGEMENT STUDENTS: SOCI 1002 OR MGMT 1001 OR AGEX 1000
FOR COMPUTER SCIENCE AND MANAGEMENT STUDENTS: SOCI 1002 OR MGMT 1001 OR AGEX 1000 OR COMP 1100
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course uses the systems approach to organisations to highlight how interrelated variables such as people, technology, task, structure and external environments impact on organisational effectiveness. Emphasis is on the nature of behavioural issues and how and why they impact on the functioning of organisations.
ASSESSMENT:
Coursework 40%
Final Examination 60%

LEVEL:
SEMESTER: 1
COURSE CODE: MGMT 2012
COURSE TITLE: QUANTITATIVE METHODS
NUMBER OF CREDITS: 3
PREREQUISITES: FOR CHEMISTRY AND MANAGEMENT STUDENTS: ECON 1001 AND CHEM1060
FOR COMPUTER SCIENCE & MANAGEMENT STUDENTS: ECON1002 AND MATH1140
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course is an introductory level survey of quantitative techniques commonly used to provide insight into business decisions. The primary emphasis is on preparing the student to become an intelligent user of these techniques.
ASSESSMENT:
Coursework 25%
Final Examination 75%
LEVEL: II
SEMINETERS: 2
COURSE CODE: MGMT 2021
COURSE TITLE: BUSINESS LAW I
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: The main focus of this course is the general principles of the law of contract, the law of Agency as well as other related areas of interest like the Sale of Goods Act and the Hire Purchase Act 1938 and 1954. Background material covers the role and function of the law in society, the sources of the law, the legal system etc.
ASSESSMENT:
Coursework 25%
Final Examination 75%

LEVEL: II
SEMINETERS: 2
COURSE CODE: MGMT 2023
COURSE TITLE: FINANCIAL MANAGEMENT I
NUMBER OF CREDITS: 3
PREREQUISITES:
FOR CHEMISTRY AND MANAGEMENT STUDENTS:
ACCT 1002 AND ECON 1003 OR CHEM1060
FOR COMPUTER SCIENCE & MANAGEMENT STUDENTS:
ACCT 1002 AND MATH 1140
FOR BSC ACTUARIAL STUDENTS: ECON 1002 AND ACCT 1002
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course is concerned with the core concepts of financial decision-making; the time-value of money, the cost of capital and trade-offs between risk and return. Students should develop a thorough understanding of these basic concepts and how to apply them in real-world examples
ASSESSMENT:
Coursework 40%
Final Examination 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: MGMT 2026 (MGMT 3057)
COURSE TITLE: PRODUCTION AND OPERATIONS
NUMBER OF CREDITS: 3
PREREQUISITES: MGMT 2012
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course is intended to present students with an up-to-date view of primary activities of the production/operations functions in organisations. The production/operations function is an area of management that has a profound effect on efficiency, productivity and the quality of our daily lives. Focusing on Caribbean economies, the course will examine the resources that are required in the production of goods and services and illustrate the method of their acquisition utilisation, and upkeep. The topics to be covered will be shown to apply not only to the manufacturing sector but to the service sectors as well such as banks, hospitals, etc.
ASSESSMENT:
Coursework 30%
Final Examination 70%
LEVEL: II
SEMESTER: 2
COURSE CODE: MGMT 2032
COURSE TITLE: MANAGERIAL ECONOMICS
NUMBER OF CREDITS: 3
PREREQUISITES:
FOR CHEMISTRY AND MANAGEMENT STUDENTS: ECON 1001 AND CHEM 1060
FOR COMPUTER SCIENCE & MANAGEMENT STUDENTS: ECON1002 AND MATH 1140
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course is concerned with the application of economic principles and methodologies to the decision-making process of the business firm operating under conditions of risk and uncertainty. Emphasis is also placed on the firm's competitive strategy.
ASSESSMENT:
Coursework 25%
Final Examination 75%

LEVEL: III
SEMESTER:
COURSE CODE: MGMT 3011
COURSE TITLE: MANAGEMENT INFORMATION SYSTEMS II (ANALYSIS AND DESIGN)
NUMBER OF CREDITS: 3
PREREQUISITES: MGMT 2006
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course addresses the need for managers to understand the requirements for Information Systems, to participate in the design of systems and to manage the procurement of systems.

LEVEL: III
SEMESTER: 1
COURSE CODE: MGMT 3017
COURSE TITLE: HUMAN RESOURCE MANAGEMENT
NUMBER OF CREDITS: 3
PREREQUISITES: MGMT 2008
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course provides participants with a broad overview of issues pertaining to human resource management with special reference to the Caribbean environment.

LEVEL: III
SEMESTER: 2
COURSE CODE: MGMT 3060
COURSE TITLE: OPERATIONS, PLANNING AND CONTROL
NUMBER OF CREDITS: 3
PREREQUISITE: MGMT 2026
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: Building on the earlier course in Production and Operations Management, this course is intended to illustrate the array of planning and control techniques available to management to ensure the maximum productivity, quality, efficiency and profitability of the various operation systems involved in the production of goods and services.
ASSESSMENT:
Coursework 25%
Final Examination 75%
MARKETING: MKTG

LEVEL: II
SEMESTERS: 2
COURSE CODE: MKTG 2001
COURSE TITLE: PRINCIPLES OF MARKETING
NUMBER OF CREDITS: 3
PREREQUISITES: ECON 1001 AND ACCT 1002
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course is intended to provide students with the conceptual framework and analytical skills necessary for the analysis of markets and marketing activities of firms in a dynamic environment.

ASSESSMENT:
Coursework 40%
Final Examination 60%

LEVEL: III
SEMESTER: 1
COURSE CODE: MKTG 3000
COURSE TITLE: MARKETING MANAGEMENT
NUMBER OF CREDITS: 3
PREREQUISITES: MGMT 2003
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This course is concerned with the development of the student’s marketing decision-making and students are expected to undertake a marketing project based on fieldwork.

ASSESSMENT:
Coursework 30%
Final Examination 70%

LEVEL: III
SEMESTER: 2
COURSE CODE: MKTG 3007
COURSE TITLE: MARKETING PLANNING
NUMBER OF CREDITS: 3
PREREQUISITES: MGMT 2003, MGMT 2012 AND MGMT 2023
DEPARTMENT RESPONSIBLE: MANAGEMENT STUDIES
COURSE DESCRIPTION: This intention is to equip students with the tools necessary for effective marketing planning in the public and private sectors. Analytical methods and data sources necessary in defining competition, analysing an industry and customers, and forecasting market potential is covered in depth. Students are expected to develop an actual marketing plan as a coursework project.

ASSESSMENT:
Coursework 30%
Final Examination 70%
PHYSICS: PHYS

LEVEL: 0 (PRELIMINARY)
SEMESTER: 1
COURSE CODE: PHYS 0100
COURSE TITLE: N1 PHYSICS I
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC PHYSICS OR EQUIVALENT.
COURSE DESCRIPTION: This course focuses on the fundamentals of Mechanics, Heat and Waves. Students will study the motion of particles in one and two dimensions by considering the fundamental forces, the conservation of momentum and energy, laminar fluid flow and wave motion, and energy conversion with special reference to renewable energy sources (solar, wind, geothermal and wave). Students will be able to construct simple thermometers using properties of thermal equilibrium and thermal expansion, describe the variation of state properties of ideal gases using the ideal gas equation and use the kinetic nature of gas molecules to determine the state of the gas. You will learn how to calculate how much energy is conducted and radiated which depends on the nature of the material, how much work a gas does when expanding, whether thermal energy supplied or removed would be able to cause a phase change in a substance, and whether thermal energy is conserved. In this course, students will also have the opportunity to perform and interpret the results of simple experiments and demonstrations of physics. Applications to medicine and engineering will be discussed.
ASSESSMENT:
- Theory Coursework 20%
- Practical Coursework 30%
- One 3-hour Final Examination 50%

LEVEL: 0 (PRELIMINARY)
SEMESTER: 2
COURSE CODE: PHYS 0200
COURSE TITLE: N1 PHYSICS II
NUMBER OF CREDITS: 0
PREREQUISITES: CSEC PHYSICS OR EQUIVALENT.
COURSE DESCRIPTION: This course focuses on the fundamentals of Electricity & Magnetism, Optics and Modern Physics. Students will be able to describe electric fields, apply Ohm’s law and Kirchhoff’s law in designing electric circuits, and determine the size of a capacitor in a circuit to store electric energy and to discharge this energy across a resistor. Other designs you will encounter will be determining the speed of a charge moving in a magnetic field so that it does not undergo angular deviations, and the force between current-carrying conductors. Applications that you will meet in electromagnetic induction will include motors, generators and transformers. Under the optics component you will be able to appreciate the wave-particle nature of matter and energy and the concepts of reflection, total internal reflection and refraction. In addition, students will compute the optical characteristics of concave and convex mirrors and thin lenses for different optical applications for image formation which may include image formation for the eye, simple camera, telescope and spectrometer. Modern Physics will take you through a journey from the structure of the stable nucleus and “binding energy” to nuclear instability, radioactive decay and “mass defect” with applications in radioactive shielding, archaeology, and medicine. In this course, students will also have the opportunity to perform and interpret the results of simple experiments and demonstrations of physics. Applications to medicine and engineering will be discussed.
ASSESSMENT:
- Theory Coursework 20%
- Practical Coursework 30%
- One 3-hour Final Examination 50%

LEVEL: 1
SEMESTER: 1
COURSE CODE: PHYS 1001
COURSE TITLE: INTRODUCTION TO ASTRONOMY
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: This course develops the ideas of Ancient Astronomy including archaeoastronomy and history of astronomy leading up to the contributions of Copernicus, Brahe, Galileo and Newton. Optics and instrumentation. The solar system, stars: composition and evolution, white dwarfs, neutron stars, black holes. Extragalactic Astronomy: Galaxies, dark matter, dark energy, Cosmology. Life in the Universe.
ASSESSMENT:
- Coursework 40%
- One 2-hour Final Examination 60%
LEVEL: 1
SEMESTER: SUMMER
COURSE CODE: PHYS 1002
COURSE TITLE: INTRODUCTION TO ASTROBIOLOGY
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: Astrobiology is the study of the origin, evolution, distribution, and future of life in the universe: extra-terrestrial life and life on Earth. This interdisciplinary field encompasses the search for habitable environments in our Solar System and habitable planets outside our Solar System, the search for evidence of prebiotic chemistry, laboratory and field research into the origins and early evolution of life on Earth, and studies of the potential for life to adapt to challenges on Earth and in outer space. Astrobiology addresses the question of whether life exists beyond Earth, and how humans can detect it if it does.
ASSESSMENT:
Coursework 50%
One 2-hour Final Examination 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: PHYS 1221
COURSE TITLE: INTRODUCTION TO MECHANICS
NO. OF CREDITS: 3
PREREQUISITES: CAPE PHYSICS (UNITS I AND II) OR CAPE MATHEMATICS (UNITS I AND II) AND CSEC (CXC) PHYSICS OR PHYS 0100 AND PHYS 0200 OR THEIR EQUIVALENT
COURSE DESCRIPTION: This course introduces the students to topics in Mechanics. The topics covered address Newtonian Mechanics including: kinematics, laws of motion, work and energy, systems of particles, momentum, circular motion, oscillations, and gravitation and concludes with topics in fluid mechanics. Through in-class discussions, problem-solving sessions and practical sessions, the student will have the opportunity to improve his/her ability to reason through challenging situations in the physical world using basic principles to develop appropriate solutions.
ASSESSMENT:
Final Examination (one 2-hr paper) 50%
Coursework 50%

LEVEL: I
SEMESTER: 1
COURSE CODE: PHYS 1222
COURSE TITLE: INTRODUCTION TO OPTICS, OSCILLATIONS AND WAVES
NO. OF CREDITS: 3
PREREQUISITES: CAPE PHYSICS (UNITS I AND II) OR CAPE MATHEMATICS (UNITS I AND II) AND CSEC (CXC) PHYSICS OR PHYS 0100 AND PHYS 0200 OR THEIR EQUIVALENT
COURSE DESCRIPTION: The theoretical aspect of this course provides students with the fundamentals of Optics, Oscillations and Waves whereas the practical component allows all the Year I students to be exposed to a variety of techniques, concepts and skills in the experimental sciences. Through in-class discussion, problem solving sessions and practical exercises students will have the opportunity to improve their ability to reason through challenging situations in the physical world using basic principles to develop appropriate solutions.
ASSESSMENT:
Final Examination (one 2-hr paper) 50%
Coursework 50%

LEVEL: I
SEMESTER: 2
COURSE CODE: PHYS 1223
COURSE TITLE: INTRODUCTION TO ELECTRICITY AND MAGNETISM
NO. OF CREDITS: 3
PREREQUISITES: CAPE PHYSICS (UNITS I AND II) OR CAPE MATHEMATICS (UNITS I AND II) AND CSEC (CXC) PHYSICS OR PHYS 0100 AND PHYS 0200 OR THEIR EQUIVALENT
COURSE DESCRIPTION: This course introduces the student to topics in Electricity, Magnetism and AC Theory. Through in-class discussion, problem-solving sessions and practical sessions, the student will have the opportunity to improve his/her ability to reason through challenging situations in the physical world using basic principles to develop appropriate solutions.
ASSESSMENT:
Final Examination (one 2-hr paper) 50%
Coursework 50%
LEVEL: I
SEMESTER: 2
COURSE CODE: PHYS 1224
COURSE TITLE: INTRODUCTION TO THERMODYNAMICS & MODERN PHYSICS
NO. OF CREDITS: 3
PREREQUISITES: CAPE PHYSICS (UNITS I AND II) OR CAPE MATHEMATICS (UNITS I AND II) AND CSEC (CXC) PHYSICS OR PHYS 0100 AND PHYS 0200 OR THEIR EQUIVALENT
COURSE DESCRIPTION: This course introduces the student to topics in the fundamentals of Thermodynamics and Modern Physics. Through in-class discussion, problem solving sessions and practical exercises students will have the opportunity to improve their ability to reason through challenging situations in the physical world using basic principles to develop appropriate solutions.
ASSESSMENT:
Final Examination (one 2-hr paper) 50%
Coursework 50%

LEVEL: II
SEMESTER: 1
COURSE CODE: PHYS 2150
COURSE TITLE: MATHEMATICS FOR PHYSICISTS
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION: Cartesian and Curvilinear Coordinate Systems; Vector Analysis; Complex Variable Theory; Fourier Series Analysis; Differential Equations (up to second order); and Applications of these methods in Physics.
ASSESSMENT:
Coursework 40%
Final Examination (one 2-hour paper) 60%

LEVEL: II
SEMESTER: 2
COURSE CODE: PHYS 2151
COURSE TITLE: CLASSICAL AND STATISTICAL MECHANICS
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION: This course provides a formal introduction to classical mechanics and statistical mechanics. Topics covered are under Classical Mechanics include Newtonian Mechanics for a system of particles, Lagrangian dynamics and Hamiltonian dynamics. Topics under Statistical Mechanics include microcanonical, canonical, and grand canonical ensemble probabilistic tools, with applications to thermodynamic systems involving ideal gases, solids, and quantum gases.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: II
SEMESTER: 1
COURSE CODE: PHYS 2152
COURSE TITLE: VIBRATIONS, WAVES AND OPTICS
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION: Optics: Review of thin lens imaging; reflection and refraction at a spherical surface; Lensmaker formula; Vergence and refracting power; Newtonian equation for a thin lens; Matrix methods; Aberration Theory. Oscillations and Waves: Simple, damped and forced harmonic motion; Equations of motion and their solutions; Different aspects and applications of these motions; Equation of wave motion in one dimension; Longitudinal and transverse waves and the consideration of different examples of the propagation of these waves.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%
LEVEL: II
SEMESTER: 2
COURSE CODE: PHYS 2153
COURSE TITLE: ASTROPHYSICS
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION:
ASSESSMENT:
Coursework: 40%
Final Examination (one 2-hour paper): 60%

LEVEL: II
SEMESTER: YEAR-LONG
COURSE CODE: PHYS 2155
COURSE TITLE: MAJOR LABORATORY LEVEL II
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION: Laboratory experiments and numerical modelling using MAPLE and/or MATLAB are to be performed corresponding to the theory courses of the Major. The students will be expected to perform the exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.
ASSESSMENT:
Coursework: 100%
Students will be required to submit a lab report for each of the experiments they will perform. Each lab report will be marked and this will constitute the coursework.

LEVEL: II
SEMESTER: 1
COURSE CODE: PHYS 2156
COURSE TITLE: METEOROLOGY AND CLIMATOLOGY
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
ASSESSMENT:
Coursework: 40%
Final Examination (One 2-hour paper): 60%
LEVEL: II
SEMMESTER: 2
COURSE CODE: PHYS 2157
COURSE TITLE: SOLID EARTH GEOPHYSICS
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION: Physics of the Earth: The shape of the Earth: The Geoid and reference Spheroid, Gravity of the Earth, Measurement of gravity, Corrections to gravity measurements (gravity reductions); Latitude; Elevation; Topographs of surrounding terrain; Earth tides, and Density variations in the subsurface. Testing Isostasy by gravity measurements. Geoid height anomalies.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hour paper) 60%

LEVEL: II
SEMMESTER: I (NOT OFFERED IN 2019/2020)
COURSE CODE: PHYS 2165
COURSE TITLE: MATERIALS SCIENCE I
NO. OF CREDITS: 3
PREREQUISITES: STUDENTS MUST MEET CRITERIA I OR II:
I. ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
II. CHEM 1066, CHEM 1067, CHEM 1068 AND CHEM 1070
COURSE DESCRIPTION: The scope of materials science, importance of studying materials, interdisciplinary nature of materials science, principal aim to relate properties to structure, brief historical survey, the basic classification of materials — metals, polymer, ceramics, alloys, composites with brief description of structure, properties and applications.

The Structure of Solids: Structure of atom, molecules, bonding, relationship between bonding and properties, thermal vibration and structure sensitivity, crystal structure, lattice parameters, crystal geometries, defects in materials, point defects, line defects, area defects, defects in polymers, strengthening mechanisms, alloys. Amorphous structure, microstructure, alloys and composites.

Polymers: Introduction, various polymer materials, molecular weight distribution, synthesis, properties, crystalline polymer, amorphous polymers, applications, models for various polymers.

Properties of Materials: Electrical properties, thermal properties, magnetic properties, optical properties, mechanical properties.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%
LEVEL: II
SEMMESTER: 2
COURSE CODE: PHYS 2166
COURSE TITLE: TECHNOLOGICAL MATERIALS
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2165
COURSE DESCRIPTION: Earth Materials: Raw Materials, metals and their ores, importance of these materials, basic building blocks of earth materials, mineral chemistry, metal chemistry, glasses, ion conducting glasses, crystal structures, effect of temperature, pressure and environment on these minerals and metals
Material Extraction Processes: Importance of extraction, principles of extraction, crushing of ores, separation of ores: gravity separation, magnetic separation, froth flotation process, leaching, calcination, roasting, reduction of free metal: smelting, reduction of aluminium, self-reduction process, electrolytic reduction, cyanide method, refining/purification; liquation, distillation, poling, zone refining, Mond’s process, Van Arkel process.
Characterization: Structure of metals and minerals, methods to determine structure, metallography, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, phase diagrams, electrical properties and their variations with phases, physical property determination.
ASSESSMENT:
Coursework
Final Examination (One 2-hr paper)
LEVEL: II
SEMMESTER: 1
COURSE CODE: PHYS 2401
COURSE TITLE: OPTOELECTRONICS
NO. OF CREDITS: 3
PREREQUISITES: PHYS 1223
COURSE DESCRIPTION: This course introduces the student to the fundamentals of analog electronics. It begins with semiconductor theory and its application to various electronic and optoelectronic devices. Semiconductor diodes, zener diodes and bipolar junction transistors, their types, construction, related theory, I/V characteristics, biasing techniques, ac/dc analysis and their applications are studied. Optoelectronics related to devices/systems such as light emitting diodes, laser diodes, optical detectors, fibre-optics and solar cells are discussed along with applications. The course provides the fundamentals for other electronics courses in particular the course on PHYS 3201 - Advance Electronics and Control Theory for which it is the prerequisite. Assessment and evaluation is done in the form of in-course tests and a final examination.
ASSESSMENT:
Coursework
Final Examination (One 2-hr paper)
LEVEL: II
SEMMESTER: 2
COURSE CODE: PHYS 2402
COURSE TITLE: DIGITAL CIRCUITS AND LOGIC DESIGN
NUMBER OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION: This course introduces the student to the fundamentals of digital electronic and logic circuit design. It covers basics of digital electronic i.e. logic gates, Boolean algebra, logic minimization & implementation, logic families, number systems, binary codes and binary arithmetic. Combinational and sequential logic circuit design fundamentals are explained along with their applications. Various type of registers and counters along with design steps and applications are also covered in this course. As such it provides building blocks for the other courses in particular the course PHYS 3203 Microprocessor and Modern Digital Design for which it is the prerequisite. Assessment and evaluation is done in the form of in-course tests and a Final examination.
ASSESSMENT:
Coursework
Final Examination (one 2-hr paper)
LEVEL: III
SEMMESTER: 1
COURSE CODE: PHYS 3150
COURSE TITLE: ELECTROMAGNETISM
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2150
COURSE DESCRIPTION:
Electromagnetic Theory
The electric field: Coulomb’s law. Discrete and continuous charge distributions. Divergence and curl of electrostatic fields; The electric potential: The potential of a localized charge distribution. Work and energy in electrostatics; Electric fields in matter: Polarization. The electric displacement and linear dielectrics; The magnetic field: The magnetic field, magnetic forces and currents. The Biot-Savart law. The magnetic field of a steady current. The divergence and curl of magnetic fields; Magnetic fields in matter: Magnetization. Response of materials to magnetic fields. The magnetic field inside matter. Ampere’s law in magnetized materials; Electrodynamics: Electromotive force and electromagnetic induction. Maxwell’s equations and the displacement current in vacuum and in matter; Electromagnetic waves: The wave equation for E and B. Electromagnetic waves in a vacuum. Electromagnetic waves in conductors and dielectrics.
Applications of Electromagnetism:
Waveguides: The rectangular waveguide. Transverse electric modes (TE) and transverse magnetic modes (TM). Propagation characteristics of rectangular waveguides; Antennas: Introduction to types of antennas. Antenna parameters in terms of the time-averaged Poynting vector.
ASSESSMENT:
Coursework 40%
Final Examination (one 2-hr paper) 60%

LEVEL: III
SEMMESTER: 2
COURSE CODE: PHYS 3151
COURSE TITLE: QUANTUM MECHANICS
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2150
COURSE DESCRIPTION:
• The origins of quantum physics: Review of Blackbody radiation, the Photoelectric effect and the Compton Effect. Wave properties of material particles and electron diffraction. The Bohr atom.
• The Schrödinger equation: Wave-particle duality: radiation as particles and electrons as waves. Development of a wave equation for a free particle and for a particle moving in a potential. The time-dependent and time-independent Schrödinger equations. The wave function and Born’s probability interpretation of the wave function. Heisenberg’s Uncertainty Principle. The momentum and energy operators.
• One-dimensional problems: The free particle. Solutions to the Schrödinger equation for the infinite potential well. Stationary states of the infinite well. The potential barrier and quantum tunnelling. The harmonic oscillator. Applications.
• Three-dimensional problems: Wave functions of the infinite cubical well. Degeneracy of the energy levels. Wave functions of the hydrogen atom and degeneracy of the spectrum.
• Orbital and spin angular momentum: Representation of orbital angular momentum in quantum mechanics. Eigenfunctions of \(\mathbf{L}^2 \) and \(\mathbf{L}_z \). Orbital magnetic moment in terms of orbital angular momentum. The Stern-Gerlack experiment and the spin hypothesis. Theory of spin 1/2 and the Pauli matrices. Spin magnetic moment of the electron in terms of spin angular momentum. Applications.
ASSESSMENT:
Coursework 40%
Final Examination (one 2-hr paper) 60%
LEVEL: III
SEMESTER: 2
COURSE CODE: PHYS 3152
COURSE TITLE: ADVANCED THERMODYNAMICS AND SOLID STATE PHYSICS
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION:
Solid State Physics: Structure of solids, elementary crystallography and crystal diffraction, free electron theory of metals, energy band theory, semiconductors, superconductivity.
ASSESSMENT:
Coursework 40%
Final Examination (one 2-hr paper) 60%

LEVEL: III
SEMESTER: 1 AND 2
COURSE CODE: PHYS 3153
COURSE TITLE: PHYSICS MAJOR RESEARCH PROJECT
NO. OF CREDITS: 3
PREREQUISITES: AVAILABLE ONLY TO PHYSICS MAJORS
COURSE DESCRIPTION: Students will be required to complete a 12-weeks research project for completion of their Major in Physics. Projects will be offered in the various disciplines of Physics and each Project will be assigned a Project Supervisor. Projects may involve pure research study toward a fundamental aspect of Physics or address more applied issues. It may involve field or laboratory based work or may be a desk study involving data analysis or interrogation of legal documents. The project should, however, give the student a chance to further develop skills from the toolbox and a more detailed understanding of some component of the course. This course is offered in both Semester I & II
ASSESSMENT:
Oral 20%
Report 80%
Only students who require 30 advanced credits or less to graduate will be assigned a project.

LEVEL: III
SEMESTER: YEAR-LONG
COURSE CODE: PHYS 3155
COURSE TITLE: PHYSICS MAJOR LABORATORY NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION: Laboratory experiments are to be performed corresponding to the theory courses of the major. The students will be expected to perform the exercises and collect their data and depending on the complexity of the exercise will submit a written report at the end of the exercise or the following week for assessment.
ASSESSMENT:
Coursework 100%
Students will be required to submit a lab report for each of the experiments they will perform. Each lab report will be marked and this will constitute the coursework.

LEVEL: III
SEMESTER: I (NOT OFFERED IN 2019/2020)
COURSE CODE: PHYS 3156
COURSE TITLE: PRINCIPLES OF PHYSICAL OCEANOGRAPHY AND GEOHYDROLOGY
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hour paper) 60%
Level: III
Semester: (Not offered in 2019/2020)
Course Code: PHYS 3157
Course Title: Earth Science
No. of Credits: 3
Prerequisites: Any Nine (9) credits from the following: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
Course Description: Earth processes and Caribbean Stratigraphy: Properties of minerals and crystals; composition, occurrence, distribution, classification and field recognition of igneous, sedimentary and metamorphic rocks; tectonic and structural features of the earth; volcanic activity; formation of soils and sediments; stratigraphy and geologic time; plate tectonics. The Caribbean environment in relation to: man, water supply, soils, petroleum, engineering geology and minerals. Introduction to Earth Materials: the origin, occurrence, world distribution and development of major earth resources-metalliferrous and non-metal ores, petroleum, coal building materials, chemical raw materials, biomass resources. Earth seismology: the nature of earthquakes; the propagation and detection of seismic wave; geographical distribution of earthquakes; surface effects of earthquakes, earthquake history of the Caribbean.
Assessment:
Coursework 40%
Final Examination (One 2-hour paper) 60%

Level: III
Semester: 2
Course Code: PHYS 3158
Course Title: Fundamentals of Renewable Energy
No. of Credits: 3
Prerequisites: ESST 2004 or Any Nine (9) credits from the following: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
Course Description: Introduction to current sources of Energy and World’s Oil production; Renewable Energy requirements, types and effects; Renewable Energy Technologies; Conservation, conversion and efficiency; applications and evaluation of renewable energy systems - solar energy, biomass, wind energy, geothermal energy and hydropower.
Assessment:
Coursework 40%
Final Examination (One 2-hour paper) 60%

Level: III
Semester: Year-Long
Course Code: PHYS 3159
Course Title: Environmental Physics Laboratory
No. of Credits: 3
Prerequisites: Any Nine (9) credits from the following: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
Course Description: Laboratory experiments and field trips with site work are to be performed corresponding to the taught components of the Environmental Physics Minor. Students will be expected to perform the exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.
Assessment:
Coursework 100%
The students will be required to submit a lab report for each of the experiments they will perform. Each lab report will be marked and this will constitute the coursework.

Level: III
Semester: Year-Long
Course Code: PHYS 3160
Course Title: Medical Physics & Bioengineering Laboratory
No. of Credits: 3
Prerequisites: Any Nine (9) credits from the following: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
Course Description: Laboratory experiments and field trips with site work are to be performed corresponding to the taught components of the Medical Physics & Bioengineering minor. The students will be expected to perform the exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.
Assessment:
Coursework 100%
Students will be required to submit a lab report for each of the experiments they will perform. Each lab report will be marked and this will constitute the coursework.
LEVEL: III
SEMESTER: YEAR-LONG
COURSE CODE: PHYS 3163
COURSE TITLE: ELECTRONICS LABORATORY
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION: Laboratory experiments and field-trip with site work are to be performed corresponding to the taught components of the Electronics Minor. The students will be expected to perform the exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.
ASSESSMENT:
Coursework 100%
Students will be required to submit a lab report for each of the experiment they will perform. Each lab report will be marked and this will constitute the coursework.

LEVEL: III
SEMESTER: 1
COURSE CODE: PHYS 3164
COURSE TITLE: CERAMICS SCIENCE
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION: Definition and classification of ceramics; typical properties; engineering/industrial applications based on properties; crystal structure; raw materials; fabrication and processing; mechanical, thermal, electrical and magnetic properties; glasses; cement and concrete.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: PHYS 3165
COURSE TITLE: MATERIALS SCIENCE II
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2165
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%
LEVEL: III
SEMMESTER: YEAR-LONG
COURSE CODE: PHYS 3166
COURSE TITLE: MATERIALS SCIENCE LABORATORY
NO. OF CREDITS: 3
PREREQUISITES: ALL CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION: Laboratory experiments and a field trip with site work are to be performed corresponding to the taught components of the Materials Science Minor. The students will be expected to perform the exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.
ASSSESSMENT:
Coursework 100%
Students will be required to submit a lab report for each of the experiments they will perform. Each lab report will be marked and this will constitute the coursework.

LEVEL: III
SEMMESTER: 2
COURSE CODE: PHYS 3167
COURSE TITLE: RADIATION BIOPHYSICS AND MEDICINE
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION:
Introduction to cell biology and DNA: this part of the course addresses cell structure, division and functioning, DNA as the main target for radiation, genetics, functioning of cell and damages caused by different types of radiation.
Radiation damage and DNA repair. Cell death and mutation. Organ, tissue and organism effects of irradiation: This part of course addresses cell survival after irradiation and different biological and chemical mechanisms affecting the survival as well as DNA damage and repair. Tissue, organs and organism, effects of irradiation. Here the key knowledge of radiation effects is learned.
Modern methods of radiotherapy: This part of course addresses the main principles, modern methods of radiotherapy and combined therapies as well as tumor biology and responses of tumor and of normal tissues to radiation.
Radiation Carcinogenesis: This part of course addresses the development of cancer after radiation: type of malignancy, dosage, time responses and concepts of for risk estimations.
Radiation protection and legislation: This part of course addresses radiation accidents, radioecology, risk estimation and current legislation in radiation (International and Local). What we have learned after certain accidents and how to avoid high radiation doses or to minimize the consequences of irradiation.
ASSSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: III
SEMMESTER: 2
COURSE CODE: PHYS 3168
COURSE TITLE: MEDICAL INSTRUMENTATION
NO. OF CREDITS: 3
PREREQUISITES: ANY NINE (9) CREDITS FROM THE FOLLOWING: PHYS 1221, PHYS 1222, PHYS 1223, PHYS 1224
COURSE DESCRIPTION: Electronic Instruments: voltmeters e.g. VTVM Transistor voltmeter, multimeter, use of cathode-ray oscilloscope for the measurement of voltage, current phase and frequency, special purpose oscilloscopes, measurement of resistance, inductance, capacitance, using Kelvin’s, Maxwell’s and Schering bridge, measurement of effective resistance at high frequency, R meter, LCR meter. Signal generators, function generator, wave analyzer, harmonic distortion analyzer, spectrum analyzer, spectrum analysis.
Transducers: operation of strain gauge, electromechanical transducer e.g. Linear Variable Differential Transformer (LVDT), thermocouple, piezo- electric crystal, photoelectric transducers, light detecting resistor (LDR), SQUID, thermistors. Digital-to-analog and analog-to-digital conversion techniques.
Data Acquisition System for patient monitoring: recording equipment: types e.g. graphic, strip chart, magnetic tape, digital tape and requirements. Safety issues: Macro and micro current shock, special design from safety consideration, safety standards, testing, ensuring protection of equipment and personnel.
ASSSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%
LEVEL: III
SEMESTER: 1
COURSE CODE: PHYS 3201
COURSE TITLE: ADVANCE ELECTRONICS AND CONTROL THEORY
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2401
COURSE DESCRIPTION: This course deals with two major areas of electronics. First part deals with the advance analog electronics and covers the concept of feedback, feedback amplifiers, multivibrators, differential amplifiers, operational amplifiers; related theory and their applications. Second part deals with control theory and explores modeling, analysis and design of feedback control systems using classical approach. This course builds foundation for the course ECNG 3019 - Advance Control System Design and prepares students for automation industry.
ASSESSMENT:
Coursework 40%
Final Examination (one 2-hr paper) 60%

LEVEL: III
SEMESTER: YEAR-LONG
COURSE CODE: PHYS 3202
COURSE TITLE: PRACTICAL ELECTRONICS I
NO. OF CREDITS: 3
PREREQUISITES: PHYS 2401 AND PHYS 2402
COURSE DESCRIPTION: This laboratory course addresses the practical component of the Electronics Minor and covers all topic areas taught in four courses of the minor. This course provides the necessary practical knowledge in the field of basic as well as advance analog and digital electronics. The purpose of this laboratory course is to give students hands-on experience and to allow them to test the principles which they learn from the theoretical components of the courses. The students will be expected to perform the laboratory exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.
ASSESSMENT:
Coursework 100%

LEVEL: III
SEMESTER: 2
COURSE CODE: PHYS 3203
COURSE TITLE: MICROPROCESSOR AND MODERN DIGITAL DESIGN
NUMBER OF CREDITS: 3
PREREQUISITES: PHYS 2402
COURSE DESCRIPTION: The main objective is to build a strong foundation for the students in the area of modern digital electronics and microprocessors fundamentals and to expose them to the entire digital systems design process from gate level to system level. An overview of advanced digital system design technologies and industrial grade Electronics Design and Automation (EDA) tools is provided to develop skilled manpower in the highly demanding area of System- On-Chip Design and to encourage entrepreneurship.
ASSESSMENT:
Coursework 40%
Final Examination (One 2-hr paper) 60%

LEVEL: III
SEMESTER: 2
COURSE CODE: PHYS 3204
COURSE TITLE: PRACTICAL ELECTRONICS II
NO. OF CREDITS: 3
PREREQUISITES: ECNG 2001 AND PHYS 3201
COURSE DESCRIPTION: This laboratory based course consists of advance level laboratory exercises and mini project from analog & digital communication and control systems. Laboratory experiments covering topic areas of the courses ECNG 2001 –Communication System –I, ECNG 3001 - Communication Systems–II and PHYS 3201 - Advance Electronics and Control Theory will be performed. The purpose of this experimental based laboratory course is to give students hands-on experience and to allow them to test the principles which they learn from the theoretical components of the courses. The students will be expected to perform the laboratory exercises and collect their data and depending on the complexity of the exercise will submit the written report at the end of the exercise or submit it the following week for assessment.
ASSESSMENT:
Coursework 100%
SPANISH: SPAN

LEVEL: I
SEMESTERS: 1 AND 2
COURSE CODE: SPAN 1101
COURSE TITLE: LEVEL 1A SPANISH
NUMBER OF CREDITS: 2
PREREQUISITES: NONE
COURSE DESCRIPTION: This is a beginners’ course for students with no previous knowledge of Spanish. This communicative course focuses on the development of the four skills: listening, speaking, reading and writing as well as on the development of knowledge of the Hispanic culture. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by one hour of independent study for each contact hour.
ASSESSMENT:
In-course testing 100%
40% [mid-semester];
40% [end of semester];
20% [two assignments]

LEVEL: I
SEMESTERS: 1 AND 2
COURSE CODE: SPAN 1102
COURSE TITLE: LEVEL 1B SPANISH
NUMBER OF CREDITS: 2
PREREQUISITES: SPAN 1101/1A SPANISH OR EQUIVALENT
COURSE DESCRIPTION: Students in this course have some basic knowledge of Spanish. This course will build on the skills learnt in SPAN 1101/1A Spanish and aims to continue to promote communicative and intercultural competence. The focus will be on the development of the four skills: speaking, listening, reading and writing. The course meets for four hours per week for 13 weeks. In addition, class contact time should be supplemented by one hour of independent study for each contact hour.
ASSESSMENT:
In-course testing 100%
40% [mid-semester];
40% [end of semester];
20% [two assignments]

STATISTICS: STAT

LEVEL: III
SEMESTER: 2
COURSE CODE: STAT 3000
COURSE TITLE: REGRESSION WITH TIME SERIES ANALYSIS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2275
COURSE DESCRIPTION: This course builds on the applied aspects of Statistics I. It is primarily concerned with the construction of regression and time series models relevant to econometric modelling.
ASSESSMENT:
Coursework 50%
Final Examination 50%
LEVEL: III
SEMESTER: 2
COURSE CODE: STAT 3001
COURSE TITLE: EXPERIMENTAL DESIGN AND SAMPLING THEORY
PREREQUISITES: MATH 2275

COURSE DESCRIPTION: This course aims to deliver basic ideas of sampling and experimental design from an applied perspective and to provide experience with real-like problems and data. The course will cover the main techniques used in actual sampling practice — simple random sampling, stratification, systematic selection and cluster sampling. This is an applied statistical methods course. It differs from most statistics courses because it is concerned as much with the design of data collection as with the analysis of data. The course will concentrate on problems of applying sampling methods to human populations, because survey practices are widely used in that area, and because sampling human populations pose particular problems not found in sampling of other types of units. However, the principles of sample selection can be applied to many other types of populations. The experimental designs covered are sufficient to provide students with the knowledge and capability to execute and advise on experiments in and of the sciences. Students get exposure to the analysis of real datasets using appropriate statistical software like SPSS and R to analyze survey data.

ASSESSMENT:
Coursework 50%
Final Examination (One 2-hr paper) 50%

LEVEL: III
SEMESTER: (NOT OFFERED IN 2019/2020)
COURSE CODE: STAT 3010
COURSE TITLE: REGRESSION ANALYSIS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2275

COURSE DESCRIPTION: The course will consist of a mixture of lectures and practical work (which will be assessed by the student’s completion of practical assignments to be submitted). Computer practical session, in which R, the statistical package will be used on which the continuous assessment is based. The lectures will focus on statistical modelling, including selection of appropriate models, the analysis and interpretation of results and diagnostics. Exploratory and graphical techniques will be considered, as well as formal statistical procedures.

ASSESSMENT:
Coursework 50%
Final Examination (One 2-hr paper) 50%

LEVEL: III
SEMESTER: (NOT OFFERED IN 2019/2020)
COURSE CODE: STAT 3011
COURSE TITLE: DESIGN OF EXPERIMENTS
NUMBER OF CREDITS: 3
PREREQUISITES: MATH 2275

COURSE DESCRIPTION: The main objective of this course is to provide undergraduates with the ability to design and properly analyze experimental data. Statisticians contribute to experiments by helping to make them more efficient. In a designed experiment the scientist is free to fix and/or randomize and/or mix the levels of the exploratory variables. Design is about choosing the combinations of these levels at which to observe the response variable. The course will describe the various ways of structuring data to eliminate the effects of confusing factors so that the main factors of interest can be investigated more reliably. The course will be very practical involving the use of the packages MINITAB and R (and SPSS where possible). Theory will be studied but the emphasis will be on the practical interpretation of the data and appropriate models.

ASSESSMENT:
Coursework 50%
Final Examination (One 2-hr paper) 50%
LEVEL: III
SEMESTERS: (NOT OFFERED IN 2019/2020)
COURSE CODE: STAT 3012
COURSE TITLE: APPLIED MULTIVARIATE STATISTICS
NUMBER OF CREDITS: 3
PREREQUISITES: (MATH 1141 OR ECON 2015) AND (MATH 2275 OR ECON 2025)
COURSE DESCRIPTION: The main objective of this course is to provide undergraduate students with a set of statistical tools that will enable them to analyze multivariate data properly using sound statistical methods and appropriate computer software.
Possible topics to be covered include multivariate data screening, principal component analysis, discriminant analysis, cluster analysis and factor analysis. Students should expect to spend approximately 3-5 hours per week on homework assignments and readings (beyond class time).
All methods will be illustrated via real data sets, using the open source statistical software R (http://cran.r-project.org/).
This course will also expose students to use of statistical software such as Minitab and SPSS.
ASSESSMENT:
Coursework 50%
Final Examination (One 2-hr paper) 50%

SOFTWARE ENGINEERING: SWEN

LEVEL: I
SEMESTER: 2
COURSE CODE: SWEN 1003
COURSE TITLE: CURRENT AND FUTURE TRENDS IN COMPUTING FOR SOFTWARE ENGINEERS
NUMBER OF CREDITS: 3
PREREQUISITES: SWEN 1006
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE DESCRIPTION: This course exposes students to the latest research and development of computing technologies (with emphasis on those related to software engineering and mobile) and is intended to extend students’ depth and breadth of knowledge in computing. Students are required to engage in active research through the review of research literature, presentations (by students, faculty, researchers and experts in the public/private sectors) and patent databases. Students will also be introduced to grand challenges and future trends in computing.
ASSESSMENT:
Coursework 70%
Final Examination 30%

LEVEL: I
SEMESTER: 2
COURSE CODE: SWEN 1005
COURSE TITLE: MOBILE WEB PROGRAMMING
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE DESCRIPTION: In this course, students will learn how to create effective mobile web pages and websites using the de facto standards of the web. Students will learn about: what makes a good mobile website; the various frameworks that are available; and, the methods used to access available APIs. Mobile devices have become ubiquitous because of people’s desire to be always connected. Being always connected means greater access to products and services, entertainment and social media, for example. One method of utilizing these services is through websites that are accessed using a web browser running on the user’s mobile device.
ASSESSMENT:
Coursework 100%
LEVEL: I
SEMESTER: 1
COURSE CODE: SWEN 1006
COURSE TITLE: RESEARCH METHODS FOR SOFTWARE ENGINEERS
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE DESCRIPTION: This course introduces students to the research methods needed by software engineers to elicit and analyse requirements and measure customer satisfaction. Students will acquire basic skills needed to conduct market research. Furthermore, they will learn how to document the plan in the form of a research proposal. Students will also be introduced to instrument design, research tools and the important issue of academic integrity.
ASSESSMENT:
Coursework 100%

LEVEL: I
SEMESTER: 2
COURSE CODE: SWEN 1007
COURSE TITLE: SOFTWARE ENGINEERING ESSENTIALS
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE DESCRIPTION: Software is virtually inescapable in this modern world. Some type of software is present in every electronic device making it a necessary field of study. Before moving on to the building of software, however it is necessary to be exposed to some foundational knowledge. This is presented in this course. Software engineering essentials includes the topics that support software product design and construction across all sub-disciplines. It also includes information about engineering, the transformation of a design into an implementation, as well as the techniques and tools used during this process.
ASSESSMENT:
Coursework 60%
Final Examination 40%

LEVEL: I
SEMESTER: 2
COURSE CODE: SWEN 1008
COURSE TITLE: TECHNICAL WRITING FOR SOFTWARE ENGINEERS
NUMBER OF CREDITS: 3
PREREQUISITES: SWEN 1006
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE DESCRIPTION: Technical writers communicate technical content in a simple way so that it is easy to understand. To be an effective technical writer many skills are required, including writing, communication, technical skills, the use of tools, and usability and testing. This course introduces software engineering students to the art of technical writing. It covers topic areas such as information design, user centred design, technical communication, usability testing and layout concepts. In addition, students will learn how to use the XML standard to publish documents using software tools.
ASSESSMENT:
Coursework 100%
LEVEL: III
SEMESTER: 2
COURSE CODE: SWEN 2165
COURSE TITLE: REQUIREMENTS ENGINEERING
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2140
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY

COURSE CONTENT:
1. Interacting with stakeholders: dealing with uncertainty and ambiguity, negotiation, requirements attributes (complete, traceable, unambiguous, atomic), cognitive problem complexity elicitation tools and techniques under various development approaches (plan-driven, incremental, reuse, prototyping, and viewpoints).
2. Requirements evolution: prioritization, trade-off analysis, risk analysis, and impact analysis, evaluating cost-effective solutions, benefits realization, trade-off analysis, cost analysis, return on investment (ROI), change management, scope creep.
4. Requirements documentation: types, audience, structure, quality, contemporary standards and best practices, software requirements specification techniques (decision tables, user stories, UML, Volere, behavioral specifications, goal-driven).
5. Security in requirements analysis and specification.
6. Requirements engineering tools.

ASSESSMENT:
Coursework 60%
Final Examination (2 hours) 40%

LEVEL: III
SEMESTER: 1
COURSE CODE: SWEN 3130
COURSE TITLE: SOFTWARE PROJECT MANAGEMENT
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2140
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY

COURSE CONTENT:
1. The Role of Risk in the Software Life Cycle: Risk categories including security, safety, market, financial, technology, people, quality, structure and process; Risk identification; Risk tolerance e.g., risk-adverse, risk-neutral, risk-seeking; Risk planning; Risk removal, reduction and control.
2. Working in Teams: Professional Ethics; Participation; Processes including responsibilities for tasks, meeting structure, and work schedule in a software team; Team Conflict Resolution; Virtual Teams (communication, perception, structure); Effort Estimation (at the personal level); Team Management including organisation, decision-making, role identification and assignment, individual and team performance assessment.
3. Project Management: Scheduling and Tracking; Project Management Tools; Cost/Benefit Analysis; Software Measurement and Estimation Techniques; Configuration Management and Version Control; Principles of Risk Management.

ASSESSMENT:
Coursework 40%
Final Examination (2 hours) 60%
LEVEL: III
SEMESTER: 1
COURSE CODE: SWEN 3145
COURSE TITLE: SOFTWARE MODELING
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2140 AND COMP 2171
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE CONTENT:
Requirements Specification Document Development (Precisely Expressing Requirements); Information Modelling (Entity-Relationship Modelling, Class Diagrams); Behavioural Modelling (Structured Analysis, State Diagrams, Use Case Analysis, Interaction Diagrams, Failure Modes and Effects Analysis); Structure Modelling (Architectural); Domain Modelling (Domain Engineering Approaches); Functional Modelling (Component Diagrams).
ASSESSMENT:
Coursework 60%
Final Examination (2 hours) 40%

LEVEL: III
SEMESTER: 2
COURSE CODE: SWEN 3165
COURSE TITLE: SOFTWARE TESTING
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2140 AND COMP 2171
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE CONTENT:
Managing the Testing Process, Testing Principles and Techniques (Unit, Integration, Systems, Acceptance; Testing Types (State Based, Regression, Configuration, Compatibility, Alpha, Beta, and Acceptance); Test Driven Development; Test Plan Development; Reporting, Tracking, and Analysis of Problems encountered during Development.
ASSESSMENT:
Coursework 60%
Final Examination (2 hours) 40%

LEVEL: III
SEMESTER: 2
COURSE CODE: SWEN 3185
COURSE TITLE: FORMAL METHODS AND SOFTWARE RELIABILITY
NUMBER OF CREDITS: 3
PREREQUISITES: COMP 2201
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE CONTENT:
ASSESSMENT:
Coursework 60%
Final Examination (2 hours) 40%
LEVEL: III
SEMESTERS: 1, 2 AND 3
COURSE CODE: SWEN 3920
COURSE TITLE: CAPSTONE PROJECT (SOFTWARE ENGINEERING)
NUMBER OF CREDITS: 6
PREREQUISITES: COMP 2140, SWEN 3130 AND SWEN 3145
CO-REQUISITES: SWEN 3165 AND SWEN 3185
RESTRICTION: FOR BSc SOFTWARE ENGINEERING STUDENTS ONLY
COURSE DESCRIPTION: This course is the required group project course for all students majoring in software engineering. It is intended to be a capstone course that will bring together many of the topics that were covered in the rest of the curriculum. For this reason, students will be expected to take this course in their final year, for a period of six months beginning in semester two and ending in semester three. The project must encompass all matters relating to the software engineering process: requirements, design, coding, working in teams and project management.

Evaluation:
- Presentation and Demonstration of Final Product 10%
- Project Management Charter and Plan 15%
- Architecture and Design 15%
- Software Requirements Specification 30%
- Software Artefacts 30%